Properties

Label 2325.2.c.d.1024.1
Level $2325$
Weight $2$
Character 2325.1024
Analytic conductor $18.565$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2325,2,Mod(1024,2325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2325.1024");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1024.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2325.1024
Dual form 2325.2.c.d.1024.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} +1.00000 q^{4} -1.00000 q^{6} +2.00000i q^{7} -3.00000i q^{8} -1.00000 q^{9} -4.00000 q^{11} -1.00000i q^{12} +2.00000 q^{14} -1.00000 q^{16} -2.00000i q^{17} +1.00000i q^{18} +8.00000 q^{19} +2.00000 q^{21} +4.00000i q^{22} -8.00000i q^{23} -3.00000 q^{24} +1.00000i q^{27} +2.00000i q^{28} +1.00000 q^{31} -5.00000i q^{32} +4.00000i q^{33} -2.00000 q^{34} -1.00000 q^{36} -8.00000i q^{37} -8.00000i q^{38} -6.00000 q^{41} -2.00000i q^{42} -4.00000 q^{44} -8.00000 q^{46} -4.00000i q^{47} +1.00000i q^{48} +3.00000 q^{49} -2.00000 q^{51} +6.00000i q^{53} +1.00000 q^{54} +6.00000 q^{56} -8.00000i q^{57} -10.0000 q^{59} -14.0000 q^{61} -1.00000i q^{62} -2.00000i q^{63} -7.00000 q^{64} +4.00000 q^{66} -2.00000i q^{67} -2.00000i q^{68} -8.00000 q^{69} +6.00000 q^{71} +3.00000i q^{72} -16.0000i q^{73} -8.00000 q^{74} +8.00000 q^{76} -8.00000i q^{77} +1.00000 q^{81} +6.00000i q^{82} +4.00000i q^{83} +2.00000 q^{84} +12.0000i q^{88} -4.00000 q^{89} -8.00000i q^{92} -1.00000i q^{93} -4.00000 q^{94} -5.00000 q^{96} -6.00000i q^{97} -3.00000i q^{98} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 2 q^{6} - 2 q^{9} - 8 q^{11} + 4 q^{14} - 2 q^{16} + 16 q^{19} + 4 q^{21} - 6 q^{24} + 2 q^{31} - 4 q^{34} - 2 q^{36} - 12 q^{41} - 8 q^{44} - 16 q^{46} + 6 q^{49} - 4 q^{51} + 2 q^{54}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2325\mathbb{Z}\right)^\times\).

\(n\) \(652\) \(776\) \(1801\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i −0.935414 0.353553i \(-0.884973\pi\)
0.935414 0.353553i \(-0.115027\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) − 3.00000i − 1.06066i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) − 1.00000i − 0.288675i
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) − 2.00000i − 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 8.00000 1.83533 0.917663 0.397360i \(-0.130073\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 4.00000i 0.852803i
\(23\) − 8.00000i − 1.66812i −0.551677 0.834058i \(-0.686012\pi\)
0.551677 0.834058i \(-0.313988\pi\)
\(24\) −3.00000 −0.612372
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 2.00000i 0.377964i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) − 5.00000i − 0.883883i
\(33\) 4.00000i 0.696311i
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) − 8.00000i − 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) − 8.00000i − 1.29777i
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) − 2.00000i − 0.308607i
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) − 4.00000i − 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 6.00000 0.801784
\(57\) − 8.00000i − 1.05963i
\(58\) 0 0
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) − 1.00000i − 0.127000i
\(63\) − 2.00000i − 0.251976i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 4.00000 0.492366
\(67\) − 2.00000i − 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) − 2.00000i − 0.242536i
\(69\) −8.00000 −0.963087
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 3.00000i 0.353553i
\(73\) − 16.0000i − 1.87266i −0.351123 0.936329i \(-0.614200\pi\)
0.351123 0.936329i \(-0.385800\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) 8.00000 0.917663
