Properties

Label 2325.2.c.k.1024.1
Level $2325$
Weight $2$
Character 2325.1024
Analytic conductor $18.565$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2325,2,Mod(1024,2325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2325.1024");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5089536.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 465)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1024.1
Root \(1.66044 + 1.66044i\) of defining polynomial
Character \(\chi\) \(=\) 2325.1024
Dual form 2325.2.c.k.1024.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51414i q^{2} -1.00000i q^{3} -4.32088 q^{4} -2.51414 q^{6} -0.485863i q^{7} +5.83502i q^{8} -1.00000 q^{9} +5.02827 q^{11} +4.32088i q^{12} +3.51414i q^{13} -1.22153 q^{14} +6.02827 q^{16} +1.32088i q^{17} +2.51414i q^{18} +6.64177 q^{19} -0.485863 q^{21} -12.6418i q^{22} +0.292611i q^{23} +5.83502 q^{24} +8.83502 q^{26} +1.00000i q^{27} +2.09936i q^{28} +9.86330 q^{29} +1.00000 q^{31} -3.48586i q^{32} -5.02827i q^{33} +3.32088 q^{34} +4.32088 q^{36} -5.51414i q^{37} -16.6983i q^{38} +3.51414 q^{39} -7.02827 q^{41} +1.22153i q^{42} -1.02827i q^{43} -21.7266 q^{44} +0.735663 q^{46} +6.93438i q^{47} -6.02827i q^{48} +6.76394 q^{49} +1.32088 q^{51} -15.1842i q^{52} -1.70739i q^{53} +2.51414 q^{54} +2.83502 q^{56} -6.64177i q^{57} -24.7977i q^{58} +2.19325 q^{59} -2.00000 q^{61} -2.51414i q^{62} +0.485863i q^{63} +3.29261 q^{64} -12.6418 q^{66} -9.12763i q^{67} -5.70739i q^{68} +0.292611 q^{69} +13.4768 q^{71} -5.83502i q^{72} +12.5424i q^{73} -13.8633 q^{74} -28.6983 q^{76} -2.44305i q^{77} -8.83502i q^{78} +0.349158 q^{79} +1.00000 q^{81} +17.6700i q^{82} +10.9344i q^{83} +2.09936 q^{84} -2.58522 q^{86} -9.86330i q^{87} +29.3401i q^{88} -5.03374 q^{89} +1.70739 q^{91} -1.26434i q^{92} -1.00000i q^{93} +17.4340 q^{94} -3.48586 q^{96} -10.4431i q^{97} -17.0055i q^{98} -5.02827 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 10 q^{4} - 2 q^{6} - 6 q^{9} + 4 q^{11} + 16 q^{14} + 10 q^{16} + 8 q^{19} - 16 q^{21} + 6 q^{24} + 24 q^{26} + 4 q^{29} + 6 q^{31} + 4 q^{34} + 10 q^{36} + 8 q^{39} - 16 q^{41} - 20 q^{44} - 32 q^{46}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2325\mathbb{Z}\right)^\times\).

\(n\) \(652\) \(776\) \(1801\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.51414i − 1.77776i −0.458137 0.888882i \(-0.651483\pi\)
0.458137 0.888882i \(-0.348517\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) −4.32088 −2.16044
\(5\) 0 0
\(6\) −2.51414 −1.02639
\(7\) − 0.485863i − 0.183639i −0.995776 0.0918195i \(-0.970732\pi\)
0.995776 0.0918195i \(-0.0292683\pi\)
\(8\) 5.83502i 2.06299i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 5.02827 1.51608 0.758041 0.652207i \(-0.226157\pi\)
0.758041 + 0.652207i \(0.226157\pi\)
\(12\) 4.32088i 1.24733i
\(13\) 3.51414i 0.974646i 0.873222 + 0.487323i \(0.162027\pi\)
−0.873222 + 0.487323i \(0.837973\pi\)
\(14\) −1.22153 −0.326467
\(15\) 0 0
\(16\) 6.02827 1.50707
\(17\) 1.32088i 0.320362i 0.987088 + 0.160181i \(0.0512077\pi\)
−0.987088 + 0.160181i \(0.948792\pi\)
\(18\) 2.51414i 0.592588i
\(19\) 6.64177 1.52373 0.761863 0.647738i \(-0.224285\pi\)
0.761863 + 0.647738i \(0.224285\pi\)
\(20\) 0 0
\(21\) −0.485863 −0.106024
\(22\) − 12.6418i − 2.69523i
\(23\) 0.292611i 0.0610135i 0.999535 + 0.0305068i \(0.00971211\pi\)
−0.999535 + 0.0305068i \(0.990288\pi\)
\(24\) 5.83502 1.19107
\(25\) 0 0
\(26\) 8.83502 1.73269
\(27\) 1.00000i 0.192450i
\(28\) 2.09936i 0.396741i
\(29\) 9.86330 1.83157 0.915784 0.401671i \(-0.131571\pi\)
0.915784 + 0.401671i \(0.131571\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) − 3.48586i − 0.616219i
\(33\) − 5.02827i − 0.875310i
\(34\) 3.32088 0.569527
\(35\) 0 0
\(36\) 4.32088 0.720147
\(37\) − 5.51414i − 0.906519i −0.891379 0.453259i \(-0.850261\pi\)
0.891379 0.453259i \(-0.149739\pi\)
\(38\) − 16.6983i − 2.70882i
\(39\) 3.51414 0.562712
\(40\) 0 0
\(41\) −7.02827 −1.09763 −0.548816 0.835943i \(-0.684921\pi\)
−0.548816 + 0.835943i \(0.684921\pi\)
\(42\) 1.22153i 0.188486i
\(43\) − 1.02827i − 0.156810i −0.996922 0.0784051i \(-0.975017\pi\)
0.996922 0.0784051i \(-0.0249828\pi\)
\(44\) −21.7266 −3.27541
\(45\) 0 0
\(46\) 0.735663 0.108468
\(47\) 6.93438i 1.01148i 0.862685 + 0.505742i \(0.168781\pi\)
−0.862685 + 0.505742i \(0.831219\pi\)
\(48\) − 6.02827i − 0.870106i
\(49\) 6.76394 0.966277
\(50\) 0 0
\(51\) 1.32088 0.184961
\(52\) − 15.1842i − 2.10567i
\(53\) − 1.70739i − 0.234528i −0.993101 0.117264i \(-0.962588\pi\)
0.993101 0.117264i \(-0.0374124\pi\)
\(54\) 2.51414 0.342131
\(55\) 0 0
\(56\) 2.83502 0.378846
\(57\) − 6.64177i − 0.879724i
\(58\) − 24.7977i − 3.25609i
\(59\) 2.19325 0.285537 0.142769 0.989756i \(-0.454400\pi\)
0.142769 + 0.989756i \(0.454400\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) − 2.51414i − 0.319296i
\(63\) 0.485863i 0.0612130i
\(64\) 3.29261 0.411576
\(65\) 0 0
\(66\) −12.6418 −1.55609
