Properties

Label 234.2.a.b.1.1
Level $234$
Weight $2$
Character 234.1
Self dual yes
Analytic conductor $1.868$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(1,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 234.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{7} -1.00000 q^{8} -1.00000 q^{10} +2.00000 q^{11} -1.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} +3.00000 q^{17} +6.00000 q^{19} +1.00000 q^{20} -2.00000 q^{22} +4.00000 q^{23} -4.00000 q^{25} +1.00000 q^{26} +1.00000 q^{28} -2.00000 q^{29} +4.00000 q^{31} -1.00000 q^{32} -3.00000 q^{34} +1.00000 q^{35} +3.00000 q^{37} -6.00000 q^{38} -1.00000 q^{40} -5.00000 q^{43} +2.00000 q^{44} -4.00000 q^{46} -13.0000 q^{47} -6.00000 q^{49} +4.00000 q^{50} -1.00000 q^{52} -12.0000 q^{53} +2.00000 q^{55} -1.00000 q^{56} +2.00000 q^{58} +10.0000 q^{59} -8.00000 q^{61} -4.00000 q^{62} +1.00000 q^{64} -1.00000 q^{65} -2.00000 q^{67} +3.00000 q^{68} -1.00000 q^{70} +5.00000 q^{71} -10.0000 q^{73} -3.00000 q^{74} +6.00000 q^{76} +2.00000 q^{77} -4.00000 q^{79} +1.00000 q^{80} +3.00000 q^{85} +5.00000 q^{86} -2.00000 q^{88} -6.00000 q^{89} -1.00000 q^{91} +4.00000 q^{92} +13.0000 q^{94} +6.00000 q^{95} +14.0000 q^{97} +6.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −3.00000 −0.514496
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −5.00000 −0.762493 −0.381246 0.924473i \(-0.624505\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) −13.0000 −1.89624 −0.948122 0.317905i \(-0.897021\pi\)
−0.948122 + 0.317905i \(0.897021\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 4.00000 0.565685
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 2.00000 0.262613
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 3.00000 0.363803
\(69\) 0 0
\(70\) −1.00000 −0.119523
\(71\) 5.00000 0.593391 0.296695 0.954972i \(-0.404115\pi\)
0.296695 + 0.954972i \(0.404115\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −3.00000 −0.348743
\(75\) 0 0
\(76\) 6.00000 0.688247
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 5.00000 0.539164
\(87\) 0 0
\(88\) −2.00000 −0.213201
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) 13.0000 1.34085
\(95\) 6.00000 0.615587
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 6.00000 0.606092
\(99\) 0 0
\(100\) −4.00000 −0.400000
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 12.0000 1.16554
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) 19.0000 1.81987 0.909935 0.414751i \(-0.136131\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) −2.00000 −0.190693
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) −10.0000 −0.920575
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 8.00000 0.724286
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 1.00000 0.0877058
\(131\) 1.00000 0.0873704 0.0436852 0.999045i \(-0.486090\pi\)
0.0436852 + 0.999045i \(0.486090\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) 7.00000 0.593732 0.296866 0.954919i \(-0.404058\pi\)
0.296866 + 0.954919i \(0.404058\pi\)
\(140\) 1.00000 0.0845154
\(141\) 0 0
\(142\) −5.00000 −0.419591
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) 3.00000 0.246598
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −9.00000 −0.732410 −0.366205 0.930534i \(-0.619343\pi\)
−0.366205 + 0.930534i \(0.619343\pi\)
\(152\) −6.00000 −0.486664
\(153\) 0 0
\(154\) −2.00000 −0.161165
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 4.00000 0.318223
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −3.00000 −0.230089
\(171\) 0 0
\(172\) −5.00000 −0.381246
\(173\) −20.0000 −1.52057 −0.760286 0.649589i \(-0.774941\pi\)
−0.760286 + 0.649589i \(0.774941\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 2.00000 0.150756
