Properties

Label 2325.2.c.r.1024.9
Level $2325$
Weight $2$
Character 2325.1024
Analytic conductor $18.565$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1024,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1024"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-14,0,2,0,0,-12,0,14,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 19x^{10} + 127x^{8} + 357x^{6} + 412x^{4} + 204x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1024.9
Root \(0.864597i\) of defining polynomial
Character \(\chi\) \(=\) 2325.1024
Dual form 2325.2.c.r.1024.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.864597i q^{2} -1.00000i q^{3} +1.25247 q^{4} +0.864597 q^{6} -4.28308i q^{7} +2.81208i q^{8} -1.00000 q^{9} +0.353929 q^{11} -1.25247i q^{12} -3.89854i q^{13} +3.70313 q^{14} +0.0736318 q^{16} -5.22766i q^{17} -0.864597i q^{18} -8.23515 q^{19} -4.28308 q^{21} +0.306006i q^{22} +1.28131i q^{23} +2.81208 q^{24} +3.37067 q^{26} +1.00000i q^{27} -5.36443i q^{28} -7.27223 q^{29} -1.00000 q^{31} +5.68782i q^{32} -0.353929i q^{33} +4.51982 q^{34} -1.25247 q^{36} +2.30601i q^{37} -7.12009i q^{38} -3.89854 q^{39} -2.68303 q^{41} -3.70313i q^{42} -6.32275i q^{43} +0.443286 q^{44} -1.10782 q^{46} +6.68146i q^{47} -0.0736318i q^{48} -11.3447 q^{49} -5.22766 q^{51} -4.88282i q^{52} +4.33661i q^{53} -0.864597 q^{54} +12.0443 q^{56} +8.23515i q^{57} -6.28755i q^{58} -1.04616 q^{59} -0.983032 q^{61} -0.864597i q^{62} +4.28308i q^{63} -4.77040 q^{64} +0.306006 q^{66} +4.92592i q^{67} -6.54751i q^{68} +1.28131 q^{69} +10.7048 q^{71} -2.81208i q^{72} -4.56262i q^{73} -1.99377 q^{74} -10.3143 q^{76} -1.51590i q^{77} -3.37067i q^{78} +8.87953 q^{79} +1.00000 q^{81} -2.31974i q^{82} -2.37726i q^{83} -5.36443 q^{84} +5.46663 q^{86} +7.27223i q^{87} +0.995275i q^{88} -0.170731 q^{89} -16.6978 q^{91} +1.60481i q^{92} +1.00000i q^{93} -5.77676 q^{94} +5.68782 q^{96} -1.01227i q^{97} -9.80862i q^{98} -0.353929 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 14 q^{4} + 2 q^{6} - 12 q^{9} + 14 q^{11} - 20 q^{14} + 34 q^{16} - 34 q^{19} + 4 q^{21} + 6 q^{24} + 4 q^{26} + 16 q^{29} - 12 q^{31} + 26 q^{34} + 14 q^{36} - 8 q^{39} + 36 q^{41} - 8 q^{44} - 20 q^{46}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2325\mathbb{Z}\right)^\times\).

\(n\) \(652\) \(776\) \(1801\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.864597i 0.611362i 0.952134 + 0.305681i \(0.0988842\pi\)
−0.952134 + 0.305681i \(0.901116\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) 1.25247 0.626236
\(5\) 0 0
\(6\) 0.864597 0.352970
\(7\) − 4.28308i − 1.61885i −0.587223 0.809425i \(-0.699779\pi\)
0.587223 0.809425i \(-0.300221\pi\)
\(8\) 2.81208i 0.994219i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.353929 0.106714 0.0533568 0.998576i \(-0.483008\pi\)
0.0533568 + 0.998576i \(0.483008\pi\)
\(12\) − 1.25247i − 0.361558i
\(13\) − 3.89854i − 1.08126i −0.841260 0.540631i \(-0.818186\pi\)
0.841260 0.540631i \(-0.181814\pi\)
\(14\) 3.70313 0.989704
\(15\) 0 0
\(16\) 0.0736318 0.0184079
\(17\) − 5.22766i − 1.26789i −0.773376 0.633947i \(-0.781434\pi\)
0.773376 0.633947i \(-0.218566\pi\)
\(18\) − 0.864597i − 0.203787i
\(19\) −8.23515 −1.88927 −0.944637 0.328118i \(-0.893586\pi\)
−0.944637 + 0.328118i \(0.893586\pi\)
\(20\) 0 0
\(21\) −4.28308 −0.934644
\(22\) 0.306006i 0.0652407i
\(23\) 1.28131i 0.267172i 0.991037 + 0.133586i \(0.0426492\pi\)
−0.991037 + 0.133586i \(0.957351\pi\)
\(24\) 2.81208 0.574013
\(25\) 0 0
\(26\) 3.37067 0.661042
\(27\) 1.00000i 0.192450i
\(28\) − 5.36443i − 1.01378i
\(29\) −7.27223 −1.35042 −0.675209 0.737626i \(-0.735947\pi\)
−0.675209 + 0.737626i \(0.735947\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 5.68782i 1.00547i
\(33\) − 0.353929i − 0.0616111i
\(34\) 4.51982 0.775143
\(35\) 0 0
\(36\) −1.25247 −0.208745
\(37\) 2.30601i 0.379105i 0.981871 + 0.189553i \(0.0607037\pi\)
−0.981871 + 0.189553i \(0.939296\pi\)
\(38\) − 7.12009i − 1.15503i
\(39\) −3.89854 −0.624267
\(40\) 0 0
\(41\) −2.68303 −0.419020 −0.209510 0.977807i \(-0.567187\pi\)
−0.209510 + 0.977807i \(0.567187\pi\)
\(42\) − 3.70313i − 0.571406i
\(43\) − 6.32275i − 0.964210i −0.876114 0.482105i \(-0.839872\pi\)
0.876114 0.482105i \(-0.160128\pi\)
\(44\) 0.443286 0.0668279
\(45\) 0 0
\(46\) −1.10782 −0.163339
\(47\) 6.68146i 0.974590i 0.873237 + 0.487295i \(0.162016\pi\)
−0.873237 + 0.487295i \(0.837984\pi\)
\(48\) − 0.0736318i − 0.0106278i
\(49\) −11.3447 −1.62068
\(50\) 0 0
\(51\) −5.22766 −0.732019
\(52\) − 4.88282i − 0.677125i
\(53\) 4.33661i 0.595679i 0.954616 + 0.297840i \(0.0962660\pi\)
−0.954616 + 0.297840i \(0.903734\pi\)
\(54\) −0.864597 −0.117657
\(55\) 0 0
\(56\) 12.0443 1.60949
\(57\) 8.23515i 1.09077i
\(58\) − 6.28755i − 0.825595i
\(59\) −1.04616 −0.136198 −0.0680991 0.997679i \(-0.521693\pi\)
−0.0680991 + 0.997679i \(0.521693\pi\)
\(60\) 0 0
\(61\) −0.983032 −0.125864 −0.0629321 0.998018i \(-0.520045\pi\)
−0.0629321 + 0.998018i \(0.520045\pi\)
\(62\) − 0.864597i − 0.109804i
