Properties

Label 2325.2.c.r.1024.7
Level $2325$
Weight $2$
Character 2325.1024
Analytic conductor $18.565$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1024,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1024"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-14,0,2,0,0,-12,0,14,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 19x^{10} + 127x^{8} + 357x^{6} + 412x^{4} + 204x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1024.7
Root \(0.667396i\) of defining polynomial
Character \(\chi\) \(=\) 2325.1024
Dual form 2325.2.c.r.1024.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.667396i q^{2} +1.00000i q^{3} +1.55458 q^{4} -0.667396 q^{6} -3.64222i q^{7} +2.37231i q^{8} -1.00000 q^{9} -1.15709 q^{11} +1.55458i q^{12} +5.71167i q^{13} +2.43080 q^{14} +1.52589 q^{16} +1.37855i q^{17} -0.667396i q^{18} -2.28711 q^{19} +3.64222 q^{21} -0.772236i q^{22} +5.17025i q^{23} -2.37231 q^{24} -3.81195 q^{26} -1.00000i q^{27} -5.66213i q^{28} +5.51387 q^{29} -1.00000 q^{31} +5.76300i q^{32} -1.15709i q^{33} -0.920040 q^{34} -1.55458 q^{36} -2.77224i q^{37} -1.52641i q^{38} -5.71167 q^{39} -0.122562 q^{41} +2.43080i q^{42} +1.11738i q^{43} -1.79879 q^{44} -3.45060 q^{46} +8.92527i q^{47} +1.52589i q^{48} -6.26574 q^{49} -1.37855 q^{51} +8.87926i q^{52} +3.42456i q^{53} +0.667396 q^{54} +8.64048 q^{56} -2.28711i q^{57} +3.67993i q^{58} -0.542646 q^{59} +10.4883 q^{61} -0.667396i q^{62} +3.64222i q^{63} -0.794421 q^{64} +0.772236 q^{66} +15.8274i q^{67} +2.14307i q^{68} -5.17025 q^{69} +10.7253 q^{71} -2.37231i q^{72} -8.34049i q^{73} +1.85018 q^{74} -3.55550 q^{76} +4.21437i q^{77} -3.81195i q^{78} -5.83719 q^{79} +1.00000 q^{81} -0.0817974i q^{82} +16.4935i q^{83} +5.66213 q^{84} -0.745734 q^{86} +5.51387i q^{87} -2.74498i q^{88} +8.27438 q^{89} +20.8031 q^{91} +8.03757i q^{92} -1.00000i q^{93} -5.95669 q^{94} -5.76300 q^{96} -9.97701i q^{97} -4.18173i q^{98} +1.15709 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 14 q^{4} + 2 q^{6} - 12 q^{9} + 14 q^{11} - 20 q^{14} + 34 q^{16} - 34 q^{19} + 4 q^{21} + 6 q^{24} + 4 q^{26} + 16 q^{29} - 12 q^{31} + 26 q^{34} + 14 q^{36} - 8 q^{39} + 36 q^{41} - 8 q^{44} - 20 q^{46}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2325\mathbb{Z}\right)^\times\).

\(n\) \(652\) \(776\) \(1801\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.667396i 0.471920i 0.971763 + 0.235960i \(0.0758235\pi\)
−0.971763 + 0.235960i \(0.924177\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 1.55458 0.777291
\(5\) 0 0
\(6\) −0.667396 −0.272463
\(7\) − 3.64222i − 1.37663i −0.725413 0.688314i \(-0.758351\pi\)
0.725413 0.688314i \(-0.241649\pi\)
\(8\) 2.37231i 0.838740i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.15709 −0.348875 −0.174438 0.984668i \(-0.555811\pi\)
−0.174438 + 0.984668i \(0.555811\pi\)
\(12\) 1.55458i 0.448769i
\(13\) 5.71167i 1.58413i 0.610435 + 0.792066i \(0.290995\pi\)
−0.610435 + 0.792066i \(0.709005\pi\)
\(14\) 2.43080 0.649659
\(15\) 0 0
\(16\) 1.52589 0.381473
\(17\) 1.37855i 0.334348i 0.985927 + 0.167174i \(0.0534642\pi\)
−0.985927 + 0.167174i \(0.946536\pi\)
\(18\) − 0.667396i − 0.157307i
\(19\) −2.28711 −0.524699 −0.262349 0.964973i \(-0.584497\pi\)
−0.262349 + 0.964973i \(0.584497\pi\)
\(20\) 0 0
\(21\) 3.64222 0.794797
\(22\) − 0.772236i − 0.164641i
\(23\) 5.17025i 1.07807i 0.842283 + 0.539035i \(0.181211\pi\)
−0.842283 + 0.539035i \(0.818789\pi\)
\(24\) −2.37231 −0.484247
\(25\) 0 0
\(26\) −3.81195 −0.747584
\(27\) − 1.00000i − 0.192450i
\(28\) − 5.66213i − 1.07004i
\(29\) 5.51387 1.02390 0.511950 0.859015i \(-0.328923\pi\)
0.511950 + 0.859015i \(0.328923\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 5.76300i 1.01876i
\(33\) − 1.15709i − 0.201423i
\(34\) −0.920040 −0.157786
\(35\) 0 0
\(36\) −1.55458 −0.259097
\(37\) − 2.77224i − 0.455753i −0.973690 0.227876i \(-0.926822\pi\)
0.973690 0.227876i \(-0.0731782\pi\)
\(38\) − 1.52641i − 0.247616i
\(39\) −5.71167 −0.914599
\(40\) 0 0
\(41\) −0.122562 −0.0191410 −0.00957048 0.999954i \(-0.503046\pi\)
−0.00957048 + 0.999954i \(0.503046\pi\)
\(42\) 2.43080i 0.375081i
\(43\) 1.11738i 0.170399i 0.996364 + 0.0851993i \(0.0271527\pi\)
−0.996364 + 0.0851993i \(0.972847\pi\)
\(44\) −1.79879 −0.271178
\(45\) 0 0
\(46\) −3.45060 −0.508763
\(47\) 8.92527i 1.30189i 0.759127 + 0.650943i \(0.225626\pi\)
−0.759127 + 0.650943i \(0.774374\pi\)
\(48\) 1.52589i 0.220244i
\(49\) −6.26574 −0.895106
\(50\) 0 0
\(51\) −1.37855 −0.193036
\(52\) 8.87926i 1.23133i
\(53\) 3.42456i 0.470400i 0.971947 + 0.235200i \(0.0755745\pi\)
−0.971947 + 0.235200i \(0.924426\pi\)
\(54\) 0.667396 0.0908211
\(55\) 0 0
\(56\) 8.64048 1.15463
\(57\) − 2.28711i − 0.302935i
\(58\) 3.67993i 0.483199i
\(59\) −0.542646 −0.0706465 −0.0353232 0.999376i \(-0.511246\pi\)
−0.0353232 + 0.999376i \(0.511246\pi\)
\(60\) 0 0
\(61\) 10.4883 1.34289 0.671444 0.741056i \(-0.265675\pi\)
0.671444 + 0.741056i \(0.265675\pi\)
\(62\) − 0.667396i − 0.0847594i
\(63\) 3.64222i 0.458876i