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) 9.00000 0.672692 0.336346 0.941739i \(-0.390809\pi\)
0.336346 + 0.941739i \(0.390809\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 1.00000 0.0741249
\(183\) 0 0
\(184\) −4.00000 −0.294884
\(185\) 3.00000 0.220564
\(186\) 0 0
\(187\) 6.00000 0.438763
\(188\) −13.0000 −0.948122
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) −10.0000 −0.723575 −0.361787 0.932261i \(-0.617833\pi\)
−0.361787 + 0.932261i \(0.617833\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) −9.00000 −0.641223 −0.320612 0.947211i \(-0.603888\pi\)
−0.320612 + 0.947211i \(0.603888\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 4.00000 0.282843
\(201\) 0 0
\(202\) 4.00000 0.281439
\(203\) −2.00000 −0.140372
\(204\) 0 0
\(205\) 0 0
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 23.0000 1.58339 0.791693 0.610920i \(-0.209200\pi\)
0.791693 + 0.610920i \(0.209200\pi\)
\(212\) −12.0000 −0.824163
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) −5.00000 −0.340997
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) −19.0000 −1.28684
\(219\) 0 0
\(220\) 2.00000 0.134840
\(221\) −3.00000 −0.201802
\(222\) 0 0
\(223\) −21.0000 −1.40626 −0.703132 0.711059i \(-0.748216\pi\)
−0.703132 + 0.711059i \(0.748216\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 2.00000 0.133038
\(227\) 24.0000 1.59294 0.796468 0.604681i \(-0.206699\pi\)
0.796468 + 0.604681i \(0.206699\pi\)
\(228\) 0 0
\(229\) −15.0000 −0.991228 −0.495614 0.868543i \(-0.665057\pi\)
−0.495614 + 0.868543i \(0.665057\pi\)
\(230\) −4.00000 −0.263752
\(231\) 0 0
\(232\) 2.00000 0.131306
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 0 0
\(235\) −13.0000 −0.848026
\(236\) 10.0000 0.650945
\(237\) 0 0
\(238\) −3.00000 −0.194461
\(239\) −9.00000 −0.582162 −0.291081 0.956698i \(-0.594015\pi\)
−0.291081 + 0.956698i \(0.594015\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) −8.00000 −0.512148
\(245\) −6.00000 −0.383326
\(246\) 0 0
\(247\) −6.00000 −0.381771
\(248\) −4.00000 −0.254000
\(249\) 0 0
\(250\) 9.00000 0.569210
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) −16.0000 −1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 15.0000 0.935674 0.467837 0.883815i \(-0.345033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(258\) 0 0
\(259\) 3.00000 0.186411
\(260\) −1.00000 −0.0620174
\(261\) 0 0
\(262\) −1.00000 −0.0617802
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) −6.00000 −0.367884
\(267\) 0 0
\(268\) −2.00000 −0.122169
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 13.0000 0.789694 0.394847 0.918747i \(-0.370798\pi\)
0.394847 + 0.918747i \(0.370798\pi\)
\(272\) 3.00000 0.181902
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) −8.00000 −0.482418
\(276\) 0 0
\(277\) 12.0000 0.721010 0.360505 0.932757i \(-0.382604\pi\)
0.360505 + 0.932757i \(0.382604\pi\)
\(278\) −7.00000 −0.419832
\(279\) 0 0
\(280\) −1.00000 −0.0597614
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 5.00000 0.296695
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 2.00000 0.117444
\(291\) 0 0
\(292\) −10.0000 −0.585206
\(293\) −7.00000 −0.408944 −0.204472 0.978872i \(-0.565548\pi\)
−0.204472 + 0.978872i \(0.565548\pi\)
\(294\) 0 0
\(295\) 10.0000 0.582223
\(296\) −3.00000 −0.174371
\(297\) 0 0
\(298\) −18.0000 −1.04271
\(299\) −4.00000 −0.231326
\(300\) 0 0
\(301\) −5.00000 −0.288195
\(302\) 9.00000 0.517892
\(303\) 0 0
\(304\) 6.00000 0.344124
\(305\) −8.00000 −0.458079
\(306\) 0 0
\(307\) 14.0000 0.799022 0.399511 0.916728i \(-0.369180\pi\)
0.399511 + 0.916728i \(0.369180\pi\)
\(308\) 2.00000 0.113961
\(309\) 0 0