\(63\) 4.28308i 0.539617i
\(64\) −4.77040 −0.596301
\(65\) 0 0
\(66\) 0.306006 0.0376667
\(67\) 4.92592i 0.601796i 0.953656 + 0.300898i \(0.0972864\pi\)
−0.953656 + 0.300898i \(0.902714\pi\)
\(68\) − 6.54751i − 0.794002i
\(69\) 1.28131 0.154252
\(70\) 0 0
\(71\) 10.7048 1.27042 0.635212 0.772338i \(-0.280913\pi\)
0.635212 + 0.772338i \(0.280913\pi\)
\(72\) − 2.81208i − 0.331406i
\(73\) − 4.56262i − 0.534015i −0.963695 0.267007i \(-0.913965\pi\)
0.963695 0.267007i \(-0.0860348\pi\)
\(74\) −1.99377 −0.231771
\(75\) 0 0
\(76\) −10.3143 −1.18313
\(77\) − 1.51590i − 0.172753i
\(78\) − 3.37067i − 0.381653i
\(79\) 8.87953 0.999025 0.499513 0.866307i \(-0.333512\pi\)
0.499513 + 0.866307i \(0.333512\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 2.31974i − 0.256173i
\(83\) − 2.37726i − 0.260938i −0.991452 0.130469i \(-0.958352\pi\)
0.991452 0.130469i \(-0.0416483\pi\)
\(84\) −5.36443 −0.585308
\(85\) 0 0
\(86\) 5.46663 0.589481
\(87\) 7.27223i 0.779665i
\(88\) 0.995275i 0.106097i
\(89\) −0.170731 −0.0180974 −0.00904871 0.999959i \(-0.502880\pi\)
−0.00904871 + 0.999959i \(0.502880\pi\)
\(90\) 0 0
\(91\) −16.6978 −1.75040
\(92\) 1.60481i 0.167313i
\(93\) 1.00000i 0.103695i
\(94\) −5.77676 −0.595828
\(95\) 0 0
\(96\) 5.68782 0.580510
\(97\) − 1.01227i − 0.102780i −0.998679 0.0513902i \(-0.983635\pi\)
0.998679 0.0513902i \(-0.0163652\pi\)
\(98\) − 9.80862i − 0.990820i
\(99\) −0.353929 −0.0355712
\(100\) 0 0
\(101\) 17.9045 1.78157 0.890783 0.454428i \(-0.150156\pi\)
0.890783 + 0.454428i \(0.150156\pi\)
\(102\) − 4.51982i − 0.447529i
\(103\) − 8.49535i − 0.837072i −0.908200 0.418536i \(-0.862543\pi\)
0.908200 0.418536i \(-0.137457\pi\)
\(104\) 10.9630 1.07501
\(105\) 0 0
\(106\) −3.74942 −0.364176
\(107\) − 4.50652i − 0.435662i −0.975986 0.217831i \(-0.930102\pi\)
0.975986 0.217831i \(-0.0698982\pi\)
\(108\) 1.25247i 0.120519i
\(109\) −14.3051 −1.37018 −0.685088 0.728460i \(-0.740236\pi\)
−0.685088 + 0.728460i \(0.740236\pi\)
\(110\) 0 0
\(111\) 2.30601 0.218876
\(112\) − 0.315370i − 0.0297997i
\(113\) − 13.4229i − 1.26272i −0.775489 0.631360i \(-0.782497\pi\)
0.775489 0.631360i \(-0.217503\pi\)
\(114\) −7.12009 −0.666857
\(115\) 0 0
\(116\) −9.10827 −0.845681
\(117\) 3.89854i 0.360420i
\(118\) − 0.904506i − 0.0832665i
\(119\) −22.3905 −2.05253
\(120\) 0 0
\(121\) −10.8747 −0.988612
\(122\) − 0.849926i − 0.0769487i
\(123\) 2.68303i 0.241921i
\(124\) −1.25247 −0.112475
\(125\) 0 0
\(126\) −3.70313 −0.329901
\(127\) − 13.7611i − 1.22110i −0.791977 0.610550i \(-0.790948\pi\)
0.791977 0.610550i \(-0.209052\pi\)
\(128\) 7.25116i 0.640918i
\(129\) −6.32275 −0.556687
\(130\) 0 0
\(131\) 6.94358 0.606663 0.303332 0.952885i \(-0.401901\pi\)
0.303332 + 0.952885i \(0.401901\pi\)
\(132\) − 0.443286i − 0.0385831i
\(133\) 35.2718i 3.05845i
\(134\) −4.25893 −0.367916
\(135\) 0 0
\(136\) 14.7006 1.26057
\(137\) − 7.86949i − 0.672336i −0.941802 0.336168i \(-0.890869\pi\)
0.941802 0.336168i \(-0.109131\pi\)
\(138\) 1.10782i 0.0943037i
\(139\) −7.69265 −0.652482 −0.326241 0.945287i \(-0.605782\pi\)
−0.326241 + 0.945287i \(0.605782\pi\)
\(140\) 0 0
\(141\) 6.68146 0.562680
\(142\) 9.25532i 0.776689i
\(143\) − 1.37981i − 0.115385i
\(144\) −0.0736318 −0.00613598
\(145\) 0 0
\(146\) 3.94483 0.326476
\(147\) 11.3447i 0.935698i
\(148\) 2.88821i 0.237409i
\(149\) 12.6799 1.03878 0.519388 0.854539i \(-0.326160\pi\)
0.519388 + 0.854539i \(0.326160\pi\)
\(150\) 0 0
\(151\) −2.94960 −0.240035 −0.120017 0.992772i \(-0.538295\pi\)
−0.120017 + 0.992772i \(0.538295\pi\)
\(152\) − 23.1579i − 1.87835i
\(153\) 5.22766i 0.422632i
\(154\) 1.31065 0.105615
\(155\) 0 0
\(156\) −4.88282 −0.390938
\(157\) − 3.49659i − 0.279058i −0.990218 0.139529i \(-0.955441\pi\)
0.990218 0.139529i \(-0.0445589\pi\)
\(158\) 7.67721i 0.610766i
\(159\) 4.33661 0.343915
\(160\) 0 0
\(161\) 5.48795 0.432511
\(162\) 0.864597i 0.0679291i
\(163\) 4.07999i 0.319570i 0.987152 + 0.159785i \(0.0510800\pi\)
−0.987152 + 0.159785i \(0.948920\pi\)
\(164\) −3.36043 −0.262405
\(165\) 0 0
\(166\) 2.05537 0.159528
\(167\) − 11.2784i − 0.872747i −0.899766 0.436373i \(-0.856263\pi\)
0.899766 0.436373i \(-0.143737\pi\)
\(168\) − 12.0443i − 0.929241i
\(169\) −2.19864 −0.169126
\(170\) 0 0
\(171\) 8.23515 0.629758
\(172\) − 7.91906i − 0.603823i
\(173\) 22.4690i 1.70829i 0.520036 + 0.854145i \(0.325919\pi\)
−0.520036 + 0.854145i \(0.674081\pi\)
\(174\) −6.28755 −0.476658
\(175\) 0 0
\(176\) 0.0260604 0.00196438
\(177\) 1.04616i 0.0786341i
\(178\) − 0.147613i − 0.0110641i
\(179\) −6.71387 −0.501818 −0.250909 0.968011i \(-0.580729\pi\)
−0.250909 + 0.968011i \(0.580729\pi\)
\(180\) 0 0
\(181\) 26.4167 1.96354 0.981769 0.190076i \(-0.0608733\pi\)
0.981769 + 0.190076i \(0.0608733\pi\)
\(182\) − 14.4368i − 1.07013i
\(183\) 0.983032i 0.0726678i
\(184\) −3.60315 −0.265627
\(185\) 0 0
\(186\) −0.864597 −0.0633953
\(187\) − 1.85022i − 0.135302i
\(188\) 8.36834i 0.610324i
\(189\) 4.28308 0.311548
\(190\) 0 0
\(191\) −19.9355 −1.44248 −0.721240 0.692685i \(-0.756427\pi\)