\(64\) −0.794421 −0.0993026
\(65\) 0 0
\(66\) 0.772236 0.0950557
\(67\) 15.8274i 1.93363i 0.255477 + 0.966815i \(0.417767\pi\)
−0.255477 + 0.966815i \(0.582233\pi\)
\(68\) 2.14307i 0.259886i
\(69\) −5.17025 −0.622424
\(70\) 0 0
\(71\) 10.7253 1.27286 0.636428 0.771336i \(-0.280411\pi\)
0.636428 + 0.771336i \(0.280411\pi\)
\(72\) − 2.37231i − 0.279580i
\(73\) − 8.34049i − 0.976181i −0.872793 0.488090i \(-0.837694\pi\)
0.872793 0.488090i \(-0.162306\pi\)
\(74\) 1.85018 0.215079
\(75\) 0 0
\(76\) −3.55550 −0.407844
\(77\) 4.21437i 0.480272i
\(78\) − 3.81195i − 0.431618i
\(79\) −5.83719 −0.656735 −0.328368 0.944550i \(-0.606498\pi\)
−0.328368 + 0.944550i \(0.606498\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 0.0817974i − 0.00903301i
\(83\) 16.4935i 1.81039i 0.424993 + 0.905197i \(0.360277\pi\)
−0.424993 + 0.905197i \(0.639723\pi\)
\(84\) 5.66213 0.617789
\(85\) 0 0
\(86\) −0.745734 −0.0804146
\(87\) 5.51387i 0.591149i
\(88\) − 2.74498i − 0.292616i
\(89\) 8.27438 0.877083 0.438541 0.898711i \(-0.355495\pi\)
0.438541 + 0.898711i \(0.355495\pi\)
\(90\) 0 0
\(91\) 20.8031 2.18076
\(92\) 8.03757i 0.837975i
\(93\) − 1.00000i − 0.103695i
\(94\) −5.95669 −0.614386
\(95\) 0 0
\(96\) −5.76300 −0.588184
\(97\) − 9.97701i − 1.01301i −0.862237 0.506506i \(-0.830937\pi\)
0.862237 0.506506i \(-0.169063\pi\)
\(98\) − 4.18173i − 0.422418i
\(99\) 1.15709 0.116292
\(100\) 0 0
\(101\) −7.18097 −0.714533 −0.357266 0.934003i \(-0.616291\pi\)
−0.357266 + 0.934003i \(0.616291\pi\)
\(102\) − 0.920040i − 0.0910976i
\(103\) − 1.70411i − 0.167911i −0.996470 0.0839555i \(-0.973245\pi\)
0.996470 0.0839555i \(-0.0267554\pi\)
\(104\) −13.5499 −1.32867
\(105\) 0 0
\(106\) −2.28554 −0.221991
\(107\) 18.1570i 1.75530i 0.479299 + 0.877652i \(0.340891\pi\)
−0.479299 + 0.877652i \(0.659109\pi\)
\(108\) − 1.55458i − 0.149590i
\(109\) −6.50614 −0.623176 −0.311588 0.950217i \(-0.600861\pi\)
−0.311588 + 0.950217i \(0.600861\pi\)
\(110\) 0 0
\(111\) 2.77224 0.263129
\(112\) − 5.55763i − 0.525147i
\(113\) 3.36042i 0.316122i 0.987429 + 0.158061i \(0.0505243\pi\)
−0.987429 + 0.158061i \(0.949476\pi\)
\(114\) 1.52641 0.142961
\(115\) 0 0
\(116\) 8.57176 0.795868
\(117\) − 5.71167i − 0.528044i
\(118\) − 0.362160i − 0.0333395i
\(119\) 5.02099 0.460273
\(120\) 0 0
\(121\) −9.66115 −0.878286
\(122\) 6.99984i 0.633736i
\(123\) − 0.122562i − 0.0110510i
\(124\) −1.55458 −0.139606
\(125\) 0 0
\(126\) −2.43080 −0.216553
\(127\) − 10.6138i − 0.941823i −0.882181 0.470911i \(-0.843925\pi\)
0.882181 0.470911i \(-0.156075\pi\)
\(128\) 10.9958i 0.971902i
\(129\) −1.11738 −0.0983797
\(130\) 0 0
\(131\) 14.5080 1.26757 0.633786 0.773508i \(-0.281500\pi\)
0.633786 + 0.773508i \(0.281500\pi\)
\(132\) − 1.79879i − 0.156565i
\(133\) 8.33014i 0.722315i
\(134\) −10.5632 −0.912519
\(135\) 0 0
\(136\) −3.27036 −0.280431
\(137\) − 5.31941i − 0.454468i −0.973840 0.227234i \(-0.927032\pi\)
0.973840 0.227234i \(-0.0729682\pi\)
\(138\) − 3.45060i − 0.293735i
\(139\) 8.27443 0.701828 0.350914 0.936408i \(-0.385871\pi\)
0.350914 + 0.936408i \(0.385871\pi\)
\(140\) 0 0
\(141\) −8.92527 −0.751644
\(142\) 7.15801i 0.600687i
\(143\) − 6.60891i − 0.552665i
\(144\) −1.52589 −0.127158
\(145\) 0 0
\(146\) 5.56641 0.460679
\(147\) − 6.26574i − 0.516789i
\(148\) − 4.30967i − 0.354253i
\(149\) −15.9731 −1.30857 −0.654284 0.756249i \(-0.727030\pi\)
−0.654284 + 0.756249i \(0.727030\pi\)
\(150\) 0 0
\(151\) 7.39770 0.602016 0.301008 0.953622i \(-0.402677\pi\)
0.301008 + 0.953622i \(0.402677\pi\)
\(152\) − 5.42574i − 0.440086i
\(153\) − 1.37855i − 0.111449i
\(154\) −2.81265 −0.226650
\(155\) 0 0
\(156\) −8.87926 −0.710910
\(157\) − 15.7243i − 1.25493i −0.778643 0.627467i \(-0.784092\pi\)
0.778643 0.627467i \(-0.215908\pi\)
\(158\) − 3.89572i − 0.309927i
\(159\) −3.42456 −0.271585
\(160\) 0 0
\(161\) 18.8312 1.48410
\(162\) 0.667396i 0.0524356i
\(163\) − 9.68816i − 0.758836i −0.925225 0.379418i \(-0.876124\pi\)
0.925225 0.379418i \(-0.123876\pi\)
\(164\) −0.190533 −0.0148781
\(165\) 0 0
\(166\) −11.0077 −0.854361
\(167\) − 19.1075i − 1.47858i −0.673385 0.739292i \(-0.735160\pi\)
0.673385 0.739292i \(-0.264840\pi\)
\(168\) 8.64048i 0.666628i
\(169\) −19.6232 −1.50948
\(170\) 0 0
\(171\) 2.28711 0.174900
\(172\) 1.73706i 0.132449i
\(173\) − 21.1286i − 1.60638i −0.595724 0.803189i \(-0.703135\pi\)
0.595724 0.803189i \(-0.296865\pi\)
\(174\) −3.67993 −0.278975
\(175\) 0 0
\(176\) −1.76559 −0.133087
\(177\) − 0.542646i − 0.0407878i
\(178\) 5.52229i 0.413913i
\(179\) −13.0689 −0.976816 −0.488408 0.872615i \(-0.662422\pi\)
−0.488408 + 0.872615i \(0.662422\pi\)
\(180\) 0 0
\(181\) 9.98243 0.741988 0.370994 0.928635i \(-0.379017\pi\)
0.370994 + 0.928635i \(0.379017\pi\)
\(182\) 13.8839i 1.02915i
\(183\) 10.4883i 0.775316i
\(184\) −12.2654 −0.904221
\(185\) 0 0
\(186\) 0.667396 0.0489358
\(187\) − 1.59511i − 0.116646i
\(188\) 13.8751i 1.01194i
\(189\) −3.64222 −0.264932
\(190\) 0 0
\(191\) −8.69024 −0.628804 −0.314402 0.949290i \(-0.601804\pi\)