\(310\) −4.00000 −0.227185
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) −1.00000 −0.0565233 −0.0282617 0.999601i \(-0.508997\pi\)
−0.0282617 + 0.999601i \(0.508997\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) −4.00000 −0.222911
\(323\) 18.0000 1.00155
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 0 0
\(329\) −13.0000 −0.716713
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 0 0
\(340\) 3.00000 0.162698
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 5.00000 0.269582
\(345\) 0 0
\(346\) 20.0000 1.07521
\(347\) 9.00000 0.483145 0.241573 0.970383i \(-0.422337\pi\)
0.241573 + 0.970383i \(0.422337\pi\)
\(348\) 0 0
\(349\) 7.00000 0.374701 0.187351 0.982293i \(-0.440010\pi\)
0.187351 + 0.982293i \(0.440010\pi\)
\(350\) 4.00000 0.213809
\(351\) 0 0
\(352\) −2.00000 −0.106600
\(353\) −4.00000 −0.212899 −0.106449 0.994318i \(-0.533948\pi\)
−0.106449 + 0.994318i \(0.533948\pi\)
\(354\) 0 0
\(355\) 5.00000 0.265372
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −9.00000 −0.475665
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) −1.00000 −0.0524142
\(365\) −10.0000 −0.523424
\(366\) 0 0
\(367\) −10.0000 −0.521996 −0.260998 0.965339i \(-0.584052\pi\)
−0.260998 + 0.965339i \(0.584052\pi\)
\(368\) 4.00000 0.208514
\(369\) 0 0
\(370\) −3.00000 −0.155963
\(371\) −12.0000 −0.623009
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) −6.00000 −0.310253
\(375\) 0 0
\(376\) 13.0000 0.670424
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 6.00000 0.307794
\(381\) 0 0
\(382\) 10.0000 0.511645
\(383\) −27.0000 −1.37964 −0.689818 0.723983i \(-0.742309\pi\)
−0.689818 + 0.723983i \(0.742309\pi\)
\(384\) 0 0
\(385\) 2.00000 0.101929
\(386\) 16.0000 0.814379
\(387\) 0 0
\(388\) 14.0000 0.710742
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 6.00000 0.303046
\(393\) 0 0
\(394\) 9.00000 0.453413
\(395\) −4.00000 −0.201262
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 10.0000 0.501255
\(399\) 0 0
\(400\) −4.00000 −0.200000
\(401\) −24.0000 −1.19850 −0.599251 0.800561i \(-0.704535\pi\)
−0.599251 + 0.800561i \(0.704535\pi\)
\(402\) 0 0
\(403\) −4.00000 −0.199254
\(404\) −4.00000 −0.199007
\(405\) 0 0
\(406\) 2.00000 0.0992583
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 4.00000 0.197787 0.0988936 0.995098i \(-0.468470\pi\)
0.0988936 + 0.995098i \(0.468470\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −8.00000 −0.394132
\(413\) 10.0000 0.492068
\(414\) 0 0
\(415\) 0 0
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) −12.0000 −0.586939
\(419\) −21.0000 −1.02592 −0.512959 0.858413i \(-0.671451\pi\)
−0.512959 + 0.858413i \(0.671451\pi\)
\(420\) 0 0
\(421\) −5.00000 −0.243685 −0.121843 0.992549i \(-0.538880\pi\)
−0.121843 + 0.992549i \(0.538880\pi\)
\(422\) −23.0000 −1.11962
\(423\) 0 0
\(424\) 12.0000 0.582772
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) −8.00000 −0.387147
\(428\) 4.00000 0.193347
\(429\) 0 0
\(430\) 5.00000 0.241121
\(431\) −33.0000 −1.58955 −0.794777 0.606902i \(-0.792412\pi\)
−0.794777 + 0.606902i \(0.792412\pi\)
\(432\) 0 0
\(433\) 7.00000 0.336399 0.168199 0.985753i \(-0.446205\pi\)
0.168199 + 0.985753i \(0.446205\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) 19.0000 0.909935
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) −22.0000 −1.05000 −0.525001 0.851101i \(-0.675935\pi\)
−0.525001 + 0.851101i \(0.675935\pi\)
\(440\) −2.00000 −0.0953463
\(441\) 0 0
\(442\) 3.00000 0.142695
\(443\) 39.0000 1.85295 0.926473 0.376361i \(-0.122825\pi\)
0.926473 + 0.376361i \(0.122825\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 21.0000 0.994379
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −2.00000 −0.0940721