\(67\) − 9.12763i − 1.11512i −0.830137 0.557559i \(-0.811738\pi\)
0.830137 0.557559i \(-0.188262\pi\)
\(68\) − 5.70739i − 0.692123i
\(69\) 0.292611 0.0352262
\(70\) 0 0
\(71\) 13.4768 1.59940 0.799700 0.600399i \(-0.204992\pi\)
0.799700 + 0.600399i \(0.204992\pi\)
\(72\) − 5.83502i − 0.687664i
\(73\) 12.5424i 1.46798i 0.679161 + 0.733989i \(0.262344\pi\)
−0.679161 + 0.733989i \(0.737656\pi\)
\(74\) −13.8633 −1.61158
\(75\) 0 0
\(76\) −28.6983 −3.29192
\(77\) − 2.44305i − 0.278412i
\(78\) − 8.83502i − 1.00037i
\(79\) 0.349158 0.0392834 0.0196417 0.999807i \(-0.493747\pi\)
0.0196417 + 0.999807i \(0.493747\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 17.6700i 1.95133i
\(83\) 10.9344i 1.20020i 0.799923 + 0.600102i \(0.204873\pi\)
−0.799923 + 0.600102i \(0.795127\pi\)
\(84\) 2.09936 0.229059
\(85\) 0 0
\(86\) −2.58522 −0.278772
\(87\) − 9.86330i − 1.05746i
\(88\) 29.3401i 3.12766i
\(89\) −5.03374 −0.533575 −0.266788 0.963755i \(-0.585962\pi\)
−0.266788 + 0.963755i \(0.585962\pi\)
\(90\) 0 0
\(91\) 1.70739 0.178983
\(92\) − 1.26434i − 0.131816i
\(93\) − 1.00000i − 0.103695i
\(94\) 17.4340 1.79818
\(95\) 0 0
\(96\) −3.48586 −0.355774
\(97\) − 10.4431i − 1.06033i −0.847894 0.530166i \(-0.822130\pi\)
0.847894 0.530166i \(-0.177870\pi\)
\(98\) − 17.0055i − 1.71781i
\(99\) −5.02827 −0.505361
\(100\) 0 0
\(101\) −11.6135 −1.15559 −0.577793 0.816183i \(-0.696086\pi\)
−0.577793 + 0.816183i \(0.696086\pi\)
\(102\) − 3.32088i − 0.328817i
\(103\) − 3.76940i − 0.371410i −0.982606 0.185705i \(-0.940543\pi\)
0.982606 0.185705i \(-0.0594569\pi\)
\(104\) −20.5051 −2.01069
\(105\) 0 0
\(106\) −4.29261 −0.416935
\(107\) 6.73566i 0.651161i 0.945514 + 0.325581i \(0.105560\pi\)
−0.945514 + 0.325581i \(0.894440\pi\)
\(108\) − 4.32088i − 0.415777i
\(109\) 3.90611 0.374137 0.187069 0.982347i \(-0.440101\pi\)
0.187069 + 0.982347i \(0.440101\pi\)
\(110\) 0 0
\(111\) −5.51414 −0.523379
\(112\) − 2.92892i − 0.276757i
\(113\) − 15.0848i − 1.41906i −0.704675 0.709530i \(-0.748907\pi\)
0.704675 0.709530i \(-0.251093\pi\)
\(114\) −16.6983 −1.56394
\(115\) 0 0
\(116\) −42.6182 −3.95700
\(117\) − 3.51414i − 0.324882i
\(118\) − 5.51414i − 0.507617i
\(119\) 0.641769 0.0588309
\(120\) 0 0
\(121\) 14.2835 1.29850
\(122\) 5.02827i 0.455239i
\(123\) 7.02827i 0.633718i
\(124\) −4.32088 −0.388027
\(125\) 0 0
\(126\) 1.22153 0.108822
\(127\) 6.25526i 0.555065i 0.960716 + 0.277532i \(0.0895166\pi\)
−0.960716 + 0.277532i \(0.910483\pi\)
\(128\) − 15.2498i − 1.34790i
\(129\) −1.02827 −0.0905345
\(130\) 0 0
\(131\) −22.1186 −1.93251 −0.966254 0.257592i \(-0.917071\pi\)
−0.966254 + 0.257592i \(0.917071\pi\)
\(132\) 21.7266i 1.89106i
\(133\) − 3.22699i − 0.279816i
\(134\) −22.9481 −1.98242
\(135\) 0 0
\(136\) −7.70739 −0.660903
\(137\) 14.6044i 1.24774i 0.781528 + 0.623870i \(0.214441\pi\)
−0.781528 + 0.623870i \(0.785559\pi\)
\(138\) − 0.735663i − 0.0626238i
\(139\) −12.8970 −1.09391 −0.546956 0.837161i \(-0.684214\pi\)
−0.546956 + 0.837161i \(0.684214\pi\)
\(140\) 0 0
\(141\) 6.93438 0.583980
\(142\) − 33.8825i − 2.84336i
\(143\) 17.6700i 1.47764i
\(144\) −6.02827 −0.502356
\(145\) 0 0
\(146\) 31.5333 2.60972
\(147\) − 6.76394i − 0.557880i
\(148\) 23.8259i 1.95848i
\(149\) −16.3118 −1.33632 −0.668158 0.744020i \(-0.732917\pi\)
−0.668158 + 0.744020i \(0.732917\pi\)
\(150\) 0 0
\(151\) 19.3774 1.57691 0.788457 0.615090i \(-0.210881\pi\)
0.788457 + 0.615090i \(0.210881\pi\)
\(152\) 38.7549i 3.14343i
\(153\) − 1.32088i − 0.106787i
\(154\) −6.14217 −0.494950
\(155\) 0 0
\(156\) −15.1842 −1.21571
\(157\) 3.80128i 0.303375i 0.988428 + 0.151688i \(0.0484708\pi\)
−0.988428 + 0.151688i \(0.951529\pi\)
\(158\) − 0.877832i − 0.0698366i
\(159\) −1.70739 −0.135405
\(160\) 0 0
\(161\) 0.142169 0.0112045
\(162\) − 2.51414i − 0.197529i
\(163\) 12.5424i 0.982397i 0.871048 + 0.491199i \(0.163441\pi\)
−0.871048 + 0.491199i \(0.836559\pi\)
\(164\) 30.3684 2.37137
\(165\) 0 0
\(166\) 27.4905 2.13368
\(167\) − 22.2553i − 1.72216i −0.508466 0.861082i \(-0.669787\pi\)
0.508466 0.861082i \(-0.330213\pi\)
\(168\) − 2.83502i − 0.218727i
\(169\) 0.650842 0.0500647
\(170\) 0 0
\(171\) −6.64177 −0.507909
\(172\) 4.44305i 0.338780i
\(173\) − 10.9717i − 0.834165i −0.908869 0.417082i \(-0.863053\pi\)
0.908869 0.417082i \(-0.136947\pi\)
\(174\) −24.7977 −1.87991
\(175\) 0 0
\(176\) 30.3118 2.28484
\(177\) − 2.19325i − 0.164855i
\(178\) 12.6555i 0.948570i
\(179\) 15.9253 1.19031 0.595157 0.803610i \(-0.297090\pi\)
0.595157 + 0.803610i \(0.297090\pi\)
\(180\) 0 0
\(181\) −8.05655 −0.598838 −0.299419 0.954122i \(-0.596793\pi\)
−0.299419 + 0.954122i \(0.596793\pi\)
\(182\) − 4.29261i − 0.318189i
\(183\) 2.00000i 0.147844i
\(184\) −1.70739 −0.125870
\(185\) 0 0
\(186\) −2.51414 −0.184345
\(187\) 6.64177i 0.485694i
\(188\) − 29.9627i − 2.18525i
\(189\) 0.485863 0.0353413
\(190\) 0 0
\(191\) 6.19325 0.448128 0.224064 0.974574i \(-0.428068\pi\)
0.224064 + 0.974574i \(0.428068\pi\)