−0.721240 + 0.692685i \(0.756427\pi\)
\(192\) 4.77040i 0.344274i
\(193\) − 3.98672i − 0.286970i −0.989652 0.143485i \(-0.954169\pi\)
0.989652 0.143485i \(-0.0458309\pi\)
\(194\) 0.875204 0.0628360
\(195\) 0 0
\(196\) −14.2090 −1.01493
\(197\) − 23.1920i − 1.65236i −0.563407 0.826179i \(-0.690510\pi\)
0.563407 0.826179i \(-0.309490\pi\)
\(198\) − 0.306006i − 0.0217469i
\(199\) 12.5109 0.886876 0.443438 0.896305i \(-0.353759\pi\)
0.443438 + 0.896305i \(0.353759\pi\)
\(200\) 0 0
\(201\) 4.92592 0.347447
\(202\) 15.4802i 1.08918i
\(203\) 31.1475i 2.18613i
\(204\) −6.54751 −0.458417
\(205\) 0 0
\(206\) 7.34505 0.511754
\(207\) − 1.28131i − 0.0890573i
\(208\) − 0.287057i − 0.0199038i
\(209\) −2.91466 −0.201611
\(210\) 0 0
\(211\) 23.1316 1.59245 0.796224 0.605002i \(-0.206828\pi\)
0.796224 + 0.605002i \(0.206828\pi\)
\(212\) 5.43148i 0.373036i
\(213\) − 10.7048i − 0.733480i
\(214\) 3.89633 0.266347
\(215\) 0 0
\(216\) −2.81208 −0.191338
\(217\) 4.28308i 0.290754i
\(218\) − 12.3681i − 0.837674i
\(219\) −4.56262 −0.308313
\(220\) 0 0
\(221\) −20.3803 −1.37093
\(222\) 1.99377i 0.133813i
\(223\) − 23.6450i − 1.58339i −0.610920 0.791693i \(-0.709200\pi\)
0.610920 0.791693i \(-0.290800\pi\)
\(224\) 24.3613 1.62771
\(225\) 0 0
\(226\) 11.6054 0.771980
\(227\) − 26.4506i − 1.75559i −0.479039 0.877794i \(-0.659015\pi\)
0.479039 0.877794i \(-0.340985\pi\)
\(228\) 10.3143i 0.683081i
\(229\) 7.61479 0.503199 0.251600 0.967831i \(-0.419043\pi\)
0.251600 + 0.967831i \(0.419043\pi\)
\(230\) 0 0
\(231\) −1.51590 −0.0997392
\(232\) − 20.4501i − 1.34261i
\(233\) − 3.13938i − 0.205668i −0.994699 0.102834i \(-0.967209\pi\)
0.994699 0.102834i \(-0.0327910\pi\)
\(234\) −3.37067 −0.220347
\(235\) 0 0
\(236\) −1.31028 −0.0852923
\(237\) − 8.87953i − 0.576788i
\(238\) − 19.3587i − 1.25484i
\(239\) −26.0939 −1.68787 −0.843936 0.536444i \(-0.819767\pi\)
−0.843936 + 0.536444i \(0.819767\pi\)
\(240\) 0 0
\(241\) −5.22027 −0.336267 −0.168134 0.985764i \(-0.553774\pi\)
−0.168134 + 0.985764i \(0.553774\pi\)
\(242\) − 9.40226i − 0.604400i
\(243\) − 1.00000i − 0.0641500i
\(244\) −1.23122 −0.0788208
\(245\) 0 0
\(246\) −2.31974 −0.147901
\(247\) 32.1051i 2.04280i
\(248\) − 2.81208i − 0.178567i
\(249\) −2.37726 −0.150653
\(250\) 0 0
\(251\) 29.8930 1.88683 0.943414 0.331617i \(-0.107594\pi\)
0.943414 + 0.331617i \(0.107594\pi\)
\(252\) 5.36443i 0.337928i
\(253\) 0.453493i 0.0285109i
\(254\) 11.8978 0.746535
\(255\) 0 0
\(256\) −15.8101 −0.988133
\(257\) − 15.6602i − 0.976855i −0.872604 0.488427i \(-0.837571\pi\)
0.872604 0.488427i \(-0.162429\pi\)
\(258\) − 5.46663i − 0.340337i
\(259\) 9.87680 0.613714
\(260\) 0 0
\(261\) 7.27223 0.450140
\(262\) 6.00339i 0.370891i
\(263\) − 26.1422i − 1.61200i −0.591918 0.805998i \(-0.701629\pi\)
0.591918 0.805998i \(-0.298371\pi\)
\(264\) 0.995275 0.0612550
\(265\) 0 0
\(266\) −30.4959 −1.86982
\(267\) 0.170731i 0.0104486i
\(268\) 6.16957i 0.376867i
\(269\) 32.0456 1.95386 0.976928 0.213567i \(-0.0685083\pi\)
0.976928 + 0.213567i \(0.0685083\pi\)
\(270\) 0 0
\(271\) −17.3240 −1.05236 −0.526179 0.850374i \(-0.676376\pi\)
−0.526179 + 0.850374i \(0.676376\pi\)
\(272\) − 0.384922i − 0.0233393i
\(273\) 16.6978i 1.01059i
\(274\) 6.80394 0.411041
\(275\) 0 0
\(276\) 1.60481 0.0965980
\(277\) 16.6490i 1.00034i 0.865926 + 0.500172i \(0.166730\pi\)
−0.865926 + 0.500172i \(0.833270\pi\)
\(278\) − 6.65104i − 0.398903i
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 13.1488 0.784392 0.392196 0.919882i \(-0.371716\pi\)
0.392196 + 0.919882i \(0.371716\pi\)
\(282\) 5.77676i 0.344001i
\(283\) − 25.9728i − 1.54392i −0.635669 0.771962i \(-0.719276\pi\)
0.635669 0.771962i \(-0.280724\pi\)
\(284\) 13.4074 0.795586
\(285\) 0 0
\(286\) 1.19298 0.0705422
\(287\) 11.4916i 0.678330i
\(288\) − 5.68782i − 0.335158i
\(289\) −10.3285 −0.607558
\(290\) 0 0
\(291\) −1.01227 −0.0593403
\(292\) − 5.71456i − 0.334419i
\(293\) − 27.0981i − 1.58309i −0.611114 0.791543i \(-0.709278\pi\)
0.611114 0.791543i \(-0.290722\pi\)
\(294\) −9.80862 −0.572050
\(295\) 0 0
\(296\) −6.48467 −0.376914
\(297\) 0.353929i 0.0205370i
\(298\) 10.9630i 0.635068i
\(299\) 4.99525 0.288883
\(300\) 0 0
\(301\) −27.0808 −1.56091
\(302\) − 2.55021i − 0.146748i
\(303\) − 17.9045i − 1.02859i
\(304\) −0.606369 −0.0347776
\(305\) 0 0
\(306\) −4.51982 −0.258381
\(307\) − 7.83898i − 0.447394i −0.974659 0.223697i \(-0.928187\pi\)
0.974659 0.223697i \(-0.0718126\pi\)
\(308\) − 1.89863i − 0.108184i
\(309\) −8.49535 −0.483284
\(310\) 0 0
\(311\) 0.0311685 0.00176740 0.000883702 1.00000i \(-0.499719\pi\)
0.000883702 1.00000i \(0.499719\pi\)
\(312\) − 10.9630i − 0.620658i
\(313\) 2.44289i 0.138080i 0.997614 + 0.0690401i \(0.0219936\pi\)
−0.997614 + 0.0690401i \(0.978006\pi\)
\(314\) 3.02314 0.170606
\(315\) 0 0
\(316\) 11.1214 0.625626
\(317\) 4.03351i 0.226544i 0.993564 + 0.113272i \(0.0361332\pi\)
−0.993564 + 0.113272i \(0.963867\pi\)
\(318\) 3.74942i 0.210257i
\(319\) −2.57385 −0.144108
\(320\) 0 0