\(77\) − 8.00000i − 0.911685i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 6.00000i 0.662589i
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 12.0000i 1.27920i
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 8.00000i − 0.834058i
\(93\) − 1.00000i − 0.103695i
\(94\) −4.00000 −0.412568
\(95\) 0 0
\(96\) −5.00000 −0.510310
\(97\) − 6.00000i − 0.609208i −0.952479 0.304604i \(-0.901476\pi\)
0.952479 0.304604i \(-0.0985241\pi\)
\(98\) − 3.00000i − 0.303046i
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 2.00000i 0.198030i
\(103\) 2.00000i 0.197066i 0.995134 + 0.0985329i \(0.0314150\pi\)
−0.995134 + 0.0985329i \(0.968585\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) − 16.0000i − 1.54678i −0.633932 0.773389i \(-0.718560\pi\)
0.633932 0.773389i \(-0.281440\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) − 2.00000i − 0.188982i
\(113\) − 6.00000i − 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) −8.00000 −0.749269
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 10.0000i 0.920575i
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 14.0000i 1.26750i
\(123\) 6.00000i 0.541002i
\(124\) 1.00000 0.0898027
\(125\) 0 0
\(126\) −2.00000 −0.178174
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) − 3.00000i − 0.265165i
\(129\) 0 0
\(130\) 0 0
\(131\) −14.0000 −1.22319 −0.611593 0.791173i \(-0.709471\pi\)
−0.611593 + 0.791173i \(0.709471\pi\)
\(132\) 4.00000i 0.348155i
\(133\) 16.0000i 1.38738i
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 8.00000i 0.681005i
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) − 6.00000i − 0.503509i
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −16.0000 −1.32417
\(147\) − 3.00000i − 0.247436i
\(148\) − 8.00000i − 0.657596i
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −24.0000 −1.95309 −0.976546 0.215308i \(-0.930924\pi\)
−0.976546 + 0.215308i \(0.930924\pi\)
\(152\) − 24.0000i − 1.94666i
\(153\) 2.00000i 0.161690i
\(154\) −8.00000 −0.644658
\(155\) 0 0
\(156\) 0 0
\(157\) − 2.00000i − 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) − 1.00000i − 0.0785674i
\(163\) 2.00000i 0.156652i 0.996928 + 0.0783260i \(0.0249575\pi\)
−0.996928 + 0.0783260i \(0.975042\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) − 16.0000i − 1.23812i −0.785345 0.619059i \(-0.787514\pi\)
0.785345 0.619059i \(-0.212486\pi\)
\(168\) − 6.00000i − 0.462910i
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) −8.00000 −0.611775
\(172\) 0 0
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 10.0000i 0.751646i
\(178\) 4.00000i 0.299813i
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 14.0000i 1.03491i
\(184\) −24.0000 −1.76930
\(185\) 0 0
\(186\) −1.00000 −0.0733236
\(187\) 8.00000i 0.585018i
\(188\) − 4.00000i − 0.291730i
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) −14.0000 −1.01300 −0.506502 0.862239i \(-0.669062\pi\)
−0.506502 + 0.862239i \(0.669062\pi\)
\(192\) 7.00000i 0.505181i
\(193\) 6.00000i 0.431889i 0.976406 + 0.215945i \(0.0692831\pi\)
−0.976406 + 0.215945i \(0.930717\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) − 2.00000i − 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) − 4.00000i − 0.284268i
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −2.00000 −0.141069
\(202\) − 14.0000i − 0.985037i
\(203\) 0 0
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) 2.00000 0.139347
\(207\) 8.00000i 0.556038i
\(208\) 0 0
\(209\) −32.0000 −2.21349
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 6.00000i 0.412082i
\(213\) − 6.00000i − 0.411113i
\(214\) −16.0000 −1.09374
\(215\) 0 0
\(216\) 3.00000 0.204124