\(192\) − 3.29261i − 0.237624i
\(193\) − 2.25526i − 0.162337i −0.996700 0.0811687i \(-0.974135\pi\)
0.996700 0.0811687i \(-0.0258653\pi\)
\(194\) −26.2553 −1.88502
\(195\) 0 0
\(196\) −29.2262 −2.08759
\(197\) − 9.32088i − 0.664086i −0.943264 0.332043i \(-0.892262\pi\)
0.943264 0.332043i \(-0.107738\pi\)
\(198\) 12.6418i 0.898411i
\(199\) −16.5479 −1.17305 −0.586524 0.809932i \(-0.699504\pi\)
−0.586524 + 0.809932i \(0.699504\pi\)
\(200\) 0 0
\(201\) −9.12763 −0.643814
\(202\) 29.1979i 2.05436i
\(203\) − 4.79221i − 0.336347i
\(204\) −5.70739 −0.399597
\(205\) 0 0
\(206\) −9.47679 −0.660279
\(207\) − 0.292611i − 0.0203378i
\(208\) 21.1842i 1.46886i
\(209\) 33.3966 2.31009
\(210\) 0 0
\(211\) 25.0101 1.72177 0.860884 0.508801i \(-0.169911\pi\)
0.860884 + 0.508801i \(0.169911\pi\)
\(212\) 7.37743i 0.506684i
\(213\) − 13.4768i − 0.923414i
\(214\) 16.9344 1.15761
\(215\) 0 0
\(216\) −5.83502 −0.397023
\(217\) − 0.485863i − 0.0329825i
\(218\) − 9.82048i − 0.665127i
\(219\) 12.5424 0.847538
\(220\) 0 0
\(221\) −4.64177 −0.312239
\(222\) 13.8633i 0.930443i
\(223\) 19.2835i 1.29132i 0.763625 + 0.645661i \(0.223418\pi\)
−0.763625 + 0.645661i \(0.776582\pi\)
\(224\) −1.69365 −0.113162
\(225\) 0 0
\(226\) −37.9253 −2.52275
\(227\) − 23.4340i − 1.55537i −0.628655 0.777684i \(-0.716394\pi\)
0.628655 0.777684i \(-0.283606\pi\)
\(228\) 28.6983i 1.90059i
\(229\) 25.0283 1.65391 0.826957 0.562265i \(-0.190070\pi\)
0.826957 + 0.562265i \(0.190070\pi\)
\(230\) 0 0
\(231\) −2.44305 −0.160741
\(232\) 57.5525i 3.77851i
\(233\) 18.7175i 1.22623i 0.789995 + 0.613113i \(0.210083\pi\)
−0.789995 + 0.613113i \(0.789917\pi\)
\(234\) −8.83502 −0.577563
\(235\) 0 0
\(236\) −9.47679 −0.616887
\(237\) − 0.349158i − 0.0226803i
\(238\) − 1.61350i − 0.104587i
\(239\) 3.86876 0.250249 0.125125 0.992141i \(-0.460067\pi\)
0.125125 + 0.992141i \(0.460067\pi\)
\(240\) 0 0
\(241\) −1.61350 −0.103934 −0.0519672 0.998649i \(-0.516549\pi\)
−0.0519672 + 0.998649i \(0.516549\pi\)
\(242\) − 35.9108i − 2.30843i
\(243\) − 1.00000i − 0.0641500i
\(244\) 8.64177 0.553233
\(245\) 0 0
\(246\) 17.6700 1.12660
\(247\) 23.3401i 1.48509i
\(248\) 5.83502i 0.370524i
\(249\) 10.9344 0.692938
\(250\) 0 0
\(251\) −25.4713 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(252\) − 2.09936i − 0.132247i
\(253\) 1.47133i 0.0925015i
\(254\) 15.7266 0.986774
\(255\) 0 0
\(256\) −31.7549 −1.98468
\(257\) − 18.0192i − 1.12401i −0.827135 0.562003i \(-0.810031\pi\)
0.827135 0.562003i \(-0.189969\pi\)
\(258\) 2.58522i 0.160949i
\(259\) −2.67912 −0.166472
\(260\) 0 0
\(261\) −9.86330 −0.610523
\(262\) 55.6091i 3.43554i
\(263\) 1.15951i 0.0714987i 0.999361 + 0.0357494i \(0.0113818\pi\)
−0.999361 + 0.0357494i \(0.988618\pi\)
\(264\) 29.3401 1.80576
\(265\) 0 0
\(266\) −8.11310 −0.497446
\(267\) 5.03374i 0.308060i
\(268\) 39.4394i 2.40915i
\(269\) 7.80675 0.475986 0.237993 0.971267i \(-0.423511\pi\)
0.237993 + 0.971267i \(0.423511\pi\)
\(270\) 0 0
\(271\) 17.7831 1.08025 0.540124 0.841585i \(-0.318377\pi\)
0.540124 + 0.841585i \(0.318377\pi\)
\(272\) 7.96265i 0.482807i
\(273\) − 1.70739i − 0.103336i
\(274\) 36.7175 2.21819
\(275\) 0 0
\(276\) −1.26434 −0.0761041
\(277\) − 25.9390i − 1.55853i −0.626697 0.779263i \(-0.715594\pi\)
0.626697 0.779263i \(-0.284406\pi\)
\(278\) 32.4249i 1.94472i
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) −13.0283 −0.777202 −0.388601 0.921406i \(-0.627041\pi\)
−0.388601 + 0.921406i \(0.627041\pi\)
\(282\) − 17.4340i − 1.03818i
\(283\) 15.9006i 0.945195i 0.881278 + 0.472598i \(0.156684\pi\)
−0.881278 + 0.472598i \(0.843316\pi\)
\(284\) −58.2317 −3.45541
\(285\) 0 0
\(286\) 44.4249 2.62690
\(287\) 3.41478i 0.201568i
\(288\) 3.48586i 0.205406i
\(289\) 15.2553 0.897368
\(290\) 0 0
\(291\) −10.4431 −0.612183
\(292\) − 54.1943i − 3.17148i
\(293\) − 29.4340i − 1.71955i −0.510672 0.859776i \(-0.670603\pi\)
0.510672 0.859776i \(-0.329397\pi\)
\(294\) −17.0055 −0.991779
\(295\) 0 0
\(296\) 32.1751 1.87014
\(297\) 5.02827i 0.291770i
\(298\) 41.0101i 2.37565i
\(299\) −1.02827 −0.0594666
\(300\) 0 0
\(301\) −0.499600 −0.0287965
\(302\) − 48.7175i − 2.80338i
\(303\) 11.6135i 0.667178i
\(304\) 40.0384 2.29636
\(305\) 0 0
\(306\) −3.32088 −0.189842
\(307\) − 9.96812i − 0.568911i −0.958689 0.284455i \(-0.908187\pi\)
0.958689 0.284455i \(-0.0918127\pi\)
\(308\) 10.5561i 0.601492i
\(309\) −3.76940 −0.214434
\(310\) 0 0
\(311\) 15.9945 0.906967 0.453483 0.891265i \(-0.350181\pi\)
0.453483 + 0.891265i \(0.350181\pi\)
\(312\) 20.5051i 1.16087i
\(313\) − 22.8542i − 1.29180i −0.763423 0.645899i \(-0.776483\pi\)
0.763423 0.645899i \(-0.223517\pi\)
\(314\) 9.55695 0.539330
\(315\) 0 0
\(316\) −1.50867 −0.0848695
\(317\) − 14.6044i − 0.820266i −0.912026 0.410133i \(-0.865482\pi\)
0.912026 0.410133i \(-0.134518\pi\)
\(318\) 4.29261i 0.240718i
\(319\) 49.5953 2.77681
\(320\) 0 0
\(321\) 6.73566 0.375948
\(322\) − 0.357432i − 0.0199189i
\(323\) 8.77301i 0.488143i