\(453\) 0 0
\(454\) −24.0000 −1.12638
\(455\) −1.00000 −0.0468807
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 15.0000 0.700904
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) 21.0000 0.978068 0.489034 0.872265i \(-0.337349\pi\)
0.489034 + 0.872265i \(0.337349\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) −11.0000 −0.509565
\(467\) −20.0000 −0.925490 −0.462745 0.886492i \(-0.653135\pi\)
−0.462745 + 0.886492i \(0.653135\pi\)
\(468\) 0 0
\(469\) −2.00000 −0.0923514
\(470\) 13.0000 0.599645
\(471\) 0 0
\(472\) −10.0000 −0.460287
\(473\) −10.0000 −0.459800
\(474\) 0 0
\(475\) −24.0000 −1.10120
\(476\) 3.00000 0.137505
\(477\) 0 0
\(478\) 9.00000 0.411650
\(479\) 3.00000 0.137073 0.0685367 0.997649i \(-0.478167\pi\)
0.0685367 + 0.997649i \(0.478167\pi\)
\(480\) 0 0
\(481\) −3.00000 −0.136788
\(482\) −18.0000 −0.819878
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 8.00000 0.362143
\(489\) 0 0
\(490\) 6.00000 0.271052
\(491\) 5.00000 0.225647 0.112823 0.993615i \(-0.464011\pi\)
0.112823 + 0.993615i \(0.464011\pi\)
\(492\) 0 0
\(493\) −6.00000 −0.270226
\(494\) 6.00000 0.269953
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 5.00000 0.224281
\(498\) 0 0
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) −9.00000 −0.402492
\(501\) 0 0
\(502\) 0 0
\(503\) 14.0000 0.624229 0.312115 0.950044i \(-0.398963\pi\)
0.312115 + 0.950044i \(0.398963\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) −8.00000 −0.355643
\(507\) 0 0
\(508\) 16.0000 0.709885
\(509\) −34.0000 −1.50702 −0.753512 0.657434i \(-0.771642\pi\)
−0.753512 + 0.657434i \(0.771642\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −15.0000 −0.661622
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) −26.0000 −1.14348
\(518\) −3.00000 −0.131812
\(519\) 0 0
\(520\) 1.00000 0.0438529
\(521\) −39.0000 −1.70862 −0.854311 0.519763i \(-0.826020\pi\)
−0.854311 + 0.519763i \(0.826020\pi\)
\(522\) 0 0
\(523\) −36.0000 −1.57417 −0.787085 0.616844i \(-0.788411\pi\)
−0.787085 + 0.616844i \(0.788411\pi\)
\(524\) 1.00000 0.0436852
\(525\) 0 0
\(526\) 12.0000 0.523225
\(527\) 12.0000 0.522728
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 12.0000 0.521247
\(531\) 0 0
\(532\) 6.00000 0.260133
\(533\) 0 0
\(534\) 0 0
\(535\) 4.00000 0.172935
\(536\) 2.00000 0.0863868
\(537\) 0 0
\(538\) −24.0000 −1.03471
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) −13.0000 −0.558398
\(543\) 0 0
\(544\) −3.00000 −0.128624
\(545\) 19.0000 0.813871
\(546\) 0 0
\(547\) 37.0000 1.58201 0.791003 0.611812i \(-0.209559\pi\)
0.791003 + 0.611812i \(0.209559\pi\)
\(548\) −12.0000 −0.512615
\(549\) 0 0
\(550\) 8.00000 0.341121
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) −12.0000 −0.509831
\(555\) 0 0
\(556\) 7.00000 0.296866
\(557\) −33.0000 −1.39825 −0.699127 0.714997i \(-0.746428\pi\)
−0.699127 + 0.714997i \(0.746428\pi\)
\(558\) 0 0
\(559\) 5.00000 0.211477
\(560\) 1.00000 0.0422577
\(561\) 0 0
\(562\) −26.0000 −1.09674
\(563\) −11.0000 −0.463595 −0.231797 0.972764i \(-0.574461\pi\)
−0.231797 + 0.972764i \(0.574461\pi\)
\(564\) 0 0
\(565\) −2.00000 −0.0841406
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) −5.00000 −0.209795
\(569\) −31.0000 −1.29959 −0.649794 0.760111i \(-0.725145\pi\)
−0.649794 + 0.760111i \(0.725145\pi\)
\(570\) 0 0
\(571\) 33.0000 1.38101 0.690504 0.723329i \(-0.257389\pi\)
0.690504 + 0.723329i \(0.257389\pi\)
\(572\) −2.00000 −0.0836242
\(573\) 0 0
\(574\) 0 0
\(575\) −16.0000 −0.667246
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 8.00000 0.332756
\(579\) 0 0
\(580\) −2.00000 −0.0830455
\(581\) 0 0
\(582\) 0 0
\(583\) −24.0000 −0.993978