\(321\) −4.50652 −0.251530
\(322\) 4.74487i 0.264421i
\(323\) 43.0506i 2.39540i
\(324\) 1.25247 0.0695818
\(325\) 0 0
\(326\) −3.52755 −0.195373
\(327\) 14.3051i 0.791072i
\(328\) − 7.54490i − 0.416597i
\(329\) 28.6172 1.57772
\(330\) 0 0
\(331\) −11.0802 −0.609025 −0.304512 0.952508i \(-0.598493\pi\)
−0.304512 + 0.952508i \(0.598493\pi\)
\(332\) − 2.97745i − 0.163409i
\(333\) − 2.30601i − 0.126368i
\(334\) 9.75125 0.533565
\(335\) 0 0
\(336\) −0.315370 −0.0172049
\(337\) 10.4054i 0.566817i 0.958999 + 0.283409i \(0.0914653\pi\)
−0.958999 + 0.283409i \(0.908535\pi\)
\(338\) − 1.90094i − 0.103397i
\(339\) −13.4229 −0.729032
\(340\) 0 0
\(341\) −0.353929 −0.0191663
\(342\) 7.12009i 0.385010i
\(343\) 18.6088i 1.00478i
\(344\) 17.7800 0.958636
\(345\) 0 0
\(346\) −19.4267 −1.04438
\(347\) 23.7995i 1.27762i 0.769363 + 0.638812i \(0.220574\pi\)
−0.769363 + 0.638812i \(0.779426\pi\)
\(348\) 9.10827i 0.488254i
\(349\) 26.1849 1.40165 0.700824 0.713335i \(-0.252816\pi\)
0.700824 + 0.713335i \(0.252816\pi\)
\(350\) 0 0
\(351\) 3.89854 0.208089
\(352\) 2.01308i 0.107298i
\(353\) 14.3318i 0.762807i 0.924409 + 0.381404i \(0.124559\pi\)
−0.924409 + 0.381404i \(0.875441\pi\)
\(354\) −0.904506 −0.0480739
\(355\) 0 0
\(356\) −0.213836 −0.0113333
\(357\) 22.3905i 1.18503i
\(358\) − 5.80479i − 0.306793i
\(359\) −29.2468 −1.54359 −0.771793 0.635874i \(-0.780640\pi\)
−0.771793 + 0.635874i \(0.780640\pi\)
\(360\) 0 0
\(361\) 48.8177 2.56935
\(362\) 22.8398i 1.20043i
\(363\) 10.8747i 0.570776i
\(364\) −20.9135 −1.09616
\(365\) 0 0
\(366\) −0.849926 −0.0444263
\(367\) 21.6111i 1.12809i 0.825743 + 0.564046i \(0.190756\pi\)
−0.825743 + 0.564046i \(0.809244\pi\)
\(368\) 0.0943452i 0.00491808i
\(369\) 2.68303 0.139673
\(370\) 0 0
\(371\) 18.5740 0.964315
\(372\) 1.25247i 0.0649377i
\(373\) 21.6784i 1.12247i 0.827658 + 0.561233i \(0.189673\pi\)
−0.827658 + 0.561233i \(0.810327\pi\)
\(374\) 1.59970 0.0827183
\(375\) 0 0
\(376\) −18.7888 −0.968957
\(377\) 28.3511i 1.46016i
\(378\) 3.70313i 0.190469i
\(379\) −35.3697 −1.81682 −0.908408 0.418084i \(-0.862702\pi\)
−0.908408 + 0.418084i \(0.862702\pi\)
\(380\) 0 0
\(381\) −13.7611 −0.705003
\(382\) − 17.2361i − 0.881878i
\(383\) 30.1843i 1.54235i 0.636626 + 0.771173i \(0.280330\pi\)
−0.636626 + 0.771173i \(0.719670\pi\)
\(384\) 7.25116 0.370034
\(385\) 0 0
\(386\) 3.44690 0.175443
\(387\) 6.32275i 0.321403i
\(388\) − 1.26784i − 0.0643648i
\(389\) 8.07568 0.409453 0.204727 0.978819i \(-0.434370\pi\)
0.204727 + 0.978819i \(0.434370\pi\)
\(390\) 0 0
\(391\) 6.69826 0.338746
\(392\) − 31.9023i − 1.61131i
\(393\) − 6.94358i − 0.350257i
\(394\) 20.0517 1.01019
\(395\) 0 0
\(396\) −0.443286 −0.0222760
\(397\) − 34.0991i − 1.71139i −0.517483 0.855693i \(-0.673131\pi\)
0.517483 0.855693i \(-0.326869\pi\)
\(398\) 10.8169i 0.542202i
\(399\) 35.2718 1.76580
\(400\) 0 0
\(401\) 35.4194 1.76876 0.884380 0.466768i \(-0.154582\pi\)
0.884380 + 0.466768i \(0.154582\pi\)
\(402\) 4.25893i 0.212416i
\(403\) 3.89854i 0.194200i
\(404\) 22.4249 1.11568
\(405\) 0 0
\(406\) −26.9300 −1.33652
\(407\) 0.816162i 0.0404557i
\(408\) − 14.7006i − 0.727788i
\(409\) 4.67021 0.230927 0.115463 0.993312i \(-0.463165\pi\)
0.115463 + 0.993312i \(0.463165\pi\)
\(410\) 0 0
\(411\) −7.86949 −0.388173
\(412\) − 10.6402i − 0.524205i
\(413\) 4.48078i 0.220485i
\(414\) 1.10782 0.0544463
\(415\) 0 0
\(416\) 22.1742 1.08718
\(417\) 7.69265i 0.376711i
\(418\) − 2.52000i − 0.123257i
\(419\) −11.4046 −0.557150 −0.278575 0.960414i \(-0.589862\pi\)
−0.278575 + 0.960414i \(0.589862\pi\)
\(420\) 0 0
\(421\) 6.33585 0.308791 0.154395 0.988009i \(-0.450657\pi\)
0.154395 + 0.988009i \(0.450657\pi\)
\(422\) 19.9995i 0.973563i
\(423\) − 6.68146i − 0.324863i
\(424\) −12.1949 −0.592236
\(425\) 0 0
\(426\) 9.25532 0.448422
\(427\) 4.21040i 0.203755i
\(428\) − 5.64430i − 0.272827i
\(429\) −1.37981 −0.0666177
\(430\) 0 0
\(431\) −2.01105 −0.0968691 −0.0484346 0.998826i \(-0.515423\pi\)
−0.0484346 + 0.998826i \(0.515423\pi\)
\(432\) 0.0736318i 0.00354261i
\(433\) − 37.7917i − 1.81615i −0.418803 0.908077i \(-0.637550\pi\)
0.418803 0.908077i \(-0.362450\pi\)
\(434\) −3.70313 −0.177756
\(435\) 0 0
\(436\) −17.9167 −0.858054
\(437\) − 10.5518i − 0.504761i
\(438\) − 3.94483i − 0.188491i
\(439\) −14.3895 −0.686771 −0.343386 0.939194i \(-0.611574\pi\)
−0.343386 + 0.939194i \(0.611574\pi\)
\(440\) 0 0
\(441\) 11.3447 0.540225
\(442\) − 17.6207i − 0.838132i
\(443\) 35.8785i 1.70464i 0.523021 + 0.852320i \(0.324805\pi\)
−0.523021 + 0.852320i \(0.675195\pi\)
\(444\) 2.88821 0.137068
\(445\) 0 0
\(446\) 20.4434 0.968022
\(447\) − 12.6799i − 0.599738i
\(448\) 20.4320i 0.965321i
\(449\) 35.4975 1.67523 0.837615 0.546261i \(-0.183949\pi\)
0.837615 + 0.546261i \(0.183949\pi\)
\(450\) 0 0
\(451\) −0.949604 −0.0447151
\(452\) − 16.8118i − 0.790762i
\(453\) 2.94960i 0.138584i
\(454\) 22.8691 1.07330
\(455\) 0 0
\(456\) −23.1579 −1.08447
\(457\) 33.8742i 1.58457i 0.610153 + 0.792283i \(0.291108\pi\)
−0.610153 + 0.792283i \(0.708892\pi\)