\(217\) 2.00000i 0.135769i
\(218\) − 14.0000i − 0.948200i
\(219\) −16.0000 −1.08118
\(220\) 0 0
\(221\) 0 0
\(222\) 8.00000i 0.536925i
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) 10.0000 0.668153
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) 20.0000i 1.32745i 0.747978 + 0.663723i \(0.231025\pi\)
−0.747978 + 0.663723i \(0.768975\pi\)
\(228\) − 8.00000i − 0.529813i
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 0 0
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −10.0000 −0.650945
\(237\) 0 0
\(238\) − 4.00000i − 0.259281i
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) − 5.00000i − 0.321412i
\(243\) − 1.00000i − 0.0641500i
\(244\) −14.0000 −0.896258
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 0 0
\(248\) − 3.00000i − 0.190500i
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) − 2.00000i − 0.125988i
\(253\) 32.0000i 2.01182i
\(254\) 4.00000 0.250982
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) 0 0
\(259\) 16.0000 0.994192
\(260\) 0 0
\(261\) 0 0
\(262\) 14.0000i 0.864923i
\(263\) − 24.0000i − 1.47990i −0.672660 0.739952i \(-0.734848\pi\)
0.672660 0.739952i \(-0.265152\pi\)
\(264\) 12.0000 0.738549
\(265\) 0 0
\(266\) 16.0000 0.981023
\(267\) 4.00000i 0.244796i
\(268\) − 2.00000i − 0.122169i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) −8.00000 −0.481543
\(277\) 28.0000i 1.68236i 0.540758 + 0.841178i \(0.318138\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) − 12.0000i − 0.719712i
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 4.00000i 0.238197i
\(283\) 10.0000i 0.594438i 0.954809 + 0.297219i \(0.0960592\pi\)
−0.954809 + 0.297219i \(0.903941\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) 0 0
\(287\) − 12.0000i − 0.708338i
\(288\) 5.00000i 0.294628i
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −6.00000 −0.351726
\(292\) − 16.0000i − 0.936329i
\(293\) 26.0000i 1.51894i 0.650545 + 0.759468i \(0.274541\pi\)
−0.650545 + 0.759468i \(0.725459\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) −24.0000 −1.39497
\(297\) − 4.00000i − 0.232104i
\(298\) − 18.0000i − 1.04271i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 24.0000i 1.38104i
\(303\) − 14.0000i − 0.804279i
\(304\) −8.00000 −0.458831
\(305\) 0 0
\(306\) 2.00000 0.114332
\(307\) − 22.0000i − 1.25561i −0.778372 0.627803i \(-0.783954\pi\)
0.778372 0.627803i \(-0.216046\pi\)
\(308\) − 8.00000i − 0.455842i
\(309\) 2.00000 0.113776
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) − 8.00000i − 0.452187i −0.974106 0.226093i \(-0.927405\pi\)
0.974106 0.226093i \(-0.0725954\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) 0 0
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) − 6.00000i − 0.336463i
\(319\) 0 0
\(320\) 0 0
\(321\) −16.0000 −0.893033
\(322\) − 16.0000i − 0.891645i
\(323\) − 16.0000i − 0.890264i
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 2.00000 0.110770
\(327\) − 14.0000i − 0.774202i
\(328\) 18.0000i 0.993884i
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 8.00000i 0.438397i
\(334\) −16.0000 −0.875481
\(335\) 0 0
\(336\) −2.00000 −0.109109
\(337\) − 28.0000i − 1.52526i −0.646837 0.762629i \(-0.723908\pi\)
0.646837 0.762629i \(-0.276092\pi\)
\(338\) − 13.0000i − 0.707107i
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) 8.00000i 0.432590i
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 12.0000i 0.644194i 0.946707 + 0.322097i \(0.104388\pi\)
−0.946707 + 0.322097i \(0.895612\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 20.0000i 1.06600i
\(353\) − 14.0000i − 0.745145i −0.928003 0.372572i \(-0.878476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) 10.0000 0.531494