−0.314402 + 0.949290i \(0.601804\pi\)
\(192\) − 0.794421i − 0.0573324i
\(193\) 18.4643i 1.32909i 0.747249 + 0.664544i \(0.231374\pi\)
−0.747249 + 0.664544i \(0.768626\pi\)
\(194\) 6.65862 0.478061
\(195\) 0 0
\(196\) −9.74061 −0.695758
\(197\) − 1.73458i − 0.123584i −0.998089 0.0617919i \(-0.980318\pi\)
0.998089 0.0617919i \(-0.0196815\pi\)
\(198\) 0.772236i 0.0548804i
\(199\) −13.7835 −0.977084 −0.488542 0.872540i \(-0.662471\pi\)
−0.488542 + 0.872540i \(0.662471\pi\)
\(200\) 0 0
\(201\) −15.8274 −1.11638
\(202\) − 4.79255i − 0.337202i
\(203\) − 20.0827i − 1.40953i
\(204\) −2.14307 −0.150045
\(205\) 0 0
\(206\) 1.13732 0.0792406
\(207\) − 5.17025i − 0.359357i
\(208\) 8.71539i 0.604304i
\(209\) 2.64639 0.183054
\(210\) 0 0
\(211\) −8.73784 −0.601538 −0.300769 0.953697i \(-0.597243\pi\)
−0.300769 + 0.953697i \(0.597243\pi\)
\(212\) 5.32377i 0.365638i
\(213\) 10.7253i 0.734884i
\(214\) −12.1179 −0.828363
\(215\) 0 0
\(216\) 2.37231 0.161416
\(217\) 3.64222i 0.247250i
\(218\) − 4.34217i − 0.294089i
\(219\) 8.34049 0.563598
\(220\) 0 0
\(221\) −7.87384 −0.529652
\(222\) 1.85018i 0.124176i
\(223\) − 10.4409i − 0.699176i −0.936903 0.349588i \(-0.886321\pi\)
0.936903 0.349588i \(-0.113679\pi\)
\(224\) 20.9901 1.40246
\(225\) 0 0
\(226\) −2.24273 −0.149184
\(227\) 25.1149i 1.66693i 0.552571 + 0.833466i \(0.313647\pi\)
−0.552571 + 0.833466i \(0.686353\pi\)
\(228\) − 3.55550i − 0.235469i
\(229\) 3.58524 0.236919 0.118460 0.992959i \(-0.462204\pi\)
0.118460 + 0.992959i \(0.462204\pi\)
\(230\) 0 0
\(231\) −4.21437 −0.277285
\(232\) 13.0806i 0.858785i
\(233\) − 18.2989i − 1.19880i −0.800449 0.599401i \(-0.795406\pi\)
0.800449 0.599401i \(-0.204594\pi\)
\(234\) 3.81195 0.249195
\(235\) 0 0
\(236\) −0.843588 −0.0549129
\(237\) − 5.83719i − 0.379166i
\(238\) 3.35099i 0.217212i
\(239\) 9.65731 0.624680 0.312340 0.949970i \(-0.398887\pi\)
0.312340 + 0.949970i \(0.398887\pi\)
\(240\) 0 0
\(241\) −5.31631 −0.342454 −0.171227 0.985232i \(-0.554773\pi\)
−0.171227 + 0.985232i \(0.554773\pi\)
\(242\) − 6.44781i − 0.414481i
\(243\) 1.00000i 0.0641500i
\(244\) 16.3049 1.04381
\(245\) 0 0
\(246\) 0.0817974 0.00521521
\(247\) − 13.0632i − 0.831192i
\(248\) − 2.37231i − 0.150642i
\(249\) −16.4935 −1.04523
\(250\) 0 0
\(251\) −9.20850 −0.581235 −0.290618 0.956839i \(-0.593861\pi\)
−0.290618 + 0.956839i \(0.593861\pi\)
\(252\) 5.66213i 0.356680i
\(253\) − 5.98243i − 0.376112i
\(254\) 7.08361 0.444465
\(255\) 0 0
\(256\) −8.92740 −0.557963
\(257\) − 7.04525i − 0.439470i −0.975560 0.219735i \(-0.929481\pi\)
0.975560 0.219735i \(-0.0705193\pi\)
\(258\) − 0.745734i − 0.0464274i
\(259\) −10.0971 −0.627402
\(260\) 0 0
\(261\) −5.51387 −0.341300
\(262\) 9.68260i 0.598193i
\(263\) − 4.35053i − 0.268265i −0.990963 0.134133i \(-0.957175\pi\)
0.990963 0.134133i \(-0.0428248\pi\)
\(264\) 2.74498 0.168942
\(265\) 0 0
\(266\) −5.55951 −0.340875
\(267\) 8.27438i 0.506384i
\(268\) 24.6051i 1.50299i
\(269\) 20.1710 1.22985 0.614925 0.788586i \(-0.289186\pi\)
0.614925 + 0.788586i \(0.289186\pi\)
\(270\) 0 0
\(271\) 13.0303 0.791533 0.395767 0.918351i \(-0.370479\pi\)
0.395767 + 0.918351i \(0.370479\pi\)
\(272\) 2.10352i 0.127545i
\(273\) 20.8031i 1.25906i
\(274\) 3.55015 0.214473
\(275\) 0 0
\(276\) −8.03757 −0.483805
\(277\) 5.93472i 0.356583i 0.983978 + 0.178292i \(0.0570570\pi\)
−0.983978 + 0.178292i \(0.942943\pi\)
\(278\) 5.52232i 0.331207i
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −2.56333 −0.152915 −0.0764577 0.997073i \(-0.524361\pi\)
−0.0764577 + 0.997073i \(0.524361\pi\)
\(282\) − 5.95669i − 0.354716i
\(283\) 22.5046i 1.33776i 0.743371 + 0.668879i \(0.233226\pi\)
−0.743371 + 0.668879i \(0.766774\pi\)
\(284\) 16.6733 0.989380
\(285\) 0 0
\(286\) 4.41076 0.260814
\(287\) 0.446397i 0.0263500i
\(288\) − 5.76300i − 0.339588i
\(289\) 15.0996 0.888211
\(290\) 0 0
\(291\) 9.97701 0.584863
\(292\) − 12.9660i − 0.758777i
\(293\) − 9.86771i − 0.576478i −0.957559 0.288239i \(-0.906930\pi\)
0.957559 0.288239i \(-0.0930697\pi\)
\(294\) 4.18173 0.243883
\(295\) 0 0
\(296\) 6.57662 0.382258
\(297\) 1.15709i 0.0671411i
\(298\) − 10.6604i − 0.617540i
\(299\) −29.5307 −1.70781
\(300\) 0 0
\(301\) 4.06973 0.234576
\(302\) 4.93719i 0.284104i
\(303\) − 7.18097i − 0.412536i
\(304\) −3.48988 −0.200158
\(305\) 0 0
\(306\) 0.920040 0.0525952
\(307\) − 13.4887i − 0.769843i −0.922949 0.384922i \(-0.874229\pi\)
0.922949 0.384922i \(-0.125771\pi\)
\(308\) 6.55158i 0.373311i
\(309\) 1.70411 0.0969435
\(310\) 0 0
\(311\) 8.33830 0.472822 0.236411 0.971653i \(-0.424029\pi\)
0.236411 + 0.971653i \(0.424029\pi\)
\(312\) − 13.5499i − 0.767111i
\(313\) 7.03489i 0.397636i 0.980036 + 0.198818i \(0.0637102\pi\)
−0.980036 + 0.198818i \(0.936290\pi\)
\(314\) 10.4943 0.592229
\(315\) 0 0
\(316\) −9.07439 −0.510474
\(317\) − 28.9660i − 1.62689i −0.581640 0.813446i \(-0.697589\pi\)
0.581640 0.813446i \(-0.302411\pi\)
\(318\) − 2.28554i − 0.128167i
\(319\) −6.38004 −0.357213
\(320\) 0 0
\(321\) −18.1570 −1.01343