\(584\) 10.0000 0.413803
\(585\) 0 0
\(586\) 7.00000 0.289167
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) −10.0000 −0.411693
\(591\) 0 0
\(592\) 3.00000 0.123299
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) 3.00000 0.122988
\(596\) 18.0000 0.737309
\(597\) 0 0
\(598\) 4.00000 0.163572
\(599\) 2.00000 0.0817178 0.0408589 0.999165i \(-0.486991\pi\)
0.0408589 + 0.999165i \(0.486991\pi\)
\(600\) 0 0
\(601\) −35.0000 −1.42768 −0.713840 0.700309i \(-0.753046\pi\)
−0.713840 + 0.700309i \(0.753046\pi\)
\(602\) 5.00000 0.203785
\(603\) 0 0
\(604\) −9.00000 −0.366205
\(605\) −7.00000 −0.284590
\(606\) 0 0
\(607\) 6.00000 0.243532 0.121766 0.992559i \(-0.461144\pi\)
0.121766 + 0.992559i \(0.461144\pi\)
\(608\) −6.00000 −0.243332
\(609\) 0 0
\(610\) 8.00000 0.323911
\(611\) 13.0000 0.525924
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) −14.0000 −0.564994
\(615\) 0 0
\(616\) −2.00000 −0.0805823
\(617\) −16.0000 −0.644136 −0.322068 0.946717i \(-0.604378\pi\)
−0.322068 + 0.946717i \(0.604378\pi\)
\(618\) 0 0
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 4.00000 0.160644
\(621\) 0 0
\(622\) 18.0000 0.721734
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 1.00000 0.0399680
\(627\) 0 0
\(628\) −10.0000 −0.399043
\(629\) 9.00000 0.358854
\(630\) 0 0
\(631\) −5.00000 −0.199047 −0.0995234 0.995035i \(-0.531732\pi\)
−0.0995234 + 0.995035i \(0.531732\pi\)
\(632\) 4.00000 0.159111
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 4.00000 0.158362
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) 14.0000 0.552106 0.276053 0.961142i \(-0.410973\pi\)
0.276053 + 0.961142i \(0.410973\pi\)
\(644\) 4.00000 0.157622
\(645\) 0 0
\(646\) −18.0000 −0.708201
\(647\) 38.0000 1.49393 0.746967 0.664861i \(-0.231509\pi\)
0.746967 + 0.664861i \(0.231509\pi\)
\(648\) 0 0
\(649\) 20.0000 0.785069
\(650\) −4.00000 −0.156893
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 0 0
\(655\) 1.00000 0.0390732
\(656\) 0 0
\(657\) 0 0
\(658\) 13.0000 0.506793
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 4.00000 0.155464
\(663\) 0 0
\(664\) 0 0
\(665\) 6.00000 0.232670
\(666\) 0 0
\(667\) −8.00000 −0.309761
\(668\) 0 0
\(669\) 0 0
\(670\) 2.00000 0.0772667
\(671\) −16.0000 −0.617673
\(672\) 0 0
\(673\) 37.0000 1.42625 0.713123 0.701039i \(-0.247280\pi\)
0.713123 + 0.701039i \(0.247280\pi\)
\(674\) −23.0000 −0.885927
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 36.0000 1.38359 0.691796 0.722093i \(-0.256820\pi\)
0.691796 + 0.722093i \(0.256820\pi\)
\(678\) 0 0
\(679\) 14.0000 0.537271
\(680\) −3.00000 −0.115045
\(681\) 0 0
\(682\) −8.00000 −0.306336
\(683\) 44.0000 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 13.0000 0.496342
\(687\) 0 0
\(688\) −5.00000 −0.190623
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) −20.0000 −0.760286
\(693\) 0 0
\(694\) −9.00000 −0.341635
\(695\) 7.00000 0.265525
\(696\) 0 0
\(697\) 0 0
\(698\) −7.00000 −0.264954
\(699\) 0 0
\(700\) −4.00000 −0.151186
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) 18.0000 0.678883
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) 4.00000 0.150542
\(707\) −4.00000 −0.150435
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) −5.00000 −0.187647
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) −2.00000 −0.0747958
\(716\) 9.00000 0.336346
\(717\) 0 0
\(718\) 24.0000 0.895672
\(719\) 22.0000 0.820462 0.410231 0.911982i \(-0.365448\pi\)
0.410231 + 0.911982i \(0.365448\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) −17.0000 −0.632674
\(723\) 0 0
\(724\) 0 0
\(725\) 8.00000 0.297113
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 1.00000 0.0370625
\(729\) 0 0