\(355\) 0 0
\(356\) −4.00000 −0.212000
\(357\) − 4.00000i − 0.211702i
\(358\) − 4.00000i − 0.211407i
\(359\) −26.0000 −1.37223 −0.686114 0.727494i \(-0.740685\pi\)
−0.686114 + 0.727494i \(0.740685\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 6.00000i 0.315353i
\(363\) − 5.00000i − 0.262432i
\(364\) 0 0
\(365\) 0 0
\(366\) 14.0000 0.731792
\(367\) 32.0000i 1.67039i 0.549957 + 0.835193i \(0.314644\pi\)
−0.549957 + 0.835193i \(0.685356\pi\)
\(368\) 8.00000i 0.417029i
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) − 1.00000i − 0.0518476i
\(373\) − 22.0000i − 1.13912i −0.821951 0.569558i \(-0.807114\pi\)
0.821951 0.569558i \(-0.192886\pi\)
\(374\) 8.00000 0.413670
\(375\) 0 0
\(376\) −12.0000 −0.618853
\(377\) 0 0
\(378\) 2.00000i 0.102869i
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 4.00000 0.204926
\(382\) 14.0000i 0.716302i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −3.00000 −0.153093
\(385\) 0 0
\(386\) 6.00000 0.305392
\(387\) 0 0
\(388\) − 6.00000i − 0.304604i
\(389\) −16.0000 −0.811232 −0.405616 0.914044i \(-0.632943\pi\)
−0.405616 + 0.914044i \(0.632943\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) − 9.00000i − 0.454569i
\(393\) 14.0000i 0.706207i
\(394\) −2.00000 −0.100759
\(395\) 0 0
\(396\) 4.00000 0.201008
\(397\) − 14.0000i − 0.702640i −0.936255 0.351320i \(-0.885733\pi\)
0.936255 0.351320i \(-0.114267\pi\)
\(398\) − 8.00000i − 0.401004i
\(399\) 16.0000 0.801002
\(400\) 0 0
\(401\) 16.0000 0.799002 0.399501 0.916733i \(-0.369183\pi\)
0.399501 + 0.916733i \(0.369183\pi\)
\(402\) 2.00000i 0.0997509i
\(403\) 0 0
\(404\) 14.0000 0.696526
\(405\) 0 0
\(406\) 0 0
\(407\) 32.0000i 1.58618i
\(408\) 6.00000i 0.297044i
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) 18.0000 0.887875
\(412\) 2.00000i 0.0985329i
\(413\) − 20.0000i − 0.984136i
\(414\) 8.00000 0.393179
\(415\) 0 0
\(416\) 0 0
\(417\) − 12.0000i − 0.587643i
\(418\) 32.0000i 1.56517i
\(419\) −14.0000 −0.683945 −0.341972 0.939710i \(-0.611095\pi\)
−0.341972 + 0.939710i \(0.611095\pi\)
\(420\) 0 0
\(421\) 18.0000 0.877266 0.438633 0.898666i \(-0.355463\pi\)
0.438633 + 0.898666i \(0.355463\pi\)
\(422\) − 8.00000i − 0.389434i
\(423\) 4.00000i 0.194487i
\(424\) 18.0000 0.874157
\(425\) 0 0
\(426\) −6.00000 −0.290701
\(427\) − 28.0000i − 1.35501i
\(428\) − 16.0000i − 0.773389i
\(429\) 0 0
\(430\) 0 0
\(431\) 2.00000 0.0963366 0.0481683 0.998839i \(-0.484662\pi\)
0.0481683 + 0.998839i \(0.484662\pi\)
\(432\) − 1.00000i − 0.0481125i
\(433\) 24.0000i 1.15337i 0.816968 + 0.576683i \(0.195653\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 2.00000 0.0960031
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) − 64.0000i − 3.06154i
\(438\) 16.0000i 0.764510i
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) − 20.0000i − 0.950229i −0.879924 0.475114i \(-0.842407\pi\)
0.879924 0.475114i \(-0.157593\pi\)
\(444\) −8.00000 −0.379663
\(445\) 0 0
\(446\) 16.0000 0.757622
\(447\) − 18.0000i − 0.851371i
\(448\) − 14.0000i − 0.661438i
\(449\) 8.00000 0.377543 0.188772 0.982021i \(-0.439549\pi\)
0.188772 + 0.982021i \(0.439549\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) − 6.00000i − 0.282216i
\(453\) 24.0000i 1.12762i
\(454\) 20.0000 0.938647
\(455\) 0 0
\(456\) −24.0000 −1.12390
\(457\) 8.00000i 0.374224i 0.982339 + 0.187112i \(0.0599128\pi\)
−0.982339 + 0.187112i \(0.940087\pi\)
\(458\) 6.00000i 0.280362i
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 8.00000i 0.372194i
\(463\) 20.0000i 0.929479i 0.885448 + 0.464739i \(0.153852\pi\)