\(322\) 12.5678i 0.700378i
\(323\) − 3.15290i − 0.175432i
\(324\) 1.55458 0.0863657
\(325\) 0 0
\(326\) 6.46584 0.358110
\(327\) − 6.50614i − 0.359791i
\(328\) − 0.290756i − 0.0160543i
\(329\) 32.5078 1.79221
\(330\) 0 0
\(331\) 4.97223 0.273299 0.136649 0.990619i \(-0.456367\pi\)
0.136649 + 0.990619i \(0.456367\pi\)
\(332\) 25.6405i 1.40720i
\(333\) 2.77224i 0.151918i
\(334\) 12.7523 0.697773
\(335\) 0 0
\(336\) 5.55763 0.303194
\(337\) − 3.96964i − 0.216240i −0.994138 0.108120i \(-0.965517\pi\)
0.994138 0.108120i \(-0.0344831\pi\)
\(338\) − 13.0964i − 0.712352i
\(339\) −3.36042 −0.182513
\(340\) 0 0
\(341\) 1.15709 0.0626599
\(342\) 1.52641i 0.0825386i
\(343\) − 2.67434i − 0.144401i
\(344\) −2.65077 −0.142920
\(345\) 0 0
\(346\) 14.1011 0.758082
\(347\) 32.8011i 1.76085i 0.474182 + 0.880427i \(0.342744\pi\)
−0.474182 + 0.880427i \(0.657256\pi\)
\(348\) 8.57176i 0.459495i
\(349\) −36.2630 −1.94111 −0.970557 0.240872i \(-0.922567\pi\)
−0.970557 + 0.240872i \(0.922567\pi\)
\(350\) 0 0
\(351\) 5.71167 0.304866
\(352\) − 6.66830i − 0.355422i
\(353\) − 30.9661i − 1.64816i −0.566473 0.824080i \(-0.691693\pi\)
0.566473 0.824080i \(-0.308307\pi\)
\(354\) 0.362160 0.0192486
\(355\) 0 0
\(356\) 12.8632 0.681749
\(357\) 5.02099i 0.265739i
\(358\) − 8.72213i − 0.460979i
\(359\) 11.6777 0.616324 0.308162 0.951334i \(-0.400286\pi\)
0.308162 + 0.951334i \(0.400286\pi\)
\(360\) 0 0
\(361\) −13.7691 −0.724691
\(362\) 6.66223i 0.350159i
\(363\) − 9.66115i − 0.507079i
\(364\) 32.3402 1.69509
\(365\) 0 0
\(366\) −6.99984 −0.365887
\(367\) − 2.52502i − 0.131805i −0.997826 0.0659026i \(-0.979007\pi\)
0.997826 0.0659026i \(-0.0209927\pi\)
\(368\) 7.88924i 0.411255i
\(369\) 0.122562 0.00638032
\(370\) 0 0
\(371\) 12.4730 0.647566
\(372\) − 1.55458i − 0.0806014i
\(373\) 15.0961i 0.781646i 0.920466 + 0.390823i \(0.127809\pi\)
−0.920466 + 0.390823i \(0.872191\pi\)
\(374\) 1.06457 0.0550475
\(375\) 0 0
\(376\) −21.1736 −1.09194
\(377\) 31.4934i 1.62199i
\(378\) − 2.43080i − 0.125027i
\(379\) 19.1633 0.984354 0.492177 0.870495i \(-0.336201\pi\)
0.492177 + 0.870495i \(0.336201\pi\)
\(380\) 0 0
\(381\) 10.6138 0.543761
\(382\) − 5.79983i − 0.296745i
\(383\) − 2.27917i − 0.116460i −0.998303 0.0582301i \(-0.981454\pi\)
0.998303 0.0582301i \(-0.0185457\pi\)
\(384\) −10.9958 −0.561128
\(385\) 0 0
\(386\) −12.3230 −0.627223
\(387\) − 1.11738i − 0.0567995i
\(388\) − 15.5101i − 0.787405i
\(389\) 14.5865 0.739563 0.369782 0.929119i \(-0.379432\pi\)
0.369782 + 0.929119i \(0.379432\pi\)
\(390\) 0 0
\(391\) −7.12745 −0.360451
\(392\) − 14.8643i − 0.750761i
\(393\) 14.5080i 0.731833i
\(394\) 1.15765 0.0583217
\(395\) 0 0
\(396\) 1.79879 0.0903926
\(397\) − 33.0931i − 1.66089i −0.557098 0.830447i \(-0.688085\pi\)
0.557098 0.830447i \(-0.311915\pi\)
\(398\) − 9.19903i − 0.461106i
\(399\) −8.33014 −0.417029
\(400\) 0 0
\(401\) 10.6123 0.529953 0.264977 0.964255i \(-0.414636\pi\)
0.264977 + 0.964255i \(0.414636\pi\)
\(402\) − 10.5632i − 0.526843i
\(403\) − 5.71167i − 0.284519i
\(404\) −11.1634 −0.555400
\(405\) 0 0
\(406\) 13.4031 0.665185
\(407\) 3.20772i 0.159001i
\(408\) − 3.27036i − 0.161907i
\(409\) 28.1971 1.39426 0.697128 0.716947i \(-0.254461\pi\)
0.697128 + 0.716947i \(0.254461\pi\)
\(410\) 0 0
\(411\) 5.31941 0.262387
\(412\) − 2.64918i − 0.130516i
\(413\) 1.97643i 0.0972540i
\(414\) 3.45060 0.169588
\(415\) 0 0
\(416\) −32.9164 −1.61386
\(417\) 8.27443i 0.405201i
\(418\) 1.76619i 0.0863871i
\(419\) −30.2128 −1.47599 −0.737996 0.674805i \(-0.764228\pi\)
−0.737996 + 0.674805i \(0.764228\pi\)
\(420\) 0 0
\(421\) −18.4246 −0.897959 −0.448980 0.893542i \(-0.648212\pi\)
−0.448980 + 0.893542i \(0.648212\pi\)
\(422\) − 5.83160i − 0.283878i
\(423\) − 8.92527i − 0.433962i
\(424\) −8.12414 −0.394543
\(425\) 0 0
\(426\) −7.15801 −0.346807
\(427\) − 38.2006i − 1.84866i
\(428\) 28.2266i 1.36438i
\(429\) 6.60891 0.319081
\(430\) 0 0
\(431\) −13.6428 −0.657152 −0.328576 0.944478i \(-0.606569\pi\)
−0.328576 + 0.944478i \(0.606569\pi\)
\(432\) − 1.52589i − 0.0734145i
\(433\) − 33.6141i − 1.61539i −0.589599 0.807696i \(-0.700714\pi\)
0.589599 0.807696i \(-0.299286\pi\)
\(434\) −2.43080 −0.116682
\(435\) 0 0
\(436\) −10.1143 −0.484389
\(437\) − 11.8249i − 0.565662i
\(438\) 5.56641i 0.265973i
\(439\) 21.9603 1.04811 0.524054 0.851685i \(-0.324419\pi\)
0.524054 + 0.851685i \(0.324419\pi\)
\(440\) 0 0
\(441\) 6.26574 0.298369
\(442\) − 5.25497i − 0.249953i
\(443\) − 5.44404i − 0.258654i −0.991602 0.129327i \(-0.958718\pi\)
0.991602 0.129327i \(-0.0412817\pi\)
\(444\) 4.30967 0.204528
\(445\) 0 0
\(446\) 6.96824 0.329956
\(447\) − 15.9731i − 0.755502i
\(448\) 2.89345i 0.136703i
\(449\) −36.8483 −1.73898 −0.869489 0.493952i \(-0.835552\pi\)
−0.869489 + 0.493952i \(0.835552\pi\)
\(450\) 0 0
\(451\) 0.141815 0.00667781
\(452\) 5.22406i 0.245719i
\(453\) 7.39770i 0.347574i
\(454\) −16.7616 −0.786659
\(455\) 0 0
\(456\) 5.42574 0.254084
\(457\) 5.03603i 0.235575i 0.993039 + 0.117788i \(0.0375802\pi\)