\(730\) 10.0000 0.370117
\(731\) −15.0000 −0.554795
\(732\) 0 0
\(733\) −43.0000 −1.58824 −0.794121 0.607760i \(-0.792068\pi\)
−0.794121 + 0.607760i \(0.792068\pi\)
\(734\) 10.0000 0.369107
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) 3.00000 0.110282
\(741\) 0 0
\(742\) 12.0000 0.440534
\(743\) 47.0000 1.72426 0.862131 0.506685i \(-0.169129\pi\)
0.862131 + 0.506685i \(0.169129\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 4.00000 0.146450
\(747\) 0 0
\(748\) 6.00000 0.219382
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) 24.0000 0.875772 0.437886 0.899030i \(-0.355727\pi\)
0.437886 + 0.899030i \(0.355727\pi\)
\(752\) −13.0000 −0.474061
\(753\) 0 0
\(754\) −2.00000 −0.0728357
\(755\) −9.00000 −0.327544
\(756\) 0 0
\(757\) −12.0000 −0.436147 −0.218074 0.975932i \(-0.569977\pi\)
−0.218074 + 0.975932i \(0.569977\pi\)
\(758\) −16.0000 −0.581146
\(759\) 0 0
\(760\) −6.00000 −0.217643
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 19.0000 0.687846
\(764\) −10.0000 −0.361787
\(765\) 0 0
\(766\) 27.0000 0.975550
\(767\) −10.0000 −0.361079
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) −2.00000 −0.0720750
\(771\) 0 0
\(772\) −16.0000 −0.575853
\(773\) −11.0000 −0.395643 −0.197821 0.980238i \(-0.563387\pi\)
−0.197821 + 0.980238i \(0.563387\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.574737
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) −30.0000 −1.07555
\(779\) 0 0
\(780\) 0 0
\(781\) 10.0000 0.357828
\(782\) −12.0000 −0.429119
\(783\) 0 0
\(784\) −6.00000 −0.214286
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) 32.0000 1.14068 0.570338 0.821410i \(-0.306812\pi\)
0.570338 + 0.821410i \(0.306812\pi\)
\(788\) −9.00000 −0.320612
\(789\) 0 0
\(790\) 4.00000 0.142314
\(791\) −2.00000 −0.0711118
\(792\) 0 0
\(793\) 8.00000 0.284088
\(794\) 22.0000 0.780751
\(795\) 0 0
\(796\) −10.0000 −0.354441
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) 0 0
\(799\) −39.0000 −1.37972
\(800\) 4.00000 0.141421
\(801\) 0 0
\(802\) 24.0000 0.847469
\(803\) −20.0000 −0.705785
\(804\) 0 0
\(805\) 4.00000 0.140981
\(806\) 4.00000 0.140894
\(807\) 0 0
\(808\) 4.00000 0.140720
\(809\) 9.00000 0.316423 0.158212 0.987405i \(-0.449427\pi\)
0.158212 + 0.987405i \(0.449427\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) −2.00000 −0.0701862
\(813\) 0 0
\(814\) −6.00000 −0.210300
\(815\) −4.00000 −0.140114
\(816\) 0 0
\(817\) −30.0000 −1.04957
\(818\) −4.00000 −0.139857
\(819\) 0 0
\(820\) 0 0
\(821\) 25.0000 0.872506 0.436253 0.899824i \(-0.356305\pi\)
0.436253 + 0.899824i \(0.356305\pi\)
\(822\) 0 0
\(823\) 54.0000 1.88232 0.941161 0.337959i \(-0.109737\pi\)
0.941161 + 0.337959i \(0.109737\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) −10.0000 −0.347945
\(827\) −30.0000 −1.04320 −0.521601 0.853189i \(-0.674665\pi\)
−0.521601 + 0.853189i \(0.674665\pi\)
\(828\) 0 0
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.00000 −0.0346688
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) 0 0
\(836\) 12.0000 0.415029
\(837\) 0 0
\(838\) 21.0000 0.725433
\(839\) −56.0000 −1.93333 −0.966667 0.256036i \(-0.917584\pi\)
−0.966667 + 0.256036i \(0.917584\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 5.00000 0.172311
\(843\) 0 0
\(844\) 23.0000 0.791693
\(845\) 1.00000 0.0344010
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) −12.0000 −0.412082
\(849\) 0 0
\(850\) 12.0000 0.411597
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) 49.0000 1.67773 0.838864 0.544341i \(-0.183220\pi\)
0.838864 + 0.544341i \(0.183220\pi\)
\(854\) 8.00000 0.273754
\(855\) 0 0
\(856\) −4.00000 −0.136717
\(857\) −46.0000 −1.57133 −0.785665 0.618652i \(-0.787679\pi\)