\(324\) −4.32088 −0.240049
\(325\) 0 0
\(326\) 31.5333 1.74647
\(327\) − 3.90611i − 0.216008i
\(328\) − 41.0101i − 2.26441i
\(329\) 3.36916 0.185748
\(330\) 0 0
\(331\) −8.16137 −0.448589 −0.224295 0.974521i \(-0.572008\pi\)
−0.224295 + 0.974521i \(0.572008\pi\)
\(332\) − 47.2462i − 2.59297i
\(333\) 5.51414i 0.302173i
\(334\) −55.9528 −3.06160
\(335\) 0 0
\(336\) −2.92892 −0.159785
\(337\) 11.8825i 0.647281i 0.946180 + 0.323640i \(0.104907\pi\)
−0.946180 + 0.323640i \(0.895093\pi\)
\(338\) − 1.63631i − 0.0890033i
\(339\) −15.0848 −0.819295
\(340\) 0 0
\(341\) 5.02827 0.272296
\(342\) 16.6983i 0.902942i
\(343\) − 6.68739i − 0.361085i
\(344\) 6.00000 0.323498
\(345\) 0 0
\(346\) −27.5844 −1.48295
\(347\) 18.3684i 0.986065i 0.870011 + 0.493033i \(0.164112\pi\)
−0.870011 + 0.493033i \(0.835888\pi\)
\(348\) 42.6182i 2.28457i
\(349\) −11.2462 −0.601995 −0.300997 0.953625i \(-0.597320\pi\)
−0.300997 + 0.953625i \(0.597320\pi\)
\(350\) 0 0
\(351\) −3.51414 −0.187571
\(352\) − 17.5279i − 0.934239i
\(353\) 25.3593i 1.34974i 0.737937 + 0.674869i \(0.235800\pi\)
−0.737937 + 0.674869i \(0.764200\pi\)
\(354\) −5.51414 −0.293073
\(355\) 0 0
\(356\) 21.7502 1.15276
\(357\) − 0.641769i − 0.0339660i
\(358\) − 40.0384i − 2.11610i
\(359\) −15.2890 −0.806923 −0.403461 0.914997i \(-0.632193\pi\)
−0.403461 + 0.914997i \(0.632193\pi\)
\(360\) 0 0
\(361\) 25.1131 1.32174
\(362\) 20.2553i 1.06459i
\(363\) − 14.2835i − 0.749691i
\(364\) −7.37743 −0.386683
\(365\) 0 0
\(366\) 5.02827 0.262832
\(367\) − 6.05655i − 0.316149i −0.987427 0.158075i \(-0.949471\pi\)
0.987427 0.158075i \(-0.0505287\pi\)
\(368\) 1.76394i 0.0919516i
\(369\) 7.02827 0.365877
\(370\) 0 0
\(371\) −0.829557 −0.0430685
\(372\) 4.32088i 0.224027i
\(373\) 8.06748i 0.417718i 0.977946 + 0.208859i \(0.0669750\pi\)
−0.977946 + 0.208859i \(0.933025\pi\)
\(374\) 16.6983 0.863449
\(375\) 0 0
\(376\) −40.4623 −2.08668
\(377\) 34.6610i 1.78513i
\(378\) − 1.22153i − 0.0628285i
\(379\) 36.8114 1.89088 0.945438 0.325803i \(-0.105635\pi\)
0.945438 + 0.325803i \(0.105635\pi\)
\(380\) 0 0
\(381\) 6.25526 0.320467
\(382\) − 15.5707i − 0.796666i
\(383\) − 3.63270i − 0.185622i −0.995684 0.0928111i \(-0.970415\pi\)
0.995684 0.0928111i \(-0.0295853\pi\)
\(384\) −15.2498 −0.778213
\(385\) 0 0
\(386\) −5.67004 −0.288598
\(387\) 1.02827i 0.0522701i
\(388\) 45.1232i 2.29078i
\(389\) −15.2781 −0.774629 −0.387315 0.921948i \(-0.626597\pi\)
−0.387315 + 0.921948i \(0.626597\pi\)
\(390\) 0 0
\(391\) −0.386505 −0.0195464
\(392\) 39.4677i 1.99342i
\(393\) 22.1186i 1.11573i
\(394\) −23.4340 −1.18059
\(395\) 0 0
\(396\) 21.7266 1.09180
\(397\) 18.5852i 0.932766i 0.884583 + 0.466383i \(0.154443\pi\)
−0.884583 + 0.466383i \(0.845557\pi\)
\(398\) 41.6036i 2.08540i
\(399\) −3.22699 −0.161552
\(400\) 0 0
\(401\) 6.19325 0.309276 0.154638 0.987971i \(-0.450579\pi\)
0.154638 + 0.987971i \(0.450579\pi\)
\(402\) 22.9481i 1.14455i
\(403\) 3.51414i 0.175052i
\(404\) 50.1806 2.49658
\(405\) 0 0
\(406\) −12.0483 −0.597946
\(407\) − 27.7266i − 1.37436i
\(408\) 7.70739i 0.381573i
\(409\) 32.0565 1.58509 0.792547 0.609811i \(-0.208755\pi\)
0.792547 + 0.609811i \(0.208755\pi\)
\(410\) 0 0
\(411\) 14.6044 0.720383
\(412\) 16.2871i 0.802410i
\(413\) − 1.06562i − 0.0524357i
\(414\) −0.735663 −0.0361559
\(415\) 0 0
\(416\) 12.2498 0.600596
\(417\) 12.8970i 0.631570i
\(418\) − 83.9637i − 4.10680i
\(419\) −9.78860 −0.478205 −0.239102 0.970994i \(-0.576853\pi\)
−0.239102 + 0.970994i \(0.576853\pi\)
\(420\) 0 0
\(421\) −14.2745 −0.695695 −0.347847 0.937551i \(-0.613087\pi\)
−0.347847 + 0.937551i \(0.613087\pi\)
\(422\) − 62.8789i − 3.06090i
\(423\) − 6.93438i − 0.337161i
\(424\) 9.96265 0.483829
\(425\) 0 0
\(426\) −33.8825 −1.64161
\(427\) 0.971726i 0.0470251i
\(428\) − 29.1040i − 1.40680i
\(429\) 17.6700 0.853118
\(430\) 0 0
\(431\) −22.8350 −1.09992 −0.549962 0.835190i \(-0.685358\pi\)
−0.549962 + 0.835190i \(0.685358\pi\)
\(432\) 6.02827i 0.290035i
\(433\) 13.8259i 0.664433i 0.943203 + 0.332216i \(0.107796\pi\)
−0.943203 + 0.332216i \(0.892204\pi\)
\(434\) −1.22153 −0.0586351
\(435\) 0 0
\(436\) −16.8778 −0.808302
\(437\) 1.94345i 0.0929679i
\(438\) − 31.5333i − 1.50672i
\(439\) −39.8506 −1.90197 −0.950983 0.309243i \(-0.899924\pi\)
−0.950983 + 0.309243i \(0.899924\pi\)
\(440\) 0 0
\(441\) −6.76394 −0.322092
\(442\) 11.6700i 0.555087i
\(443\) − 10.1504i − 0.482262i −0.970493 0.241131i \(-0.922482\pi\)
0.970493 0.241131i \(-0.0775184\pi\)
\(444\) 23.8259 1.13073
\(445\) 0 0
\(446\) 48.4815 2.29566
\(447\) 16.3118i 0.771522i
\(448\) − 1.59976i − 0.0755815i
\(449\) 3.75020 0.176983 0.0884914 0.996077i \(-0.471795\pi\)
0.0884914 + 0.996077i \(0.471795\pi\)
\(450\) 0 0
\(451\) −35.3401 −1.66410
\(452\) 65.1798i 3.06580i
\(453\) − 19.3774i − 0.910431i
\(454\) −58.9162 −2.76508
\(455\) 0 0
\(456\) 38.7549 1.81486
\(457\) 1.70193i 0.0796127i 0.999207 + 0.0398064i \(0.0126741\pi\)
−0.999207 + 0.0398064i \(0.987326\pi\)