\(458\) 6.58372i 0.307637i
\(459\) 5.22766 0.244006
\(460\) 0 0
\(461\) −19.2748 −0.897717 −0.448859 0.893603i \(-0.648169\pi\)
−0.448859 + 0.893603i \(0.648169\pi\)
\(462\) − 1.31065i − 0.0609768i
\(463\) − 1.98874i − 0.0924244i −0.998932 0.0462122i \(-0.985285\pi\)
0.998932 0.0462122i \(-0.0147150\pi\)
\(464\) −0.535467 −0.0248584
\(465\) 0 0
\(466\) 2.71430 0.125737
\(467\) 3.18274i 0.147279i 0.997285 + 0.0736397i \(0.0234615\pi\)
−0.997285 + 0.0736397i \(0.976539\pi\)
\(468\) 4.88282i 0.225708i
\(469\) 21.0981 0.974218
\(470\) 0 0
\(471\) −3.49659 −0.161114
\(472\) − 2.94188i − 0.135411i
\(473\) − 2.23780i − 0.102894i
\(474\) 7.67721 0.352626
\(475\) 0 0
\(476\) −28.0435 −1.28537
\(477\) − 4.33661i − 0.198560i
\(478\) − 22.5607i − 1.03190i
\(479\) −9.28348 −0.424173 −0.212086 0.977251i \(-0.568026\pi\)
−0.212086 + 0.977251i \(0.568026\pi\)
\(480\) 0 0
\(481\) 8.99006 0.409912
\(482\) − 4.51343i − 0.205581i
\(483\) − 5.48795i − 0.249710i
\(484\) −13.6203 −0.619105
\(485\) 0 0
\(486\) 0.864597 0.0392189
\(487\) − 8.58292i − 0.388929i −0.980910 0.194465i \(-0.937703\pi\)
0.980910 0.194465i \(-0.0622969\pi\)
\(488\) − 2.76436i − 0.125137i
\(489\) 4.07999 0.184504
\(490\) 0 0
\(491\) −34.6474 −1.56362 −0.781808 0.623519i \(-0.785702\pi\)
−0.781808 + 0.623519i \(0.785702\pi\)
\(492\) 3.36043i 0.151500i
\(493\) 38.0168i 1.71219i
\(494\) −27.7580 −1.24889
\(495\) 0 0
\(496\) −0.0736318 −0.00330616
\(497\) − 45.8494i − 2.05663i
\(498\) − 2.05537i − 0.0921033i
\(499\) 11.2295 0.502703 0.251352 0.967896i \(-0.419125\pi\)
0.251352 + 0.967896i \(0.419125\pi\)
\(500\) 0 0
\(501\) −11.2784 −0.503881
\(502\) 25.8454i 1.15354i
\(503\) 12.4460i 0.554941i 0.960734 + 0.277470i \(0.0894960\pi\)
−0.960734 + 0.277470i \(0.910504\pi\)
\(504\) −12.0443 −0.536497
\(505\) 0 0
\(506\) −0.392089 −0.0174305
\(507\) 2.19864i 0.0976451i
\(508\) − 17.2354i − 0.764697i
\(509\) 26.3376 1.16740 0.583698 0.811971i \(-0.301605\pi\)
0.583698 + 0.811971i \(0.301605\pi\)
\(510\) 0 0
\(511\) −19.5421 −0.864490
\(512\) 0.832921i 0.0368102i
\(513\) − 8.23515i − 0.363591i
\(514\) 13.5397 0.597212
\(515\) 0 0
\(516\) −7.91906 −0.348617
\(517\) 2.36476i 0.104002i
\(518\) 8.53945i 0.375202i
\(519\) 22.4690 0.986281
\(520\) 0 0
\(521\) −8.41110 −0.368497 −0.184248 0.982880i \(-0.558985\pi\)
−0.184248 + 0.982880i \(0.558985\pi\)
\(522\) 6.28755i 0.275198i
\(523\) − 8.89885i − 0.389120i −0.980891 0.194560i \(-0.937672\pi\)
0.980891 0.194560i \(-0.0623278\pi\)
\(524\) 8.69664 0.379914
\(525\) 0 0
\(526\) 22.6025 0.985514
\(527\) 5.22766i 0.227721i
\(528\) − 0.0260604i − 0.00113413i
\(529\) 21.3582 0.928619
\(530\) 0 0
\(531\) 1.04616 0.0453994
\(532\) 44.1769i 1.91531i
\(533\) 10.4599i 0.453070i
\(534\) −0.147613 −0.00638785
\(535\) 0 0
\(536\) −13.8521 −0.598318
\(537\) 6.71387i 0.289725i
\(538\) 27.7066i 1.19451i
\(539\) −4.01523 −0.172948
\(540\) 0 0
\(541\) −27.0487 −1.16291 −0.581457 0.813577i \(-0.697517\pi\)
−0.581457 + 0.813577i \(0.697517\pi\)
\(542\) − 14.9783i − 0.643372i
\(543\) − 26.4167i − 1.13365i
\(544\) 29.7340 1.27483
\(545\) 0 0
\(546\) −14.4368 −0.617839
\(547\) 20.4371i 0.873829i 0.899503 + 0.436914i \(0.143929\pi\)
−0.899503 + 0.436914i \(0.856071\pi\)
\(548\) − 9.85632i − 0.421041i
\(549\) 0.983032 0.0419548
\(550\) 0 0
\(551\) 59.8879 2.55131
\(552\) 3.60315i 0.153360i
\(553\) − 38.0317i − 1.61727i
\(554\) −14.3947 −0.611573
\(555\) 0 0
\(556\) −9.63484 −0.408608
\(557\) 33.5070i 1.41974i 0.704333 + 0.709869i \(0.251246\pi\)
−0.704333 + 0.709869i \(0.748754\pi\)
\(558\) 0.864597i 0.0366013i
\(559\) −24.6495 −1.04256
\(560\) 0 0
\(561\) −1.85022 −0.0781164
\(562\) 11.3684i 0.479547i
\(563\) 1.03505i 0.0436223i 0.999762 + 0.0218112i \(0.00694326\pi\)
−0.999762 + 0.0218112i \(0.993057\pi\)
\(564\) 8.36834 0.352371
\(565\) 0 0
\(566\) 22.4560 0.943897
\(567\) − 4.28308i − 0.179872i
\(568\) 30.1027i 1.26308i
\(569\) −2.63277 −0.110371 −0.0551857 0.998476i \(-0.517575\pi\)
−0.0551857 + 0.998476i \(0.517575\pi\)
\(570\) 0 0
\(571\) 26.6263 1.11428 0.557138 0.830420i \(-0.311899\pi\)
0.557138 + 0.830420i \(0.311899\pi\)
\(572\) − 1.72817i − 0.0722584i
\(573\) 19.9355i 0.832816i
\(574\) −9.93564 −0.414705
\(575\) 0 0
\(576\) 4.77040 0.198767
\(577\) 20.4641i 0.851933i 0.904739 + 0.425967i \(0.140066\pi\)
−0.904739 + 0.425967i \(0.859934\pi\)
\(578\) − 8.92997i − 0.371438i
\(579\) −3.98672 −0.165682
\(580\) 0 0
\(581\) −10.1820 −0.422420
\(582\) − 0.875204i − 0.0362784i
\(583\) 1.53485i 0.0635670i
\(584\) 12.8304 0.530928
\(585\) 0 0
\(586\) 23.4289 0.967839
\(587\) 21.2696i 0.877888i 0.898514 + 0.438944i \(0.144647\pi\)
−0.898514 + 0.438944i \(0.855353\pi\)
\(588\) 14.2090i 0.585968i
\(589\) 8.23515 0.339324
\(590\) 0 0
\(591\) −23.1920 −0.953990
\(592\) 0.169795i 0.00697854i
\(593\) 39.3701i 1.61674i 0.588676 + 0.808369i \(0.299649\pi\)
−0.588676 + 0.808369i \(0.700351\pi\)
\(594\) −0.306006 −0.0125556
\(595\) 0 0
\(596\) 15.8812 0.650519
\(597\) − 12.5109i − 0.512038i