−0.785665 + 0.618652i \(0.787679\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) −5.00000 −0.170499
\(861\) 0 0
\(862\) 33.0000 1.12398
\(863\) 11.0000 0.374444 0.187222 0.982318i \(-0.440052\pi\)
0.187222 + 0.982318i \(0.440052\pi\)
\(864\) 0 0
\(865\) −20.0000 −0.680020
\(866\) −7.00000 −0.237870
\(867\) 0 0
\(868\) 4.00000 0.135769
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) 2.00000 0.0677674
\(872\) −19.0000 −0.643421
\(873\) 0 0
\(874\) −24.0000 −0.811812
\(875\) −9.00000 −0.304256
\(876\) 0 0
\(877\) −39.0000 −1.31694 −0.658468 0.752609i \(-0.728795\pi\)
−0.658468 + 0.752609i \(0.728795\pi\)
\(878\) 22.0000 0.742464
\(879\) 0 0
\(880\) 2.00000 0.0674200
\(881\) −21.0000 −0.707508 −0.353754 0.935339i \(-0.615095\pi\)
−0.353754 + 0.935339i \(0.615095\pi\)
\(882\) 0 0
\(883\) −47.0000 −1.58168 −0.790838 0.612026i \(-0.790355\pi\)
−0.790838 + 0.612026i \(0.790355\pi\)
\(884\) −3.00000 −0.100901
\(885\) 0 0
\(886\) −39.0000 −1.31023
\(887\) 8.00000 0.268614 0.134307 0.990940i \(-0.457119\pi\)
0.134307 + 0.990940i \(0.457119\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) 6.00000 0.201120
\(891\) 0 0
\(892\) −21.0000 −0.703132
\(893\) −78.0000 −2.61017
\(894\) 0 0
\(895\) 9.00000 0.300837
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −26.0000 −0.867631
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) 0 0
\(903\) 0 0
\(904\) 2.00000 0.0665190
\(905\) 0 0
\(906\) 0 0
\(907\) −9.00000 −0.298840 −0.149420 0.988774i \(-0.547741\pi\)
−0.149420 + 0.988774i \(0.547741\pi\)
\(908\) 24.0000 0.796468
\(909\) 0 0
\(910\) 1.00000 0.0331497
\(911\) 54.0000 1.78910 0.894550 0.446968i \(-0.147496\pi\)
0.894550 + 0.446968i \(0.147496\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) −15.0000 −0.495614
\(917\) 1.00000 0.0330229
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) −4.00000 −0.131876
\(921\) 0 0
\(922\) −21.0000 −0.691598
\(923\) −5.00000 −0.164577
\(924\) 0 0
\(925\) −12.0000 −0.394558
\(926\) −16.0000 −0.525793
\(927\) 0 0
\(928\) 2.00000 0.0656532
\(929\) 36.0000 1.18112 0.590561 0.806993i \(-0.298907\pi\)
0.590561 + 0.806993i \(0.298907\pi\)
\(930\) 0 0
\(931\) −36.0000 −1.17985
\(932\) 11.0000 0.360317
\(933\) 0 0
\(934\) 20.0000 0.654420
\(935\) 6.00000 0.196221
\(936\) 0 0
\(937\) −42.0000 −1.37208 −0.686040 0.727564i \(-0.740653\pi\)
−0.686040 + 0.727564i \(0.740653\pi\)
\(938\) 2.00000 0.0653023
\(939\) 0 0
\(940\) −13.0000 −0.424013
\(941\) −25.0000 −0.814977 −0.407488 0.913210i \(-0.633595\pi\)
−0.407488 + 0.913210i \(0.633595\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 10.0000 0.325472
\(945\) 0 0
\(946\) 10.0000 0.325128
\(947\) 18.0000 0.584921 0.292461 0.956278i \(-0.405526\pi\)
0.292461 + 0.956278i \(0.405526\pi\)
\(948\) 0 0
\(949\) 10.0000 0.324614
\(950\) 24.0000 0.778663
\(951\) 0 0
\(952\) −3.00000 −0.0972306
\(953\) −23.0000 −0.745043 −0.372522 0.928024i \(-0.621507\pi\)
−0.372522 + 0.928024i \(0.621507\pi\)
\(954\) 0 0
\(955\) −10.0000 −0.323592
\(956\) −9.00000 −0.291081
\(957\) 0 0
\(958\) −3.00000 −0.0969256
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 3.00000 0.0967239
\(963\) 0 0
\(964\) 18.0000 0.579741
\(965\) −16.0000 −0.515058
\(966\) 0 0
\(967\) 23.0000 0.739630 0.369815 0.929105i \(-0.379421\pi\)
0.369815 + 0.929105i \(0.379421\pi\)
\(968\) 7.00000 0.224989
\(969\) 0 0
\(970\) −14.0000 −0.449513
\(971\) 15.0000 0.481373 0.240686 0.970603i \(-0.422627\pi\)
0.240686 + 0.970603i \(0.422627\pi\)
\(972\) 0 0
\(973\) 7.00000 0.224410
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) −8.00000 −0.256074
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0 0
\(979\) −12.0000 −0.383522