−0.993039 + 0.117788i \(0.962420\pi\)
\(458\) 2.39277i 0.111807i
\(459\) 1.37855 0.0643453
\(460\) 0 0
\(461\) −22.5649 −1.05095 −0.525476 0.850808i \(-0.676113\pi\)
−0.525476 + 0.850808i \(0.676113\pi\)
\(462\) − 2.81265i − 0.130856i
\(463\) 7.92517i 0.368314i 0.982897 + 0.184157i \(0.0589555\pi\)
−0.982897 + 0.184157i \(0.941045\pi\)
\(464\) 8.41357 0.390590
\(465\) 0 0
\(466\) 12.2126 0.565739
\(467\) 10.7488i 0.497397i 0.968581 + 0.248698i \(0.0800028\pi\)
−0.968581 + 0.248698i \(0.919997\pi\)
\(468\) − 8.87926i − 0.410444i
\(469\) 57.6470 2.66189
\(470\) 0 0
\(471\) 15.7243 0.724536
\(472\) − 1.28733i − 0.0592540i
\(473\) − 1.29291i − 0.0594479i
\(474\) 3.89572 0.178936
\(475\) 0 0
\(476\) 7.80554 0.357766
\(477\) − 3.42456i − 0.156800i
\(478\) 6.44525i 0.294799i
\(479\) 31.1215 1.42198 0.710989 0.703203i \(-0.248248\pi\)
0.710989 + 0.703203i \(0.248248\pi\)
\(480\) 0 0
\(481\) 15.8341 0.721973
\(482\) − 3.54809i − 0.161611i
\(483\) 18.8312i 0.856847i
\(484\) −15.0190 −0.682684
\(485\) 0 0
\(486\) −0.667396 −0.0302737
\(487\) − 22.1648i − 1.00438i −0.864756 0.502192i \(-0.832527\pi\)
0.864756 0.502192i \(-0.167473\pi\)
\(488\) 24.8815i 1.12633i
\(489\) 9.68816 0.438114
\(490\) 0 0
\(491\) 38.3744 1.73181 0.865905 0.500208i \(-0.166743\pi\)
0.865905 + 0.500208i \(0.166743\pi\)
\(492\) − 0.190533i − 0.00858988i
\(493\) 7.60116i 0.342339i
\(494\) 8.71834 0.392256
\(495\) 0 0
\(496\) −1.52589 −0.0685146
\(497\) − 39.0638i − 1.75225i
\(498\) − 11.0077i − 0.493266i
\(499\) 3.14013 0.140572 0.0702858 0.997527i \(-0.477609\pi\)
0.0702858 + 0.997527i \(0.477609\pi\)
\(500\) 0 0
\(501\) 19.1075 0.853660
\(502\) − 6.14572i − 0.274297i
\(503\) 26.4210i 1.17805i 0.808114 + 0.589027i \(0.200489\pi\)
−0.808114 + 0.589027i \(0.799511\pi\)
\(504\) −8.64048 −0.384878
\(505\) 0 0
\(506\) 3.99265 0.177495
\(507\) − 19.6232i − 0.871496i
\(508\) − 16.5000i − 0.732070i
\(509\) 27.5147 1.21957 0.609785 0.792567i \(-0.291256\pi\)
0.609785 + 0.792567i \(0.291256\pi\)
\(510\) 0 0
\(511\) −30.3779 −1.34384
\(512\) 16.0335i 0.708588i
\(513\) 2.28711i 0.100978i
\(514\) 4.70197 0.207395
\(515\) 0 0
\(516\) −1.73706 −0.0764697
\(517\) − 10.3273i − 0.454196i
\(518\) − 6.73875i − 0.296084i
\(519\) 21.1286 0.927443
\(520\) 0 0
\(521\) 30.2824 1.32670 0.663349 0.748310i \(-0.269135\pi\)
0.663349 + 0.748310i \(0.269135\pi\)
\(522\) − 3.67993i − 0.161066i
\(523\) − 42.8200i − 1.87239i −0.351486 0.936193i \(-0.614324\pi\)
0.351486 0.936193i \(-0.385676\pi\)
\(524\) 22.5539 0.985273
\(525\) 0 0
\(526\) 2.90353 0.126600
\(527\) − 1.37855i − 0.0600507i
\(528\) − 1.76559i − 0.0768376i
\(529\) −3.73144 −0.162236
\(530\) 0 0
\(531\) 0.542646 0.0235488
\(532\) 12.9499i 0.561449i
\(533\) − 0.700034i − 0.0303218i
\(534\) −5.52229 −0.238973
\(535\) 0 0
\(536\) −37.5477 −1.62181
\(537\) − 13.0689i − 0.563965i
\(538\) 13.4621i 0.580391i
\(539\) 7.25001 0.312280
\(540\) 0 0
\(541\) −10.9585 −0.471142 −0.235571 0.971857i \(-0.575696\pi\)
−0.235571 + 0.971857i \(0.575696\pi\)
\(542\) 8.69636i 0.373541i
\(543\) 9.98243i 0.428387i
\(544\) −7.94460 −0.340622
\(545\) 0 0
\(546\) −13.8839 −0.594177
\(547\) − 11.8536i − 0.506822i −0.967359 0.253411i \(-0.918448\pi\)
0.967359 0.253411i \(-0.0815524\pi\)
\(548\) − 8.26947i − 0.353254i
\(549\) −10.4883 −0.447629
\(550\) 0 0
\(551\) −12.6108 −0.537239
\(552\) − 12.2654i − 0.522052i
\(553\) 21.2603i 0.904080i
\(554\) −3.96081 −0.168279
\(555\) 0 0
\(556\) 12.8633 0.545525
\(557\) 31.2361i 1.32351i 0.749718 + 0.661757i \(0.230189\pi\)
−0.749718 + 0.661757i \(0.769811\pi\)
\(558\) 0.667396i 0.0282531i
\(559\) −6.38210 −0.269934
\(560\) 0 0
\(561\) 1.59511 0.0673455
\(562\) − 1.71075i − 0.0721638i
\(563\) − 16.1583i − 0.680990i −0.940246 0.340495i \(-0.889405\pi\)
0.940246 0.340495i \(-0.110595\pi\)
\(564\) −13.8751 −0.584246
\(565\) 0 0
\(566\) −15.0195 −0.631315
\(567\) − 3.64222i − 0.152959i
\(568\) 25.4437i 1.06760i
\(569\) 8.39847 0.352082 0.176041 0.984383i \(-0.443671\pi\)
0.176041 + 0.984383i \(0.443671\pi\)
\(570\) 0 0
\(571\) −5.39179 −0.225640 −0.112820 0.993615i \(-0.535988\pi\)
−0.112820 + 0.993615i \(0.535988\pi\)
\(572\) − 10.2741i − 0.429582i
\(573\) − 8.69024i − 0.363040i
\(574\) −0.297924 −0.0124351
\(575\) 0 0
\(576\) 0.794421 0.0331009
\(577\) 14.7206i 0.612828i 0.951898 + 0.306414i \(0.0991292\pi\)
−0.951898 + 0.306414i \(0.900871\pi\)
\(578\) 10.0774i 0.419165i
\(579\) −18.4643 −0.767349
\(580\) 0 0
\(581\) 60.0728 2.49224
\(582\) 6.65862i 0.276008i
\(583\) − 3.96252i − 0.164111i
\(584\) 19.7863 0.818761
\(585\) 0 0
\(586\) 6.58567 0.272052
\(587\) 41.7243i 1.72215i 0.508481 + 0.861073i \(0.330207\pi\)
−0.508481 + 0.861073i \(0.669793\pi\)
\(588\) − 9.74061i − 0.401696i
\(589\) 2.28711 0.0942387
\(590\) 0 0
\(591\) 1.73458 0.0713511
\(592\) − 4.23013i − 0.173857i
\(593\) − 40.4139i − 1.65960i −0.558059 0.829801i \(-0.688454\pi\)
0.558059 0.829801i \(-0.311546\pi\)
\(594\) −0.772236 −0.0316852
\(595\) 0 0
\(596\) −24.8315 −1.01714