\(598\) 4.31887i 0.176612i
\(599\) −28.4292 −1.16158 −0.580792 0.814052i \(-0.697257\pi\)
−0.580792 + 0.814052i \(0.697257\pi\)
\(600\) 0 0
\(601\) 20.6046 0.840480 0.420240 0.907413i \(-0.361946\pi\)
0.420240 + 0.907413i \(0.361946\pi\)
\(602\) − 23.4140i − 0.954282i
\(603\) − 4.92592i − 0.200599i
\(604\) −3.69429 −0.150318
\(605\) 0 0
\(606\) 15.4802 0.628840
\(607\) − 18.8232i − 0.764010i −0.924160 0.382005i \(-0.875234\pi\)
0.924160 0.382005i \(-0.124766\pi\)
\(608\) − 46.8400i − 1.89961i
\(609\) 31.1475 1.26216
\(610\) 0 0
\(611\) 26.0479 1.05379
\(612\) 6.54751i 0.264667i
\(613\) 18.0049i 0.727213i 0.931553 + 0.363606i \(0.118455\pi\)
−0.931553 + 0.363606i \(0.881545\pi\)
\(614\) 6.77755 0.273520
\(615\) 0 0
\(616\) 4.26284 0.171755
\(617\) 26.2389i 1.05634i 0.849139 + 0.528169i \(0.177121\pi\)
−0.849139 + 0.528169i \(0.822879\pi\)
\(618\) − 7.34505i − 0.295461i
\(619\) −30.1624 −1.21233 −0.606166 0.795339i \(-0.707293\pi\)
−0.606166 + 0.795339i \(0.707293\pi\)
\(620\) 0 0
\(621\) −1.28131 −0.0514172
\(622\) 0.0269482i 0.00108052i
\(623\) 0.731253i 0.0292970i
\(624\) −0.287057 −0.0114915
\(625\) 0 0
\(626\) −2.11211 −0.0844170
\(627\) 2.91466i 0.116400i
\(628\) − 4.37938i − 0.174756i
\(629\) 12.0550 0.480665
\(630\) 0 0
\(631\) 30.7023 1.22224 0.611121 0.791538i \(-0.290719\pi\)
0.611121 + 0.791538i \(0.290719\pi\)
\(632\) 24.9699i 0.993250i
\(633\) − 23.1316i − 0.919400i
\(634\) −3.48736 −0.138501
\(635\) 0 0
\(636\) 5.43148 0.215372
\(637\) 44.2279i 1.75237i
\(638\) − 2.22534i − 0.0881022i
\(639\) −10.7048 −0.423475
\(640\) 0 0
\(641\) 4.11497 0.162531 0.0812657 0.996692i \(-0.474104\pi\)
0.0812657 + 0.996692i \(0.474104\pi\)
\(642\) − 3.89633i − 0.153776i
\(643\) 24.2235i 0.955281i 0.878555 + 0.477641i \(0.158508\pi\)
−0.878555 + 0.477641i \(0.841492\pi\)
\(644\) 6.87351 0.270854
\(645\) 0 0
\(646\) −37.2214 −1.46446
\(647\) 32.4635i 1.27627i 0.769924 + 0.638136i \(0.220294\pi\)
−0.769924 + 0.638136i \(0.779706\pi\)
\(648\) 2.81208i 0.110469i
\(649\) −0.370266 −0.0145342
\(650\) 0 0
\(651\) 4.28308 0.167867
\(652\) 5.11008i 0.200126i
\(653\) 17.3165i 0.677648i 0.940850 + 0.338824i \(0.110029\pi\)
−0.940850 + 0.338824i \(0.889971\pi\)
\(654\) −12.3681 −0.483631
\(655\) 0 0
\(656\) −0.197557 −0.00771329
\(657\) 4.56262i 0.178005i
\(658\) 24.7423i 0.964556i
\(659\) −10.3947 −0.404922 −0.202461 0.979290i \(-0.564894\pi\)
−0.202461 + 0.979290i \(0.564894\pi\)
\(660\) 0 0
\(661\) 35.1133 1.36575 0.682874 0.730536i \(-0.260730\pi\)
0.682874 + 0.730536i \(0.260730\pi\)
\(662\) − 9.57994i − 0.372335i
\(663\) 20.3803i 0.791504i
\(664\) 6.68503 0.259430
\(665\) 0 0
\(666\) 1.99377 0.0772568
\(667\) − 9.31799i − 0.360794i
\(668\) − 14.1259i − 0.546546i
\(669\) −23.6450 −0.914168
\(670\) 0 0
\(671\) −0.347923 −0.0134314
\(672\) − 24.3613i − 0.939759i
\(673\) − 16.3883i − 0.631724i −0.948805 0.315862i \(-0.897706\pi\)
0.948805 0.315862i \(-0.102294\pi\)
\(674\) −8.99646 −0.346531
\(675\) 0 0
\(676\) −2.75374 −0.105913
\(677\) − 11.3973i − 0.438036i −0.975721 0.219018i \(-0.929715\pi\)
0.975721 0.219018i \(-0.0702853\pi\)
\(678\) − 11.6054i − 0.445703i
\(679\) −4.33562 −0.166386
\(680\) 0 0
\(681\) −26.4506 −1.01359
\(682\) − 0.306006i − 0.0117176i
\(683\) 33.7148i 1.29006i 0.764157 + 0.645031i \(0.223155\pi\)
−0.764157 + 0.645031i \(0.776845\pi\)
\(684\) 10.3143 0.394377
\(685\) 0 0
\(686\) −16.0891 −0.614286
\(687\) − 7.61479i − 0.290522i
\(688\) − 0.465555i − 0.0177491i
\(689\) 16.9065 0.644085
\(690\) 0 0
\(691\) −26.4611 −1.00663 −0.503313 0.864104i \(-0.667886\pi\)
−0.503313 + 0.864104i \(0.667886\pi\)
\(692\) 28.1418i 1.06979i
\(693\) 1.51590i 0.0575844i
\(694\) −20.5770 −0.781091
\(695\) 0 0
\(696\) −20.4501 −0.775158
\(697\) 14.0260i 0.531273i
\(698\) 22.6394i 0.856914i
\(699\) −3.13938 −0.118742
\(700\) 0 0
\(701\) −48.7391 −1.84085 −0.920425 0.390919i \(-0.872157\pi\)
−0.920425 + 0.390919i \(0.872157\pi\)
\(702\) 3.37067i 0.127218i
\(703\) − 18.9903i − 0.716233i
\(704\) −1.68838 −0.0636334
\(705\) 0 0
\(706\) −12.3913 −0.466352
\(707\) − 76.6864i − 2.88409i
\(708\) 1.31028i 0.0492435i
\(709\) −13.1850 −0.495172 −0.247586 0.968866i \(-0.579637\pi\)
−0.247586 + 0.968866i \(0.579637\pi\)
\(710\) 0 0
\(711\) −8.87953 −0.333008
\(712\) − 0.480108i − 0.0179928i
\(713\) − 1.28131i − 0.0479855i
\(714\) −19.3587 −0.724483
\(715\) 0 0
\(716\) −8.40893 −0.314257
\(717\) 26.0939i 0.974493i
\(718\) − 25.2867i − 0.943690i
\(719\) 12.3742 0.461481 0.230740 0.973015i \(-0.425885\pi\)
0.230740 + 0.973015i \(0.425885\pi\)
\(720\) 0 0
\(721\) −36.3862 −1.35509
\(722\) 42.2077i 1.57081i
\(723\) 5.22027i 0.194144i
\(724\) 33.0862 1.22964
\(725\) 0 0
\(726\) −9.40226 −0.348951
\(727\) − 18.0273i − 0.668597i −0.942467 0.334299i \(-0.891501\pi\)
0.942467 0.334299i \(-0.108499\pi\)
\(728\) − 46.9554i − 1.74028i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −33.0532 −1.22252
\(732\) 1.23122i 0.0455072i
\(733\) − 16.6357i − 0.614453i −0.951636 0.307226i \(-0.900599\pi\)