\(458\) − 62.9245i − 2.94027i
\(459\) −1.32088 −0.0616536
\(460\) 0 0
\(461\) 7.40931 0.345086 0.172543 0.985002i \(-0.444802\pi\)
0.172543 + 0.985002i \(0.444802\pi\)
\(462\) 6.14217i 0.285760i
\(463\) − 30.3865i − 1.41218i −0.708122 0.706090i \(-0.750457\pi\)
0.708122 0.706090i \(-0.249543\pi\)
\(464\) 59.4586 2.76030
\(465\) 0 0
\(466\) 47.0584 2.17994
\(467\) − 17.1040i − 0.791480i −0.918363 0.395740i \(-0.870488\pi\)
0.918363 0.395740i \(-0.129512\pi\)
\(468\) 15.1842i 0.701889i
\(469\) −4.43478 −0.204779
\(470\) 0 0
\(471\) 3.80128 0.175154
\(472\) 12.7977i 0.589061i
\(473\) − 5.17044i − 0.237737i
\(474\) −0.877832 −0.0403202
\(475\) 0 0
\(476\) −2.77301 −0.127101
\(477\) 1.70739i 0.0781760i
\(478\) − 9.72659i − 0.444884i
\(479\) −21.2890 −0.972719 −0.486360 0.873759i \(-0.661676\pi\)
−0.486360 + 0.873759i \(0.661676\pi\)
\(480\) 0 0
\(481\) 19.3774 0.883535
\(482\) 4.05655i 0.184771i
\(483\) − 0.142169i − 0.00646890i
\(484\) −61.7175 −2.80534
\(485\) 0 0
\(486\) −2.51414 −0.114044
\(487\) − 20.4996i − 0.928926i −0.885593 0.464463i \(-0.846247\pi\)
0.885593 0.464463i \(-0.153753\pi\)
\(488\) − 11.6700i − 0.528278i
\(489\) 12.5424 0.567187
\(490\) 0 0
\(491\) −31.0667 −1.40202 −0.701010 0.713152i \(-0.747267\pi\)
−0.701010 + 0.713152i \(0.747267\pi\)
\(492\) − 30.3684i − 1.36911i
\(493\) 13.0283i 0.586764i
\(494\) 58.6802 2.64015
\(495\) 0 0
\(496\) 6.02827 0.270677
\(497\) − 6.54787i − 0.293712i
\(498\) − 27.4905i − 1.23188i
\(499\) −15.3401 −0.686717 −0.343358 0.939205i \(-0.611565\pi\)
−0.343358 + 0.939205i \(0.611565\pi\)
\(500\) 0 0
\(501\) −22.2553 −0.994292
\(502\) 64.0384i 2.85817i
\(503\) − 14.9344i − 0.665891i −0.942946 0.332946i \(-0.891957\pi\)
0.942946 0.332946i \(-0.108043\pi\)
\(504\) −2.83502 −0.126282
\(505\) 0 0
\(506\) 3.69912 0.164446
\(507\) − 0.650842i − 0.0289049i
\(508\) − 27.0283i − 1.19919i
\(509\) 1.22153 0.0541432 0.0270716 0.999633i \(-0.491382\pi\)
0.0270716 + 0.999633i \(0.491382\pi\)
\(510\) 0 0
\(511\) 6.09389 0.269578
\(512\) 49.3365i 2.18038i
\(513\) 6.64177i 0.293241i
\(514\) −45.3027 −1.99822
\(515\) 0 0
\(516\) 4.44305 0.195594
\(517\) 34.8680i 1.53349i
\(518\) 6.73566i 0.295948i
\(519\) −10.9717 −0.481605
\(520\) 0 0
\(521\) 4.57429 0.200403 0.100202 0.994967i \(-0.468051\pi\)
0.100202 + 0.994967i \(0.468051\pi\)
\(522\) 24.7977i 1.08536i
\(523\) − 29.7831i − 1.30233i −0.758938 0.651163i \(-0.774281\pi\)
0.758938 0.651163i \(-0.225719\pi\)
\(524\) 95.5717 4.17507
\(525\) 0 0
\(526\) 2.91518 0.127108
\(527\) 1.32088i 0.0575386i
\(528\) − 30.3118i − 1.31915i
\(529\) 22.9144 0.996277
\(530\) 0 0
\(531\) −2.19325 −0.0951790
\(532\) 13.9435i 0.604525i
\(533\) − 24.6983i − 1.06980i
\(534\) 12.6555 0.547657
\(535\) 0 0
\(536\) 53.2599 2.30048
\(537\) − 15.9253i − 0.687228i
\(538\) − 19.6272i − 0.846190i
\(539\) 34.0109 1.46495
\(540\) 0 0
\(541\) −3.04748 −0.131021 −0.0655106 0.997852i \(-0.520868\pi\)
−0.0655106 + 0.997852i \(0.520868\pi\)
\(542\) − 44.7092i − 1.92043i
\(543\) 8.05655i 0.345740i
\(544\) 4.60442 0.197413
\(545\) 0 0
\(546\) −4.29261 −0.183707
\(547\) − 9.82595i − 0.420127i −0.977688 0.210064i \(-0.932633\pi\)
0.977688 0.210064i \(-0.0673671\pi\)
\(548\) − 63.1040i − 2.69567i
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 65.5097 2.79081
\(552\) 1.70739i 0.0726713i
\(553\) − 0.169643i − 0.00721396i
\(554\) −65.2143 −2.77069
\(555\) 0 0
\(556\) 55.7266 2.36333
\(557\) 38.7922i 1.64368i 0.569719 + 0.821839i \(0.307052\pi\)
−0.569719 + 0.821839i \(0.692948\pi\)
\(558\) 2.51414i 0.106432i
\(559\) 3.61350 0.152835
\(560\) 0 0
\(561\) 6.64177 0.280416
\(562\) 32.7549i 1.38168i
\(563\) 2.73566i 0.115294i 0.998337 + 0.0576472i \(0.0183599\pi\)
−0.998337 + 0.0576472i \(0.981640\pi\)
\(564\) −29.9627 −1.26166
\(565\) 0 0
\(566\) 39.9764 1.68033
\(567\) − 0.485863i − 0.0204043i
\(568\) 78.6374i 3.29955i
\(569\) −4.39197 −0.184121 −0.0920605 0.995753i \(-0.529345\pi\)
−0.0920605 + 0.995753i \(0.529345\pi\)
\(570\) 0 0
\(571\) 9.67004 0.404679 0.202339 0.979315i \(-0.435146\pi\)
0.202339 + 0.979315i \(0.435146\pi\)
\(572\) − 76.3502i − 3.19236i
\(573\) − 6.19325i − 0.258727i
\(574\) 8.58522 0.358340
\(575\) 0 0
\(576\) −3.29261 −0.137192
\(577\) − 31.4148i − 1.30781i −0.756575 0.653907i \(-0.773129\pi\)
0.756575 0.653907i \(-0.226871\pi\)
\(578\) − 38.3538i − 1.59531i
\(579\) −2.25526 −0.0937256
\(580\) 0 0
\(581\) 5.31261 0.220404
\(582\) 26.2553i 1.08832i
\(583\) − 8.58522i − 0.355564i
\(584\) −73.1852 −3.02843
\(585\) 0 0
\(586\) −74.0011 −3.05696
\(587\) 27.2161i 1.12333i 0.827366 + 0.561664i \(0.189838\pi\)
−0.827366 + 0.561664i \(0.810162\pi\)
\(588\) 29.2262i 1.20527i
\(589\) 6.64177 0.273669
\(590\) 0 0
\(591\) −9.32088 −0.383410
\(592\) − 33.2407i − 1.36619i
\(593\) 32.5561i 1.33692i 0.743748 + 0.668460i \(0.233046\pi\)
−0.743748 + 0.668460i \(0.766954\pi\)
\(594\) 12.6418 0.518698
\(595\) 0 0
\(596\) 70.4815 2.88703
\(597\) 16.5479i 0.677259i