\(597\) − 13.7835i − 0.564120i
\(598\) − 19.7087i − 0.805949i
\(599\) −38.8888 −1.58895 −0.794477 0.607294i \(-0.792255\pi\)
−0.794477 + 0.607294i \(0.792255\pi\)
\(600\) 0 0
\(601\) 13.9675 0.569747 0.284873 0.958565i \(-0.408048\pi\)
0.284873 + 0.958565i \(0.408048\pi\)
\(602\) 2.71612i 0.110701i
\(603\) − 15.8274i − 0.644543i
\(604\) 11.5003 0.467942
\(605\) 0 0
\(606\) 4.79255 0.194684
\(607\) 40.8060i 1.65626i 0.560534 + 0.828132i \(0.310596\pi\)
−0.560534 + 0.828132i \(0.689404\pi\)
\(608\) − 13.1806i − 0.534544i
\(609\) 20.0827 0.813792
\(610\) 0 0
\(611\) −50.9782 −2.06236
\(612\) − 2.14307i − 0.0866286i
\(613\) − 26.4962i − 1.07017i −0.844798 0.535086i \(-0.820279\pi\)
0.844798 0.535086i \(-0.179721\pi\)
\(614\) 9.00233 0.363304
\(615\) 0 0
\(616\) −9.99780 −0.402823
\(617\) − 28.7271i − 1.15651i −0.815856 0.578255i \(-0.803734\pi\)
0.815856 0.578255i \(-0.196266\pi\)
\(618\) 1.13732i 0.0457496i
\(619\) 44.0519 1.77060 0.885299 0.465023i \(-0.153954\pi\)
0.885299 + 0.465023i \(0.153954\pi\)
\(620\) 0 0
\(621\) 5.17025 0.207475
\(622\) 5.56495i 0.223134i
\(623\) − 30.1371i − 1.20742i
\(624\) −8.71539 −0.348895
\(625\) 0 0
\(626\) −4.69506 −0.187652
\(627\) 2.64639i 0.105687i
\(628\) − 24.4447i − 0.975449i
\(629\) 3.82167 0.152380
\(630\) 0 0
\(631\) −0.777435 −0.0309492 −0.0154746 0.999880i \(-0.504926\pi\)
−0.0154746 + 0.999880i \(0.504926\pi\)
\(632\) − 13.8476i − 0.550830i
\(633\) − 8.73784i − 0.347298i
\(634\) 19.3318 0.767764
\(635\) 0 0
\(636\) −5.32377 −0.211101
\(637\) − 35.7878i − 1.41797i
\(638\) − 4.25801i − 0.168576i
\(639\) −10.7253 −0.424286
\(640\) 0 0
\(641\) 12.6585 0.499981 0.249991 0.968248i \(-0.419572\pi\)
0.249991 + 0.968248i \(0.419572\pi\)
\(642\) − 12.1179i − 0.478256i
\(643\) − 46.7414i − 1.84330i −0.388021 0.921651i \(-0.626841\pi\)
0.388021 0.921651i \(-0.373159\pi\)
\(644\) 29.2746 1.15358
\(645\) 0 0
\(646\) 2.10423 0.0827899
\(647\) 19.0171i 0.747639i 0.927501 + 0.373820i \(0.121952\pi\)
−0.927501 + 0.373820i \(0.878048\pi\)
\(648\) 2.37231i 0.0931933i
\(649\) 0.627890 0.0246468
\(650\) 0 0
\(651\) −3.64222 −0.142750
\(652\) − 15.0611i − 0.589836i
\(653\) 23.6344i 0.924885i 0.886649 + 0.462442i \(0.153027\pi\)
−0.886649 + 0.462442i \(0.846973\pi\)
\(654\) 4.34217 0.169792
\(655\) 0 0
\(656\) −0.187016 −0.00730176
\(657\) 8.34049i 0.325394i
\(658\) 21.6956i 0.845781i
\(659\) −0.736021 −0.0286713 −0.0143356 0.999897i \(-0.504563\pi\)
−0.0143356 + 0.999897i \(0.504563\pi\)
\(660\) 0 0
\(661\) 23.1277 0.899561 0.449781 0.893139i \(-0.351502\pi\)
0.449781 + 0.893139i \(0.351502\pi\)
\(662\) 3.31845i 0.128975i
\(663\) − 7.87384i − 0.305794i
\(664\) −39.1277 −1.51845
\(665\) 0 0
\(666\) −1.85018 −0.0716930
\(667\) 28.5081i 1.10384i
\(668\) − 29.7042i − 1.14929i
\(669\) 10.4409 0.403670
\(670\) 0 0
\(671\) −12.1359 −0.468500
\(672\) 20.9901i 0.809711i
\(673\) − 32.9126i − 1.26869i −0.773051 0.634344i \(-0.781270\pi\)
0.773051 0.634344i \(-0.218730\pi\)
\(674\) 2.64932 0.102048
\(675\) 0 0
\(676\) −30.5059 −1.17330
\(677\) − 4.83090i − 0.185667i −0.995682 0.0928333i \(-0.970408\pi\)
0.995682 0.0928333i \(-0.0295924\pi\)
\(678\) − 2.24273i − 0.0861317i
\(679\) −36.3384 −1.39454
\(680\) 0 0
\(681\) −25.1149 −0.962403
\(682\) 0.772236i 0.0295705i
\(683\) − 36.8203i − 1.40889i −0.709759 0.704444i \(-0.751196\pi\)
0.709759 0.704444i \(-0.248804\pi\)
\(684\) 3.55550 0.135948
\(685\) 0 0
\(686\) 1.78484 0.0681456
\(687\) 3.58524i 0.136785i
\(688\) 1.70500i 0.0650025i
\(689\) −19.5600 −0.745176
\(690\) 0 0
\(691\) 25.2787 0.961646 0.480823 0.876818i \(-0.340338\pi\)
0.480823 + 0.876818i \(0.340338\pi\)
\(692\) − 32.8462i − 1.24862i
\(693\) − 4.21437i − 0.160091i
\(694\) −21.8913 −0.830983
\(695\) 0 0
\(696\) −13.0806 −0.495820
\(697\) − 0.168958i − 0.00639975i
\(698\) − 24.2018i − 0.916051i
\(699\) 18.2989 0.692128
\(700\) 0 0
\(701\) 50.8414 1.92025 0.960127 0.279565i \(-0.0901901\pi\)
0.960127 + 0.279565i \(0.0901901\pi\)
\(702\) 3.81195i 0.143873i
\(703\) 6.34041i 0.239133i
\(704\) 0.919215 0.0346442
\(705\) 0 0
\(706\) 20.6667 0.777800
\(707\) 26.1546i 0.983646i
\(708\) − 0.843588i − 0.0317040i
\(709\) 37.1976 1.39698 0.698492 0.715618i \(-0.253855\pi\)
0.698492 + 0.715618i \(0.253855\pi\)
\(710\) 0 0
\(711\) 5.83719 0.218912
\(712\) 19.6294i 0.735644i
\(713\) − 5.17025i − 0.193627i
\(714\) −3.35099 −0.125407
\(715\) 0 0
\(716\) −20.3167 −0.759270
\(717\) 9.65731i 0.360659i
\(718\) 7.79364i 0.290856i
\(719\) −35.3863 −1.31969 −0.659843 0.751403i \(-0.729377\pi\)
−0.659843 + 0.751403i \(0.729377\pi\)
\(720\) 0 0
\(721\) −6.20674 −0.231151
\(722\) − 9.18946i − 0.341996i
\(723\) − 5.31631i − 0.197716i
\(724\) 15.5185 0.576741
\(725\) 0 0
\(726\) 6.44781 0.239301
\(727\) 40.7826i 1.51254i 0.654257 + 0.756272i \(0.272981\pi\)
−0.654257 + 0.756272i \(0.727019\pi\)
\(728\) 49.3516i 1.82909i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −1.54036 −0.0569724
\(732\) 16.3049i 0.602647i
\(733\) 26.8011i 0.989922i 0.868915 + 0.494961i \(0.164818\pi\)