0.951636 0.307226i \(-0.0994009\pi\)
\(734\) −18.6849 −0.689673
\(735\) 0 0
\(736\) −7.28786 −0.268634
\(737\) 1.74342i 0.0642198i
\(738\) 2.31974i 0.0853909i
\(739\) 3.71551 0.136677 0.0683385 0.997662i \(-0.478230\pi\)
0.0683385 + 0.997662i \(0.478230\pi\)
\(740\) 0 0
\(741\) 32.1051 1.17941
\(742\) 16.0590i 0.589546i
\(743\) − 18.8360i − 0.691028i −0.938414 0.345514i \(-0.887705\pi\)
0.938414 0.345514i \(-0.112295\pi\)
\(744\) −2.81208 −0.103096
\(745\) 0 0
\(746\) −18.7431 −0.686233
\(747\) 2.37726i 0.0869793i
\(748\) − 2.31735i − 0.0847308i
\(749\) −19.3018 −0.705272
\(750\) 0 0
\(751\) −12.6253 −0.460703 −0.230351 0.973108i \(-0.573988\pi\)
−0.230351 + 0.973108i \(0.573988\pi\)
\(752\) 0.491967i 0.0179402i
\(753\) − 29.8930i − 1.08936i
\(754\) −24.5123 −0.892684
\(755\) 0 0
\(756\) 5.36443 0.195103
\(757\) − 52.2392i − 1.89866i −0.314274 0.949332i \(-0.601761\pi\)
0.314274 0.949332i \(-0.398239\pi\)
\(758\) − 30.5805i − 1.11073i
\(759\) 0.453493 0.0164608
\(760\) 0 0
\(761\) 1.78070 0.0645502 0.0322751 0.999479i \(-0.489725\pi\)
0.0322751 + 0.999479i \(0.489725\pi\)
\(762\) − 11.8978i − 0.431012i
\(763\) 61.2697i 2.21811i
\(764\) −24.9686 −0.903333
\(765\) 0 0
\(766\) −26.0972 −0.942932
\(767\) 4.07850i 0.147266i
\(768\) 15.8101i 0.570499i
\(769\) −32.5936 −1.17536 −0.587678 0.809095i \(-0.699958\pi\)
−0.587678 + 0.809095i \(0.699958\pi\)
\(770\) 0 0
\(771\) −15.6602 −0.563987
\(772\) − 4.99325i − 0.179711i
\(773\) 23.1130i 0.831317i 0.909521 + 0.415659i \(0.136449\pi\)
−0.909521 + 0.415659i \(0.863551\pi\)
\(774\) −5.46663 −0.196494
\(775\) 0 0
\(776\) 2.84658 0.102186
\(777\) − 9.87680i − 0.354328i
\(778\) 6.98220i 0.250324i
\(779\) 22.0952 0.791643
\(780\) 0 0
\(781\) 3.78873 0.135572
\(782\) 5.79130i 0.207096i
\(783\) − 7.27223i − 0.259888i
\(784\) −0.835333 −0.0298333
\(785\) 0 0
\(786\) 6.00339 0.214134
\(787\) − 29.9984i − 1.06933i −0.845065 0.534664i \(-0.820438\pi\)
0.845065 0.534664i \(-0.179562\pi\)
\(788\) − 29.0473i − 1.03477i
\(789\) −26.1422 −0.930687
\(790\) 0 0
\(791\) −57.4913 −2.04416
\(792\) − 0.995275i − 0.0353656i
\(793\) 3.83239i 0.136092i
\(794\) 29.4820 1.04628
\(795\) 0 0
\(796\) 15.6696 0.555394
\(797\) 18.4489i 0.653493i 0.945112 + 0.326747i \(0.105952\pi\)
−0.945112 + 0.326747i \(0.894048\pi\)
\(798\) 30.4959i 1.07954i
\(799\) 34.9284 1.23568
\(800\) 0 0
\(801\) 0.170731 0.00603247
\(802\) 30.6235i 1.08135i
\(803\) − 1.61484i − 0.0569866i
\(804\) 6.16957 0.217584
\(805\) 0 0
\(806\) −3.37067 −0.118727
\(807\) − 32.0456i − 1.12806i
\(808\) 50.3489i 1.77127i
\(809\) 38.1306 1.34060 0.670301 0.742089i \(-0.266165\pi\)
0.670301 + 0.742089i \(0.266165\pi\)
\(810\) 0 0
\(811\) −3.36292 −0.118088 −0.0590440 0.998255i \(-0.518805\pi\)
−0.0590440 + 0.998255i \(0.518805\pi\)
\(812\) 39.0114i 1.36903i
\(813\) 17.3240i 0.607579i
\(814\) −0.705651 −0.0247331
\(815\) 0 0
\(816\) −0.384922 −0.0134750
\(817\) 52.0688i 1.82166i
\(818\) 4.03785i 0.141180i
\(819\) 16.6978 0.583467
\(820\) 0 0
\(821\) −6.17661 −0.215565 −0.107783 0.994174i \(-0.534375\pi\)
−0.107783 + 0.994174i \(0.534375\pi\)
\(822\) − 6.80394i − 0.237315i
\(823\) 7.45159i 0.259746i 0.991531 + 0.129873i \(0.0414570\pi\)
−0.991531 + 0.129873i \(0.958543\pi\)
\(824\) 23.8896 0.832233
\(825\) 0 0
\(826\) −3.87407 −0.134796
\(827\) − 0.0604717i − 0.00210281i −0.999999 0.00105140i \(-0.999665\pi\)
0.999999 0.00105140i \(-0.000334672\pi\)
\(828\) − 1.60481i − 0.0557709i
\(829\) −13.5457 −0.470463 −0.235231 0.971939i \(-0.575585\pi\)
−0.235231 + 0.971939i \(0.575585\pi\)
\(830\) 0 0
\(831\) 16.6490 0.577549
\(832\) 18.5976i 0.644757i
\(833\) 59.3065i 2.05485i
\(834\) −6.65104 −0.230307
\(835\) 0 0
\(836\) −3.65053 −0.126256
\(837\) − 1.00000i − 0.0345651i
\(838\) − 9.86036i − 0.340621i
\(839\) 16.1362 0.557085 0.278542 0.960424i \(-0.410149\pi\)
0.278542 + 0.960424i \(0.410149\pi\)
\(840\) 0 0
\(841\) 23.8853 0.823631
\(842\) 5.47796i 0.188783i
\(843\) − 13.1488i − 0.452869i
\(844\) 28.9718 0.997249
\(845\) 0 0
\(846\) 5.77676 0.198609
\(847\) 46.5773i 1.60042i
\(848\) 0.319312i 0.0109652i
\(849\) −25.9728 −0.891385
\(850\) 0 0
\(851\) −2.95471 −0.101286
\(852\) − 13.4074i − 0.459332i
\(853\) − 3.88888i − 0.133153i −0.997781 0.0665763i \(-0.978792\pi\)
0.997781 0.0665763i \(-0.0212076\pi\)
\(854\) −3.64030 −0.124568
\(855\) 0 0
\(856\) 12.6727 0.433144
\(857\) − 30.7605i − 1.05076i −0.850869 0.525379i \(-0.823924\pi\)
0.850869 0.525379i \(-0.176076\pi\)
\(858\) − 1.19298i − 0.0407276i
\(859\) −18.8972 −0.644765 −0.322382 0.946610i \(-0.604484\pi\)
−0.322382 + 0.946610i \(0.604484\pi\)
\(860\) 0 0
\(861\) 11.4916 0.391634
\(862\) − 1.73875i − 0.0592221i
\(863\) − 46.3032i − 1.57618i −0.615561 0.788089i \(-0.711071\pi\)
0.615561 0.788089i \(-0.288929\pi\)
\(864\) −5.68782 −0.193503
\(865\) 0 0
\(866\) 32.6746 1.11033
\(867\) 10.3285i 0.350774i
\(868\) 5.36443i 0.182081i
\(869\) 3.14272 0.106610
\(870\) 0 0
\(871\) 19.2039 0.650699
\(872\) − 40.2269i − 1.36226i
\(873\) 1.01227i 0.0342601i