\(598\) 2.58522i 0.105718i
\(599\) −27.8067 −1.13615 −0.568076 0.822976i \(-0.692312\pi\)
−0.568076 + 0.822976i \(0.692312\pi\)
\(600\) 0 0
\(601\) 17.6519 0.720036 0.360018 0.932945i \(-0.382771\pi\)
0.360018 + 0.932945i \(0.382771\pi\)
\(602\) 1.25606i 0.0511933i
\(603\) 9.12763i 0.371706i
\(604\) −83.7276 −3.40683
\(605\) 0 0
\(606\) 29.1979 1.18608
\(607\) − 44.9673i − 1.82517i −0.408890 0.912584i \(-0.634084\pi\)
0.408890 0.912584i \(-0.365916\pi\)
\(608\) − 23.1523i − 0.938950i
\(609\) −4.79221 −0.194190
\(610\) 0 0
\(611\) −24.3684 −0.985838
\(612\) 5.70739i 0.230708i
\(613\) 33.7694i 1.36393i 0.731383 + 0.681967i \(0.238875\pi\)
−0.731383 + 0.681967i \(0.761125\pi\)
\(614\) −25.0612 −1.01139
\(615\) 0 0
\(616\) 14.2553 0.574361
\(617\) 26.1131i 1.05127i 0.850709 + 0.525637i \(0.176173\pi\)
−0.850709 + 0.525637i \(0.823827\pi\)
\(618\) 9.47679i 0.381212i
\(619\) 20.8597 0.838422 0.419211 0.907889i \(-0.362307\pi\)
0.419211 + 0.907889i \(0.362307\pi\)
\(620\) 0 0
\(621\) −0.292611 −0.0117421
\(622\) − 40.2125i − 1.61237i
\(623\) 2.44571i 0.0979852i
\(624\) 21.1842 0.848046
\(625\) 0 0
\(626\) −57.4586 −2.29651
\(627\) − 33.3966i − 1.33373i
\(628\) − 16.4249i − 0.655425i
\(629\) 7.28354 0.290414
\(630\) 0 0
\(631\) −20.5105 −0.816511 −0.408256 0.912868i \(-0.633863\pi\)
−0.408256 + 0.912868i \(0.633863\pi\)
\(632\) 2.03735i 0.0810413i
\(633\) − 25.0101i − 0.994063i
\(634\) −36.7175 −1.45824
\(635\) 0 0
\(636\) 7.37743 0.292534
\(637\) 23.7694i 0.941778i
\(638\) − 124.690i − 4.93650i
\(639\) −13.4768 −0.533134
\(640\) 0 0
\(641\) 23.9945 0.947727 0.473864 0.880598i \(-0.342859\pi\)
0.473864 + 0.880598i \(0.342859\pi\)
\(642\) − 16.9344i − 0.668347i
\(643\) − 13.6700i − 0.539094i −0.962987 0.269547i \(-0.913126\pi\)
0.962987 0.269547i \(-0.0868739\pi\)
\(644\) −0.614295 −0.0242066
\(645\) 0 0
\(646\) 22.0565 0.867803
\(647\) 11.1523i 0.438442i 0.975675 + 0.219221i \(0.0703516\pi\)
−0.975675 + 0.219221i \(0.929648\pi\)
\(648\) 5.83502i 0.229221i
\(649\) 11.0283 0.432898
\(650\) 0 0
\(651\) −0.485863 −0.0190425
\(652\) − 54.1943i − 2.12241i
\(653\) − 39.1896i − 1.53361i −0.641881 0.766805i \(-0.721846\pi\)
0.641881 0.766805i \(-0.278154\pi\)
\(654\) −9.82048 −0.384011
\(655\) 0 0
\(656\) −42.3684 −1.65421
\(657\) − 12.5424i − 0.489326i
\(658\) − 8.47053i − 0.330216i
\(659\) 31.6464 1.23277 0.616385 0.787445i \(-0.288597\pi\)
0.616385 + 0.787445i \(0.288597\pi\)
\(660\) 0 0
\(661\) −3.59535 −0.139843 −0.0699215 0.997553i \(-0.522275\pi\)
−0.0699215 + 0.997553i \(0.522275\pi\)
\(662\) 20.5188i 0.797486i
\(663\) 4.64177i 0.180271i
\(664\) −63.8023 −2.47601
\(665\) 0 0
\(666\) 13.8633 0.537192
\(667\) 2.88611i 0.111750i
\(668\) 96.1624i 3.72064i
\(669\) 19.2835 0.745545
\(670\) 0 0
\(671\) −10.0565 −0.388229
\(672\) 1.69365i 0.0653340i
\(673\) − 7.24073i − 0.279110i −0.990214 0.139555i \(-0.955433\pi\)
0.990214 0.139555i \(-0.0445671\pi\)
\(674\) 29.8742 1.15071
\(675\) 0 0
\(676\) −2.81221 −0.108162
\(677\) − 38.5188i − 1.48040i −0.672388 0.740199i \(-0.734731\pi\)
0.672388 0.740199i \(-0.265269\pi\)
\(678\) 37.9253i 1.45651i
\(679\) −5.07389 −0.194718
\(680\) 0 0
\(681\) −23.4340 −0.897992
\(682\) − 12.6418i − 0.484078i
\(683\) 40.0192i 1.53129i 0.643262 + 0.765646i \(0.277581\pi\)
−0.643262 + 0.765646i \(0.722419\pi\)
\(684\) 28.6983 1.09731
\(685\) 0 0
\(686\) −16.8130 −0.641924
\(687\) − 25.0283i − 0.954888i
\(688\) − 6.19872i − 0.236324i
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −11.8013 −0.448942 −0.224471 0.974481i \(-0.572065\pi\)
−0.224471 + 0.974481i \(0.572065\pi\)
\(692\) 47.4076i 1.80217i
\(693\) 2.44305i 0.0928039i
\(694\) 46.1806 1.75299
\(695\) 0 0
\(696\) 57.5525 2.18152
\(697\) − 9.28354i − 0.351639i
\(698\) 28.2745i 1.07020i
\(699\) 18.7175 0.707962
\(700\) 0 0
\(701\) 5.17044 0.195285 0.0976425 0.995222i \(-0.468870\pi\)
0.0976425 + 0.995222i \(0.468870\pi\)
\(702\) 8.83502i 0.333456i
\(703\) − 36.6236i − 1.38129i
\(704\) 16.5561 0.623983
\(705\) 0 0
\(706\) 63.7567 2.39952
\(707\) 5.64257i 0.212211i
\(708\) 9.47679i 0.356160i
\(709\) −47.7722 −1.79412 −0.897062 0.441906i \(-0.854303\pi\)
−0.897062 + 0.441906i \(0.854303\pi\)
\(710\) 0 0
\(711\) −0.349158 −0.0130945
\(712\) − 29.3720i − 1.10076i
\(713\) 0.292611i 0.0109584i
\(714\) −1.61350 −0.0603835
\(715\) 0 0
\(716\) −68.8114 −2.57160
\(717\) − 3.86876i − 0.144481i
\(718\) 38.4386i 1.43452i
\(719\) −23.0848 −0.860919 −0.430459 0.902610i \(-0.641648\pi\)
−0.430459 + 0.902610i \(0.641648\pi\)
\(720\) 0 0
\(721\) −1.83141 −0.0682054
\(722\) − 63.1378i − 2.34974i
\(723\) 1.61350i 0.0600065i
\(724\) 34.8114 1.29376
\(725\) 0 0
\(726\) −35.9108 −1.33277
\(727\) 22.2125i 0.823814i 0.911226 + 0.411907i \(0.135137\pi\)
−0.911226 + 0.411907i \(0.864863\pi\)
\(728\) 9.96265i 0.369241i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 1.35823 0.0502360
\(732\) − 8.64177i − 0.319409i
\(733\) − 43.9072i − 1.62175i −0.585221 0.810874i \(-0.698992\pi\)