−0.868915 + 0.494961i \(0.835182\pi\)
\(734\) 1.68519 0.0622015
\(735\) 0 0
\(736\) −29.7961 −1.09830
\(737\) − 18.3138i − 0.674596i
\(738\) 0.0817974i 0.00301100i
\(739\) 8.28484 0.304763 0.152381 0.988322i \(-0.451306\pi\)
0.152381 + 0.988322i \(0.451306\pi\)
\(740\) 0 0
\(741\) 13.0632 0.479889
\(742\) 8.32443i 0.305599i
\(743\) − 24.8614i − 0.912077i −0.889960 0.456039i \(-0.849268\pi\)
0.889960 0.456039i \(-0.150732\pi\)
\(744\) 2.37231 0.0869733
\(745\) 0 0
\(746\) −10.0751 −0.368874
\(747\) − 16.4935i − 0.603464i
\(748\) − 2.47973i − 0.0906677i
\(749\) 66.1317 2.41640
\(750\) 0 0
\(751\) 17.0776 0.623172 0.311586 0.950218i \(-0.399140\pi\)
0.311586 + 0.950218i \(0.399140\pi\)
\(752\) 13.6190i 0.496634i
\(753\) − 9.20850i − 0.335576i
\(754\) −21.0186 −0.765451
\(755\) 0 0
\(756\) −5.66213 −0.205930
\(757\) 22.6984i 0.824988i 0.910960 + 0.412494i \(0.135342\pi\)
−0.910960 + 0.412494i \(0.864658\pi\)
\(758\) 12.7895i 0.464536i
\(759\) 5.98243 0.217149
\(760\) 0 0
\(761\) 4.34342 0.157449 0.0787244 0.996896i \(-0.474915\pi\)
0.0787244 + 0.996896i \(0.474915\pi\)
\(762\) 7.08361i 0.256612i
\(763\) 23.6968i 0.857881i
\(764\) −13.5097 −0.488764
\(765\) 0 0
\(766\) 1.52111 0.0549599
\(767\) − 3.09942i − 0.111913i
\(768\) − 8.92740i − 0.322140i
\(769\) −2.57132 −0.0927242 −0.0463621 0.998925i \(-0.514763\pi\)
−0.0463621 + 0.998925i \(0.514763\pi\)
\(770\) 0 0
\(771\) 7.04525 0.253728
\(772\) 28.7042i 1.03309i
\(773\) 12.4442i 0.447588i 0.974636 + 0.223794i \(0.0718443\pi\)
−0.974636 + 0.223794i \(0.928156\pi\)
\(774\) 0.745734 0.0268049
\(775\) 0 0
\(776\) 23.6686 0.849653
\(777\) − 10.0971i − 0.362231i
\(778\) 9.73495i 0.349015i
\(779\) 0.280313 0.0100432
\(780\) 0 0
\(781\) −12.4101 −0.444068
\(782\) − 4.75683i − 0.170104i
\(783\) − 5.51387i − 0.197050i
\(784\) −9.56084 −0.341459
\(785\) 0 0
\(786\) −9.68260 −0.345367
\(787\) − 37.3565i − 1.33161i −0.746124 0.665807i \(-0.768087\pi\)
0.746124 0.665807i \(-0.231913\pi\)
\(788\) − 2.69655i − 0.0960606i
\(789\) 4.35053 0.154883
\(790\) 0 0
\(791\) 12.2394 0.435183
\(792\) 2.74498i 0.0975385i
\(793\) 59.9056i 2.12731i
\(794\) 22.0862 0.783809
\(795\) 0 0
\(796\) −21.4275 −0.759479
\(797\) 42.1378i 1.49260i 0.665611 + 0.746299i \(0.268171\pi\)
−0.665611 + 0.746299i \(0.731829\pi\)
\(798\) − 5.55951i − 0.196804i
\(799\) −12.3040 −0.435283
\(800\) 0 0
\(801\) −8.27438 −0.292361
\(802\) 7.08261i 0.250096i
\(803\) 9.65069i 0.340565i
\(804\) −24.6051 −0.867754
\(805\) 0 0
\(806\) 3.81195 0.134270
\(807\) 20.1710i 0.710054i
\(808\) − 17.0355i − 0.599307i
\(809\) −2.15676 −0.0758277 −0.0379138 0.999281i \(-0.512071\pi\)
−0.0379138 + 0.999281i \(0.512071\pi\)
\(810\) 0 0
\(811\) 12.8658 0.451780 0.225890 0.974153i \(-0.427471\pi\)
0.225890 + 0.974153i \(0.427471\pi\)
\(812\) − 31.2202i − 1.09561i
\(813\) 13.0303i 0.456992i
\(814\) −2.14082 −0.0750358
\(815\) 0 0
\(816\) −2.10352 −0.0736380
\(817\) − 2.55557i − 0.0894079i
\(818\) 18.8186i 0.657977i
\(819\) −20.8031 −0.726921
\(820\) 0 0
\(821\) 13.9740 0.487696 0.243848 0.969813i \(-0.421590\pi\)
0.243848 + 0.969813i \(0.421590\pi\)
\(822\) 3.55015i 0.123826i
\(823\) 45.9522i 1.60179i 0.598802 + 0.800897i \(0.295643\pi\)
−0.598802 + 0.800897i \(0.704357\pi\)
\(824\) 4.04269 0.140834
\(825\) 0 0
\(826\) −1.31906 −0.0458961
\(827\) − 6.37379i − 0.221638i −0.993841 0.110819i \(-0.964653\pi\)
0.993841 0.110819i \(-0.0353474\pi\)
\(828\) − 8.03757i − 0.279325i
\(829\) 21.0176 0.729970 0.364985 0.931013i \(-0.381074\pi\)
0.364985 + 0.931013i \(0.381074\pi\)
\(830\) 0 0
\(831\) −5.93472 −0.205873
\(832\) − 4.53747i − 0.157308i
\(833\) − 8.63765i − 0.299277i
\(834\) −5.52232 −0.191222
\(835\) 0 0
\(836\) 4.11403 0.142287
\(837\) 1.00000i 0.0345651i
\(838\) − 20.1639i − 0.696551i
\(839\) −20.6247 −0.712045 −0.356022 0.934477i \(-0.615867\pi\)
−0.356022 + 0.934477i \(0.615867\pi\)
\(840\) 0 0
\(841\) 1.40275 0.0483708
\(842\) − 12.2965i − 0.423765i
\(843\) − 2.56333i − 0.0882857i
\(844\) −13.5837 −0.467570
\(845\) 0 0
\(846\) 5.95669 0.204795
\(847\) 35.1880i 1.20907i
\(848\) 5.22551i 0.179445i
\(849\) −22.5046 −0.772355
\(850\) 0 0
\(851\) 14.3331 0.491334
\(852\) 16.6733i 0.571219i
\(853\) 6.65175i 0.227752i 0.993495 + 0.113876i \(0.0363266\pi\)
−0.993495 + 0.113876i \(0.963673\pi\)
\(854\) 25.4949 0.872418
\(855\) 0 0
\(856\) −43.0741 −1.47224
\(857\) 26.3351i 0.899590i 0.893132 + 0.449795i \(0.148503\pi\)
−0.893132 + 0.449795i \(0.851497\pi\)
\(858\) 4.41076i 0.150581i
\(859\) −26.8919 −0.917541 −0.458770 0.888555i \(-0.651710\pi\)
−0.458770 + 0.888555i \(0.651710\pi\)
\(860\) 0 0
\(861\) −0.446397 −0.0152132
\(862\) − 9.10517i − 0.310123i
\(863\) − 5.04588i − 0.171764i −0.996305 0.0858818i \(-0.972629\pi\)
0.996305 0.0858818i \(-0.0273707\pi\)
\(864\) 5.76300 0.196061
\(865\) 0 0
\(866\) 22.4339 0.762336
\(867\) 15.0996i 0.512809i
\(868\) 5.66213i 0.192185i
\(869\) 6.75414 0.229119
\(870\) 0 0
\(871\) −90.4012 −3.06313
\(872\) − 15.4346i − 0.522682i