\(980\) −6.00000 −0.191663
\(981\) 0 0
\(982\) −5.00000 −0.159556
\(983\) 31.0000 0.988746 0.494373 0.869250i \(-0.335398\pi\)
0.494373 + 0.869250i \(0.335398\pi\)
\(984\) 0 0
\(985\) −9.00000 −0.286764
\(986\) 6.00000 0.191079
\(987\) 0 0
\(988\) −6.00000 −0.190885
\(989\) −20.0000 −0.635963
\(990\) 0 0
\(991\) −30.0000 −0.952981 −0.476491 0.879180i \(-0.658091\pi\)
−0.476491 + 0.879180i \(0.658091\pi\)
\(992\) −4.00000 −0.127000
\(993\) 0 0
\(994\) −5.00000 −0.158590
\(995\) −10.0000 −0.317021
\(996\) 0 0
\(997\) −10.0000 −0.316703 −0.158352 0.987383i \(-0.550618\pi\)
−0.158352 + 0.987383i \(0.550618\pi\)
\(998\) 32.0000 1.01294
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.a.b.1.1 1
3.2 odd 2 26.2.a.b.1.1 1
4.3 odd 2 1872.2.a.m.1.1 1
5.2 odd 4 5850.2.e.v.5149.1 2
5.3 odd 4 5850.2.e.v.5149.2 2
5.4 even 2 5850.2.a.bn.1.1 1
8.3 odd 2 7488.2.a.v.1.1 1
8.5 even 2 7488.2.a.w.1.1 1
9.2 odd 6 2106.2.e.h.1405.1 2
9.4 even 3 2106.2.e.t.703.1 2
9.5 odd 6 2106.2.e.h.703.1 2
9.7 even 3 2106.2.e.t.1405.1 2
12.11 even 2 208.2.a.d.1.1 1
13.5 odd 4 3042.2.b.f.1351.2 2
13.8 odd 4 3042.2.b.f.1351.1 2
13.12 even 2 3042.2.a.l.1.1 1
15.2 even 4 650.2.b.a.599.2 2
15.8 even 4 650.2.b.a.599.1 2
15.14 odd 2 650.2.a.g.1.1 1
21.2 odd 6 1274.2.f.l.1145.1 2
21.5 even 6 1274.2.f.a.1145.1 2
21.11 odd 6 1274.2.f.l.79.1 2
21.17 even 6 1274.2.f.a.79.1 2
21.20 even 2 1274.2.a.o.1.1 1
24.5 odd 2 832.2.a.j.1.1 1
24.11 even 2 832.2.a.a.1.1 1
33.32 even 2 3146.2.a.a.1.1 1
39.2 even 12 338.2.e.d.147.2 4
39.5 even 4 338.2.b.a.337.1 2
39.8 even 4 338.2.b.a.337.2 2
39.11 even 12 338.2.e.d.147.1 4
39.17 odd 6 338.2.c.g.315.1 2
39.20 even 12 338.2.e.d.23.2 4
39.23 odd 6 338.2.c.g.191.1 2
39.29 odd 6 338.2.c.c.191.1 2
39.32 even 12 338.2.e.d.23.1 4
39.35 odd 6 338.2.c.c.315.1 2
39.38 odd 2 338.2.a.a.1.1 1
48.5 odd 4 3328.2.b.g.1665.2 2
48.11 even 4 3328.2.b.k.1665.1 2
48.29 odd 4 3328.2.b.g.1665.1 2
48.35 even 4 3328.2.b.k.1665.2 2
51.50 odd 2 7514.2.a.i.1.1 1
57.56 even 2 9386.2.a.f.1.1 1
60.59 even 2 5200.2.a.c.1.1 1
156.47 odd 4 2704.2.f.j.337.1 2
156.83 odd 4 2704.2.f.j.337.2 2
156.155 even 2 2704.2.a.n.1.1 1
195.194 odd 2 8450.2.a.y.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.2.a.b.1.1 1 3.2 odd 2
208.2.a.d.1.1 1 12.11 even 2
234.2.a.b.1.1 1 1.1 even 1 trivial
338.2.a.a.1.1 1 39.38 odd 2
338.2.b.a.337.1 2 39.5 even 4
338.2.b.a.337.2 2 39.8 even 4
338.2.c.c.191.1 2 39.29 odd 6
338.2.c.c.315.1 2 39.35 odd 6
338.2.c.g.191.1 2 39.23 odd 6
338.2.c.g.315.1 2 39.17 odd 6
338.2.e.d.23.1 4 39.32 even 12
338.2.e.d.23.2 4 39.20 even 12
338.2.e.d.147.1 4 39.11 even 12
338.2.e.d.147.2 4 39.2 even 12
650.2.a.g.1.1 1 15.14 odd 2
650.2.b.a.599.1 2 15.8 even 4
650.2.b.a.599.2 2 15.2 even 4
832.2.a.a.1.1 1 24.11 even 2
832.2.a.j.1.1 1 24.5 odd 2
1274.2.a.o.1.1 1 21.20 even 2
1274.2.f.a.79.1 2 21.17 even 6
1274.2.f.a.1145.1 2 21.5 even 6
1274.2.f.l.79.1 2 21.11 odd 6
1274.2.f.l.1145.1 2 21.2 odd 6
1872.2.a.m.1.1 1 4.3 odd 2
2106.2.e.h.703.1 2 9.5 odd 6
2106.2.e.h.1405.1 2 9.2 odd 6
2106.2.e.t.703.1 2 9.4 even 3
2106.2.e.t.1405.1 2 9.7 even 3
2704.2.a.n.1.1 1 156.155 even 2
2704.2.f.j.337.1 2 156.47 odd 4
2704.2.f.j.337.2 2 156.83 odd 4
3042.2.a.l.1.1 1 13.12 even 2
3042.2.b.f.1351.1 2 13.8 odd 4
3042.2.b.f.1351.2 2 13.5 odd 4
3146.2.a.a.1.1 1 33.32 even 2
3328.2.b.g.1665.1 2 48.29 odd 4
3328.2.b.g.1665.2 2 48.5 odd 4
3328.2.b.k.1665.1 2 48.11 even 4
3328.2.b.k.1665.2 2 48.35 even 4
5200.2.a.c.1.1 1 60.59 even 2
5850.2.a.bn.1.1 1 5.4 even 2
5850.2.e.v.5149.1 2 5.2 odd 4
5850.2.e.v.5149.2 2 5.3 odd 4
7488.2.a.v.1.1 1 8.3 odd 2
7488.2.a.w.1.1 1 8.5 even 2
7514.2.a.i.1.1 1 51.50 odd 2
8450.2.a.y.1.1 1 195.194 odd 2
9386.2.a.f.1.1 1 57.56 even 2