0.585221 0.810874i \(-0.301008\pi\)
\(734\) −15.2270 −0.562038
\(735\) 0 0
\(736\) 1.02000 0.0375977
\(737\) − 45.8962i − 1.69061i
\(738\) − 17.6700i − 0.650443i
\(739\) −6.86690 −0.252603 −0.126302 0.991992i \(-0.540311\pi\)
−0.126302 + 0.991992i \(0.540311\pi\)
\(740\) 0 0
\(741\) 23.3401 0.857419
\(742\) 2.08562i 0.0765656i
\(743\) 29.2726i 1.07391i 0.843612 + 0.536954i \(0.180425\pi\)
−0.843612 + 0.536954i \(0.819575\pi\)
\(744\) 5.83502 0.213922
\(745\) 0 0
\(746\) 20.2827 0.742604
\(747\) − 10.9344i − 0.400068i
\(748\) − 28.6983i − 1.04931i
\(749\) 3.27261 0.119579
\(750\) 0 0
\(751\) 9.67004 0.352865 0.176432 0.984313i \(-0.443544\pi\)
0.176432 + 0.984313i \(0.443544\pi\)
\(752\) 41.8023i 1.52437i
\(753\) 25.4713i 0.928227i
\(754\) 87.1424 3.17354
\(755\) 0 0
\(756\) −2.09936 −0.0763529
\(757\) 49.4104i 1.79585i 0.440148 + 0.897925i \(0.354926\pi\)
−0.440148 + 0.897925i \(0.645074\pi\)
\(758\) − 92.5489i − 3.36153i
\(759\) 1.47133 0.0534058
\(760\) 0 0
\(761\) 47.2599 1.71317 0.856586 0.516005i \(-0.172581\pi\)
0.856586 + 0.516005i \(0.172581\pi\)
\(762\) − 15.7266i − 0.569714i
\(763\) − 1.89783i − 0.0687062i
\(764\) −26.7603 −0.968155
\(765\) 0 0
\(766\) −9.13310 −0.329992
\(767\) 7.70739i 0.278298i
\(768\) 31.7549i 1.14585i
\(769\) −9.49053 −0.342237 −0.171119 0.985250i \(-0.554738\pi\)
−0.171119 + 0.985250i \(0.554738\pi\)
\(770\) 0 0
\(771\) −18.0192 −0.648946
\(772\) 9.74474i 0.350721i
\(773\) 41.7567i 1.50188i 0.660368 + 0.750942i \(0.270400\pi\)
−0.660368 + 0.750942i \(0.729600\pi\)
\(774\) 2.58522 0.0929239
\(775\) 0 0
\(776\) 60.9354 2.18745
\(777\) 2.67912i 0.0961127i
\(778\) 38.4112i 1.37711i
\(779\) −46.6802 −1.67249
\(780\) 0 0
\(781\) 67.7650 2.42482
\(782\) 0.971726i 0.0347489i
\(783\) 9.86330i 0.352485i
\(784\) 40.7749 1.45625
\(785\) 0 0
\(786\) 55.6091 1.98351
\(787\) 40.0950i 1.42923i 0.699518 + 0.714615i \(0.253398\pi\)
−0.699518 + 0.714615i \(0.746602\pi\)
\(788\) 40.2745i 1.43472i
\(789\) 1.15951 0.0412798
\(790\) 0 0
\(791\) −7.32916 −0.260595
\(792\) − 29.3401i − 1.04255i
\(793\) − 7.02827i − 0.249581i
\(794\) 46.7258 1.65824
\(795\) 0 0
\(796\) 71.5015 2.53430
\(797\) 31.1150i 1.10215i 0.834456 + 0.551074i \(0.185782\pi\)
−0.834456 + 0.551074i \(0.814218\pi\)
\(798\) 8.11310i 0.287200i
\(799\) −9.15951 −0.324040
\(800\) 0 0
\(801\) 5.03374 0.177858
\(802\) − 15.5707i − 0.549820i
\(803\) 63.0667i 2.22557i
\(804\) 39.4394 1.39092
\(805\) 0 0
\(806\) 8.83502 0.311200
\(807\) − 7.80675i − 0.274811i
\(808\) − 67.7650i − 2.38396i
\(809\) −46.6291 −1.63939 −0.819696 0.572799i \(-0.805857\pi\)
−0.819696 + 0.572799i \(0.805857\pi\)
\(810\) 0 0
\(811\) −47.0283 −1.65139 −0.825693 0.564120i \(-0.809216\pi\)
−0.825693 + 0.564120i \(0.809216\pi\)
\(812\) 20.7066i 0.726659i
\(813\) − 17.7831i − 0.623682i
\(814\) −69.7084 −2.44328
\(815\) 0 0
\(816\) 7.96265 0.278749
\(817\) − 6.82956i − 0.238936i
\(818\) − 80.5946i − 2.81792i
\(819\) −1.70739 −0.0596610
\(820\) 0 0
\(821\) 35.3912 1.23516 0.617580 0.786508i \(-0.288113\pi\)
0.617580 + 0.786508i \(0.288113\pi\)
\(822\) − 36.7175i − 1.28067i
\(823\) − 17.2161i − 0.600114i −0.953921 0.300057i \(-0.902994\pi\)
0.953921 0.300057i \(-0.0970057\pi\)
\(824\) 21.9945 0.766216
\(825\) 0 0
\(826\) −2.67912 −0.0932184
\(827\) − 16.3310i − 0.567885i −0.958841 0.283942i \(-0.908358\pi\)
0.958841 0.283942i \(-0.0916425\pi\)
\(828\) 1.26434i 0.0439387i
\(829\) 29.0667 1.00953 0.504764 0.863258i \(-0.331580\pi\)
0.504764 + 0.863258i \(0.331580\pi\)
\(830\) 0 0
\(831\) −25.9390 −0.899815
\(832\) 11.5707i 0.401141i
\(833\) 8.93438i 0.309558i
\(834\) 32.4249 1.12278
\(835\) 0 0
\(836\) −144.303 −4.99082
\(837\) 1.00000i 0.0345651i
\(838\) 24.6099i 0.850134i
\(839\) −27.6646 −0.955087 −0.477544 0.878608i \(-0.658473\pi\)
−0.477544 + 0.878608i \(0.658473\pi\)
\(840\) 0 0
\(841\) 68.2846 2.35464
\(842\) 35.8880i 1.23678i
\(843\) 13.0283i 0.448718i
\(844\) −108.066 −3.71978
\(845\) 0 0
\(846\) −17.4340 −0.599393
\(847\) − 6.93984i − 0.238456i
\(848\) − 10.2926i − 0.353450i
\(849\) 15.9006 0.545709
\(850\) 0 0
\(851\) 1.61350 0.0553099
\(852\) 58.2317i 1.99498i
\(853\) 32.5105i 1.11314i 0.830801 + 0.556570i \(0.187883\pi\)
−0.830801 + 0.556570i \(0.812117\pi\)
\(854\) 2.44305 0.0835995
\(855\) 0 0
\(856\) −39.3027 −1.34334
\(857\) 45.9144i 1.56841i 0.620505 + 0.784203i \(0.286928\pi\)
−0.620505 + 0.784203i \(0.713072\pi\)
\(858\) − 44.4249i − 1.51664i
\(859\) 19.6026 0.668831 0.334415 0.942426i \(-0.391461\pi\)
0.334415 + 0.942426i \(0.391461\pi\)
\(860\) 0 0
\(861\) 3.41478 0.116375
\(862\) 57.4104i 1.95540i
\(863\) 46.1696i 1.57163i 0.618460 + 0.785816i \(0.287757\pi\)
−0.618460 + 0.785816i \(0.712243\pi\)
\(864\) 3.48586 0.118591
\(865\) 0 0
\(866\) 34.7603 1.18120
\(867\) − 15.2553i − 0.518096i
\(868\) 2.09936i 0.0712569i
\(869\) 1.75566 0.0595568
\(870\) 0 0
\(871\) 32.0757 1.08685
\(872\) 22.7922i 0.771842i
\(873\) 10.4431i 0.353444i