\(874\) 9.12304 0.308592
\(875\) 0 0
\(876\) −5.71456 −0.193077
\(877\) 14.7762i 0.498957i 0.968380 + 0.249479i \(0.0802592\pi\)
−0.968380 + 0.249479i \(0.919741\pi\)
\(878\) − 12.4411i − 0.419866i
\(879\) −27.0981 −0.913995
\(880\) 0 0
\(881\) −2.84895 −0.0959835 −0.0479917 0.998848i \(-0.515282\pi\)
−0.0479917 + 0.998848i \(0.515282\pi\)
\(882\) 9.80862i 0.330273i
\(883\) − 15.8536i − 0.533516i −0.963764 0.266758i \(-0.914048\pi\)
0.963764 0.266758i \(-0.0859524\pi\)
\(884\) −25.5257 −0.858523
\(885\) 0 0
\(886\) −31.0205 −1.04215
\(887\) 5.21365i 0.175057i 0.996162 + 0.0875286i \(0.0278969\pi\)
−0.996162 + 0.0875286i \(0.972103\pi\)
\(888\) 6.48467i 0.217611i
\(889\) −58.9399 −1.97678
\(890\) 0 0
\(891\) 0.353929 0.0118571
\(892\) − 29.6147i − 0.991573i
\(893\) − 55.0228i − 1.84127i
\(894\) 10.9630 0.366657
\(895\) 0 0
\(896\) 31.0572 1.03755
\(897\) − 4.99525i − 0.166786i
\(898\) 30.6910i 1.02417i
\(899\) 7.27223 0.242542
\(900\) 0 0
\(901\) 22.6703 0.755258
\(902\) − 0.821024i − 0.0273371i
\(903\) 27.0808i 0.901192i
\(904\) 37.7463 1.25542
\(905\) 0 0
\(906\) −2.55021 −0.0847251
\(907\) − 13.8569i − 0.460111i −0.973178 0.230055i \(-0.926109\pi\)
0.973178 0.230055i \(-0.0738907\pi\)
\(908\) − 33.1286i − 1.09941i
\(909\) −17.9045 −0.593856
\(910\) 0 0
\(911\) −5.44928 −0.180543 −0.0902713 0.995917i \(-0.528773\pi\)
−0.0902713 + 0.995917i \(0.528773\pi\)
\(912\) 0.606369i 0.0200789i
\(913\) − 0.841380i − 0.0278456i
\(914\) −29.2875 −0.968744
\(915\) 0 0
\(916\) 9.53731 0.315122
\(917\) − 29.7399i − 0.982097i
\(918\) 4.51982i 0.149176i
\(919\) 36.4516 1.20243 0.601214 0.799088i \(-0.294684\pi\)
0.601214 + 0.799088i \(0.294684\pi\)
\(920\) 0 0
\(921\) −7.83898 −0.258303
\(922\) − 16.6649i − 0.548830i
\(923\) − 41.7331i − 1.37366i
\(924\) −1.89863 −0.0624603
\(925\) 0 0
\(926\) 1.71945 0.0565048
\(927\) 8.49535i 0.279024i
\(928\) − 41.3631i − 1.35781i
\(929\) 7.33460 0.240641 0.120320 0.992735i \(-0.461608\pi\)
0.120320 + 0.992735i \(0.461608\pi\)
\(930\) 0 0
\(931\) 93.4256 3.06190
\(932\) − 3.93199i − 0.128797i
\(933\) − 0.0311685i − 0.00102041i
\(934\) −2.75178 −0.0900411
\(935\) 0 0
\(936\) −10.9630 −0.358337
\(937\) − 49.1036i − 1.60415i −0.597227 0.802073i \(-0.703731\pi\)
0.597227 0.802073i \(-0.296269\pi\)
\(938\) 18.2413i 0.595600i
\(939\) 2.44289 0.0797206
\(940\) 0 0
\(941\) −20.2169 −0.659053 −0.329527 0.944146i \(-0.606889\pi\)
−0.329527 + 0.944146i \(0.606889\pi\)
\(942\) − 3.02314i − 0.0984993i
\(943\) − 3.43780i − 0.111950i
\(944\) −0.0770305 −0.00250713
\(945\) 0 0
\(946\) 1.93480 0.0629057
\(947\) − 30.1596i − 0.980055i −0.871707 0.490028i \(-0.836987\pi\)
0.871707 0.490028i \(-0.163013\pi\)
\(948\) − 11.1214i − 0.361205i
\(949\) −17.7876 −0.577409
\(950\) 0 0
\(951\) 4.03351 0.130795
\(952\) − 62.9638i − 2.04067i
\(953\) − 14.6953i − 0.476026i −0.971262 0.238013i \(-0.923504\pi\)
0.971262 0.238013i \(-0.0764961\pi\)
\(954\) 3.74942 0.121392
\(955\) 0 0
\(956\) −32.6818 −1.05701
\(957\) 2.57385i 0.0832008i
\(958\) − 8.02646i − 0.259323i
\(959\) −33.7056 −1.08841
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 7.77278i 0.250604i
\(963\) 4.50652i 0.145221i
\(964\) −6.53825 −0.210583
\(965\) 0 0
\(966\) 4.74487 0.152664
\(967\) − 50.8330i − 1.63468i −0.576155 0.817340i \(-0.695448\pi\)
0.576155 0.817340i \(-0.304552\pi\)
\(968\) − 30.5806i − 0.982897i
\(969\) 43.0506 1.38298
\(970\) 0 0
\(971\) 36.0990 1.15847 0.579236 0.815160i \(-0.303351\pi\)
0.579236 + 0.815160i \(0.303351\pi\)
\(972\) − 1.25247i − 0.0401731i
\(973\) 32.9482i 1.05627i
\(974\) 7.42077 0.237777
\(975\) 0 0
\(976\) −0.0723824 −0.00231690
\(977\) − 8.14233i − 0.260496i −0.991481 0.130248i \(-0.958423\pi\)
0.991481 0.130248i \(-0.0415774\pi\)
\(978\) 3.52755i 0.112799i
\(979\) −0.0604265 −0.00193124
\(980\) 0 0
\(981\) 14.3051 0.456726
\(982\) − 29.9561i − 0.955936i
\(983\) 31.3377i 0.999517i 0.866165 + 0.499759i \(0.166578\pi\)
−0.866165 + 0.499759i \(0.833422\pi\)
\(984\) −7.54490 −0.240523
\(985\) 0 0
\(986\) −32.8692 −1.04677
\(987\) − 28.6172i − 0.910895i
\(988\) 40.2107i 1.27927i
\(989\) 8.10140 0.257610
\(990\) 0 0
\(991\) −56.4797 −1.79414 −0.897068 0.441893i \(-0.854307\pi\)
−0.897068 + 0.441893i \(0.854307\pi\)
\(992\) − 5.68782i − 0.180588i
\(993\) 11.0802i 0.351621i
\(994\) 39.6412 1.25734
\(995\) 0 0
\(996\) −2.97745 −0.0943441
\(997\) 47.4373i 1.50236i 0.660100 + 0.751178i \(0.270514\pi\)
−0.660100 + 0.751178i \(0.729486\pi\)
\(998\) 9.70903i 0.307334i
\(999\) −2.30601 −0.0729588
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.c.r.1024.9 12
5.2 odd 4 2325.2.a.y.1.3 6
5.3 odd 4 2325.2.a.bb.1.4 yes 6
5.4 even 2 inner 2325.2.c.r.1024.4 12
15.2 even 4 6975.2.a.cc.1.4 6
15.8 even 4 6975.2.a.ca.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2325.2.a.y.1.3 6 5.2 odd 4
2325.2.a.bb.1.4 yes 6 5.3 odd 4
2325.2.c.r.1024.4 12 5.4 even 2 inner
2325.2.c.r.1024.9 12 1.1 even 1 trivial
6975.2.a.ca.1.3 6 15.8 even 4
6975.2.a.cc.1.4 6 15.2 even 4