\(873\) 9.97701i 0.337671i
\(874\) 7.89190 0.266947
\(875\) 0 0
\(876\) 12.9660 0.438080
\(877\) − 1.50014i − 0.0506560i −0.999679 0.0253280i \(-0.991937\pi\)
0.999679 0.0253280i \(-0.00806301\pi\)
\(878\) 14.6562i 0.494623i
\(879\) 9.86771 0.332830
\(880\) 0 0
\(881\) −52.2328 −1.75977 −0.879884 0.475188i \(-0.842380\pi\)
−0.879884 + 0.475188i \(0.842380\pi\)
\(882\) 4.18173i 0.140806i
\(883\) 39.4859i 1.32881i 0.747375 + 0.664403i \(0.231314\pi\)
−0.747375 + 0.664403i \(0.768686\pi\)
\(884\) −12.2405 −0.411694
\(885\) 0 0
\(886\) 3.63333 0.122064
\(887\) − 48.5387i − 1.62977i −0.579623 0.814885i \(-0.696800\pi\)
0.579623 0.814885i \(-0.303200\pi\)
\(888\) 6.57662i 0.220697i
\(889\) −38.6578 −1.29654
\(890\) 0 0
\(891\) −1.15709 −0.0387639
\(892\) − 16.2313i − 0.543464i
\(893\) − 20.4131i − 0.683097i
\(894\) 10.6604 0.356537
\(895\) 0 0
\(896\) 40.0491 1.33795
\(897\) − 29.5307i − 0.986003i
\(898\) − 24.5924i − 0.820659i
\(899\) −5.51387 −0.183898
\(900\) 0 0
\(901\) −4.72094 −0.157277
\(902\) 0.0946468i 0.00315139i
\(903\) 4.06973i 0.135432i
\(904\) −7.97198 −0.265144
\(905\) 0 0
\(906\) −4.93719 −0.164027
\(907\) 47.3682i 1.57284i 0.617694 + 0.786418i \(0.288067\pi\)
−0.617694 + 0.786418i \(0.711933\pi\)
\(908\) 39.0431i 1.29569i
\(909\) 7.18097 0.238178
\(910\) 0 0
\(911\) −28.7118 −0.951264 −0.475632 0.879644i \(-0.657781\pi\)
−0.475632 + 0.879644i \(0.657781\pi\)
\(912\) − 3.48988i − 0.115562i
\(913\) − 19.0844i − 0.631602i
\(914\) −3.36102 −0.111173
\(915\) 0 0
\(916\) 5.57355 0.184155
\(917\) − 52.8414i − 1.74498i
\(918\) 0.920040i 0.0303659i
\(919\) 3.19601 0.105427 0.0527133 0.998610i \(-0.483213\pi\)
0.0527133 + 0.998610i \(0.483213\pi\)
\(920\) 0 0
\(921\) 13.4887 0.444469
\(922\) − 15.0597i − 0.495966i
\(923\) 61.2593i 2.01637i
\(924\) −6.55158 −0.215531
\(925\) 0 0
\(926\) −5.28923 −0.173815
\(927\) 1.70411i 0.0559703i
\(928\) 31.7764i 1.04311i
\(929\) −2.28411 −0.0749392 −0.0374696 0.999298i \(-0.511930\pi\)
−0.0374696 + 0.999298i \(0.511930\pi\)
\(930\) 0 0
\(931\) 14.3304 0.469661
\(932\) − 28.4472i − 0.931818i
\(933\) 8.33830i 0.272984i
\(934\) −7.17373 −0.234732
\(935\) 0 0
\(936\) 13.5499 0.442892
\(937\) 9.90513i 0.323587i 0.986825 + 0.161793i \(0.0517278\pi\)
−0.986825 + 0.161793i \(0.948272\pi\)
\(938\) 38.4734i 1.25620i
\(939\) −7.03489 −0.229575
\(940\) 0 0
\(941\) −8.74045 −0.284930 −0.142465 0.989800i \(-0.545503\pi\)
−0.142465 + 0.989800i \(0.545503\pi\)
\(942\) 10.4943i 0.341923i
\(943\) − 0.633676i − 0.0206353i
\(944\) −0.828019 −0.0269497
\(945\) 0 0
\(946\) 0.862880 0.0280547
\(947\) − 55.8934i − 1.81629i −0.418654 0.908146i \(-0.637498\pi\)
0.418654 0.908146i \(-0.362502\pi\)
\(948\) − 9.07439i − 0.294723i
\(949\) 47.6381 1.54640
\(950\) 0 0
\(951\) 28.9660 0.939287
\(952\) 11.9114i 0.386049i
\(953\) − 36.3033i − 1.17598i −0.808869 0.587989i \(-0.799920\pi\)
0.808869 0.587989i \(-0.200080\pi\)
\(954\) 2.28554 0.0739971
\(955\) 0 0
\(956\) 15.0131 0.485558
\(957\) − 6.38004i − 0.206237i
\(958\) 20.7704i 0.671060i
\(959\) −19.3744 −0.625634
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 10.5676i 0.340714i
\(963\) − 18.1570i − 0.585101i
\(964\) −8.26465 −0.266186
\(965\) 0 0
\(966\) −12.5678 −0.404363
\(967\) 25.7135i 0.826890i 0.910529 + 0.413445i \(0.135675\pi\)
−0.910529 + 0.413445i \(0.864325\pi\)
\(968\) − 22.9193i − 0.736653i
\(969\) 3.15290 0.101286
\(970\) 0 0
\(971\) 33.1226 1.06296 0.531478 0.847072i \(-0.321637\pi\)
0.531478 + 0.847072i \(0.321637\pi\)
\(972\) 1.55458i 0.0498633i
\(973\) − 30.1373i − 0.966156i
\(974\) 14.7927 0.473989
\(975\) 0 0
\(976\) 16.0040 0.512275
\(977\) 22.6735i 0.725388i 0.931908 + 0.362694i \(0.118143\pi\)
−0.931908 + 0.362694i \(0.881857\pi\)
\(978\) 6.46584i 0.206755i
\(979\) −9.57419 −0.305992
\(980\) 0 0
\(981\) 6.50614 0.207725
\(982\) 25.6109i 0.817276i
\(983\) 9.35725i 0.298450i 0.988803 + 0.149225i \(0.0476778\pi\)
−0.988803 + 0.149225i \(0.952322\pi\)
\(984\) 0.290756 0.00926895
\(985\) 0 0
\(986\) −5.07298 −0.161557
\(987\) 32.5078i 1.03473i
\(988\) − 20.3078i − 0.646079i
\(989\) −5.77712 −0.183702
\(990\) 0 0
\(991\) 12.9858 0.412506 0.206253 0.978499i \(-0.433873\pi\)
0.206253 + 0.978499i \(0.433873\pi\)
\(992\) − 5.76300i − 0.182976i
\(993\) 4.97223i 0.157789i
\(994\) 26.0710 0.826922
\(995\) 0 0
\(996\) −25.6405 −0.812449
\(997\) − 3.74266i − 0.118531i −0.998242 0.0592656i \(-0.981124\pi\)
0.998242 0.0592656i \(-0.0188759\pi\)
\(998\) 2.09571i 0.0663385i
\(999\) −2.77224 −0.0877097
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.c.r.1024.7 12
5.2 odd 4 2325.2.a.bb.1.3 yes 6
5.3 odd 4 2325.2.a.y.1.4 6
5.4 even 2 inner 2325.2.c.r.1024.6 12
15.2 even 4 6975.2.a.ca.1.4 6
15.8 even 4 6975.2.a.cc.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2325.2.a.y.1.4 6 5.3 odd 4
2325.2.a.bb.1.3 yes 6 5.2 odd 4
2325.2.c.r.1024.6 12 5.4 even 2 inner
2325.2.c.r.1024.7 12 1.1 even 1 trivial
6975.2.a.ca.1.4 6 15.2 even 4
6975.2.a.cc.1.3 6 15.8 even 4