\(874\) 4.88611 0.165275
\(875\) 0 0
\(876\) −54.1943 −1.83106
\(877\) − 11.3017i − 0.381631i −0.981626 0.190815i \(-0.938887\pi\)
0.981626 0.190815i \(-0.0611132\pi\)
\(878\) 100.190i 3.38125i
\(879\) −29.4340 −0.992784
\(880\) 0 0
\(881\) −9.60803 −0.323703 −0.161851 0.986815i \(-0.551747\pi\)
−0.161851 + 0.986815i \(0.551747\pi\)
\(882\) 17.0055i 0.572604i
\(883\) − 33.5279i − 1.12830i −0.825671 0.564151i \(-0.809203\pi\)
0.825671 0.564151i \(-0.190797\pi\)
\(884\) 20.0565 0.674575
\(885\) 0 0
\(886\) −25.5196 −0.857348
\(887\) 9.76394i 0.327841i 0.986474 + 0.163920i \(0.0524140\pi\)
−0.986474 + 0.163920i \(0.947586\pi\)
\(888\) − 32.1751i − 1.07973i
\(889\) 3.03920 0.101932
\(890\) 0 0
\(891\) 5.02827 0.168454
\(892\) − 83.3219i − 2.78982i
\(893\) 46.0565i 1.54122i
\(894\) 41.0101 1.37158
\(895\) 0 0
\(896\) −7.40931 −0.247528
\(897\) 1.02827i 0.0343331i
\(898\) − 9.42852i − 0.314634i
\(899\) 9.86330 0.328959
\(900\) 0 0
\(901\) 2.25526 0.0751337
\(902\) 88.8498i 2.95838i
\(903\) 0.499600i 0.0166257i
\(904\) 88.0203 2.92751
\(905\) 0 0
\(906\) −48.7175 −1.61853
\(907\) 9.18418i 0.304956i 0.988307 + 0.152478i \(0.0487253\pi\)
−0.988307 + 0.152478i \(0.951275\pi\)
\(908\) 101.256i 3.36028i
\(909\) 11.6135 0.385195
\(910\) 0 0
\(911\) −12.2553 −0.406035 −0.203018 0.979175i \(-0.565075\pi\)
−0.203018 + 0.979175i \(0.565075\pi\)
\(912\) − 40.0384i − 1.32580i
\(913\) 54.9811i 1.81961i
\(914\) 4.27887 0.141533
\(915\) 0 0
\(916\) −108.144 −3.57319
\(917\) 10.7466i 0.354884i
\(918\) 3.32088i 0.109606i
\(919\) 47.5663 1.56907 0.784533 0.620087i \(-0.212903\pi\)
0.784533 + 0.620087i \(0.212903\pi\)
\(920\) 0 0
\(921\) −9.96812 −0.328461
\(922\) − 18.6280i − 0.613482i
\(923\) 47.3593i 1.55885i
\(924\) 10.5561 0.347272
\(925\) 0 0
\(926\) −76.3958 −2.51052
\(927\) 3.76940i 0.123803i
\(928\) − 34.3821i − 1.12865i
\(929\) −23.5333 −0.772104 −0.386052 0.922477i \(-0.626161\pi\)
−0.386052 + 0.922477i \(0.626161\pi\)
\(930\) 0 0
\(931\) 44.9245 1.47234
\(932\) − 80.8762i − 2.64919i
\(933\) − 15.9945i − 0.523638i
\(934\) −43.0019 −1.40706
\(935\) 0 0
\(936\) 20.5051 0.670229
\(937\) 56.7258i 1.85315i 0.376109 + 0.926575i \(0.377262\pi\)
−0.376109 + 0.926575i \(0.622738\pi\)
\(938\) 11.1496i 0.364049i
\(939\) −22.8542 −0.745819
\(940\) 0 0
\(941\) −33.5333 −1.09316 −0.546578 0.837408i \(-0.684070\pi\)
−0.546578 + 0.837408i \(0.684070\pi\)
\(942\) − 9.55695i − 0.311382i
\(943\) − 2.05655i − 0.0669704i
\(944\) 13.2215 0.430324
\(945\) 0 0
\(946\) −12.9992 −0.422640
\(947\) 52.0685i 1.69200i 0.533183 + 0.846000i \(0.320996\pi\)
−0.533183 + 0.846000i \(0.679004\pi\)
\(948\) 1.50867i 0.0489994i
\(949\) −44.0757 −1.43076
\(950\) 0 0
\(951\) −14.6044 −0.473581
\(952\) 3.74474i 0.121368i
\(953\) − 11.1896i − 0.362468i −0.983440 0.181234i \(-0.941991\pi\)
0.983440 0.181234i \(-0.0580092\pi\)
\(954\) 4.29261 0.138978
\(955\) 0 0
\(956\) −16.7165 −0.540649
\(957\) − 49.5953i − 1.60319i
\(958\) 53.5235i 1.72926i
\(959\) 7.09575 0.229134
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) − 48.7175i − 1.57072i
\(963\) − 6.73566i − 0.217054i
\(964\) 6.97173 0.224544
\(965\) 0 0
\(966\) −0.357432 −0.0115002
\(967\) − 36.8296i − 1.18436i −0.805806 0.592179i \(-0.798268\pi\)
0.805806 0.592179i \(-0.201732\pi\)
\(968\) 83.3448i 2.67880i
\(969\) 8.77301 0.281830
\(970\) 0 0
\(971\) 18.7494 0.601697 0.300848 0.953672i \(-0.402730\pi\)
0.300848 + 0.953672i \(0.402730\pi\)
\(972\) 4.32088i 0.138592i
\(973\) 6.26619i 0.200885i
\(974\) −51.5388 −1.65141
\(975\) 0 0
\(976\) −12.0565 −0.385921
\(977\) 50.2262i 1.60688i 0.595387 + 0.803439i \(0.296999\pi\)
−0.595387 + 0.803439i \(0.703001\pi\)
\(978\) − 31.5333i − 1.00832i
\(979\) −25.3110 −0.808943
\(980\) 0 0
\(981\) −3.90611 −0.124712
\(982\) 78.1059i 2.49246i
\(983\) 15.5279i 0.495262i 0.968854 + 0.247631i \(0.0796521\pi\)
−0.968854 + 0.247631i \(0.920348\pi\)
\(984\) −41.0101 −1.30736
\(985\) 0 0
\(986\) 32.7549 1.04313
\(987\) − 3.36916i − 0.107242i
\(988\) − 100.850i − 3.20846i
\(989\) 0.300884 0.00956755
\(990\) 0 0
\(991\) −20.1022 −0.638566 −0.319283 0.947659i \(-0.603442\pi\)
−0.319283 + 0.947659i \(0.603442\pi\)
\(992\) − 3.48586i − 0.110676i
\(993\) 8.16137i 0.258993i
\(994\) −16.4623 −0.522151
\(995\) 0 0
\(996\) −47.2462 −1.49705
\(997\) 20.8186i 0.659333i 0.944098 + 0.329666i \(0.106936\pi\)
−0.944098 + 0.329666i \(0.893064\pi\)
\(998\) 38.5671i 1.22082i
\(999\) 5.51414 0.174460
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.c.k.1024.1 6
5.2 odd 4 465.2.a.e.1.3 3
5.3 odd 4 2325.2.a.r.1.1 3
5.4 even 2 inner 2325.2.c.k.1024.6 6
15.2 even 4 1395.2.a.j.1.1 3
15.8 even 4 6975.2.a.bf.1.3 3
20.7 even 4 7440.2.a.bs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.e.1.3 3 5.2 odd 4
1395.2.a.j.1.1 3 15.2 even 4
2325.2.a.r.1.1 3 5.3 odd 4
2325.2.c.k.1024.1 6 1.1 even 1 trivial
2325.2.c.k.1024.6 6 5.4 even 2 inner
6975.2.a.bf.1.3 3 15.8 even 4
7440.2.a.bs.1.3 3 20.7 even 4