Properties

Label 234.2.a
Level $234$
Weight $2$
Character orbit 234.a
Rep. character $\chi_{234}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $5$
Sturm bound $84$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(84\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(234))\).

Total New Old
Modular forms 50 5 45
Cusp forms 35 5 30
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(1\)
Minus space\(-\)\(4\)

Trace form

\( 5 q + q^{2} + 5 q^{4} + 2 q^{5} + q^{8} + O(q^{10}) \) \( 5 q + q^{2} + 5 q^{4} + 2 q^{5} + q^{8} + 4 q^{10} - q^{13} + 2 q^{14} + 5 q^{16} + 4 q^{17} - 12 q^{19} + 2 q^{20} + 4 q^{22} + 4 q^{23} - 3 q^{25} + 3 q^{26} - 14 q^{29} - 8 q^{31} + q^{32} - 2 q^{34} - 10 q^{35} + 6 q^{37} - 12 q^{38} + 4 q^{40} + 10 q^{41} - 18 q^{43} - 12 q^{46} - 24 q^{47} - 9 q^{49} + 7 q^{50} - q^{52} - 2 q^{53} - 8 q^{55} + 2 q^{56} + 6 q^{58} + 12 q^{59} + 18 q^{61} - 12 q^{62} + 5 q^{64} - 8 q^{67} + 4 q^{68} - 20 q^{70} + 16 q^{71} + 22 q^{73} - 12 q^{74} - 12 q^{76} + 24 q^{77} + 4 q^{79} + 2 q^{80} - 2 q^{82} - 24 q^{83} + 16 q^{85} + 8 q^{86} + 4 q^{88} - 14 q^{89} + 6 q^{91} + 4 q^{92} - 14 q^{94} + 28 q^{95} - 6 q^{97} + 9 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(234))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 13
234.2.a.a 234.a 1.a $1$ $1.868$ \(\Q\) None 234.2.a.a \(-1\) \(0\) \(-2\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}-2q^{7}-q^{8}+2q^{10}+\cdots\)
234.2.a.b 234.a 1.a $1$ $1.868$ \(\Q\) None 26.2.a.b \(-1\) \(0\) \(1\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+q^{7}-q^{8}-q^{10}+\cdots\)
234.2.a.c 234.a 1.a $1$ $1.868$ \(\Q\) None 78.2.a.a \(1\) \(0\) \(-2\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}+4q^{7}+q^{8}-2q^{10}+\cdots\)
234.2.a.d 234.a 1.a $1$ $1.868$ \(\Q\) None 234.2.a.a \(1\) \(0\) \(2\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}-2q^{7}+q^{8}+2q^{10}+\cdots\)
234.2.a.e 234.a 1.a $1$ $1.868$ \(\Q\) None 26.2.a.a \(1\) \(0\) \(3\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+3q^{5}-q^{7}+q^{8}+3q^{10}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(234))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(234)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 2}\)