−0.885448 + 0.464739i \(0.846148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) − 40.0000i − 1.85098i −0.378773 0.925490i \(-0.623654\pi\)
0.378773 0.925490i \(-0.376346\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 30.0000i 1.38086i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 4.00000 0.183340
\(477\) − 6.00000i − 0.274721i
\(478\) − 20.0000i − 0.914779i
\(479\) 10.0000 0.456912 0.228456 0.973554i \(-0.426632\pi\)
0.228456 + 0.973554i \(0.426632\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 22.0000i 1.00207i
\(483\) − 16.0000i − 0.728025i
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 4.00000i 0.181257i 0.995885 + 0.0906287i \(0.0288876\pi\)
−0.995885 + 0.0906287i \(0.971112\pi\)
\(488\) 42.0000i 1.90125i
\(489\) 2.00000 0.0904431
\(490\) 0 0
\(491\) −24.0000 −1.08310 −0.541552 0.840667i \(-0.682163\pi\)
−0.541552 + 0.840667i \(0.682163\pi\)
\(492\) 6.00000i 0.270501i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.00000 −0.0449013
\(497\) 12.0000i 0.538274i
\(498\) − 4.00000i − 0.179244i
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) −16.0000 −0.714827
\(502\) − 20.0000i − 0.892644i
\(503\) − 12.0000i − 0.535054i −0.963550 0.267527i \(-0.913794\pi\)
0.963550 0.267527i \(-0.0862064\pi\)
\(504\) −6.00000 −0.267261
\(505\) 0 0
\(506\) 32.0000 1.42257
\(507\) − 13.0000i − 0.577350i
\(508\) 4.00000i 0.177471i
\(509\) 28.0000 1.24108 0.620539 0.784176i \(-0.286914\pi\)
0.620539 + 0.784176i \(0.286914\pi\)
\(510\) 0 0
\(511\) 32.0000 1.41560
\(512\) 11.0000i 0.486136i
\(513\) 8.00000i 0.353209i
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 0 0
\(517\) 16.0000i 0.703679i
\(518\) − 16.0000i − 0.703000i
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) − 8.00000i − 0.349816i −0.984585 0.174908i \(-0.944037\pi\)
0.984585 0.174908i \(-0.0559627\pi\)
\(524\) −14.0000 −0.611593
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) − 2.00000i − 0.0871214i
\(528\) − 4.00000i − 0.174078i
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 16.0000i 0.693688i
\(533\) 0 0
\(534\) 4.00000 0.173097
\(535\) 0 0
\(536\) −6.00000 −0.259161
\(537\) − 4.00000i − 0.172613i
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 34.0000 1.46177 0.730887 0.682498i \(-0.239107\pi\)
0.730887 + 0.682498i \(0.239107\pi\)
\(542\) − 8.00000i − 0.343629i
\(543\) 6.00000i 0.257485i
\(544\) −10.0000 −0.428746
\(545\) 0 0
\(546\) 0 0
\(547\) 22.0000i 0.940652i 0.882493 + 0.470326i \(0.155864\pi\)
−0.882493 + 0.470326i \(0.844136\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 0 0
\(552\) 24.0000i 1.02151i
\(553\) 0 0
\(554\) 28.0000 1.18961
\(555\) 0 0
\(556\) 12.0000 0.508913
\(557\) − 22.0000i − 0.932170i −0.884740 0.466085i \(-0.845664\pi\)
0.884740 0.466085i \(-0.154336\pi\)
\(558\) 1.00000i 0.0423334i
\(559\) 0 0
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) − 30.0000i − 1.26547i
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) −4.00000 −0.168430
\(565\) 0 0
\(566\) 10.0000 0.420331
\(567\) 2.00000i 0.0839921i
\(568\) − 18.0000i − 0.755263i
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) 14.0000i 0.584858i
\(574\) −12.0000 −0.500870
\(575\) 0 0
\(576\) 7.00000 0.291667
\(577\) 38.0000i 1.58196i 0.611842 + 0.790980i \(0.290429\pi\)
−0.611842 + 0.790980i \(0.709571\pi\)
\(578\) − 13.0000i − 0.540729i
\(579\) 6.00000 0.249351
\(580\) 0 0
\(581\) −8.00000 −0.331896
\(582\) 6.00000i 0.248708i
\(583\) − 24.0000i − 0.993978i
\(584\) −48.0000 −1.98625
\(585\) 0 0
\(586\) 26.0000 1.07405
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) − 3.00000i − 0.123718i
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) −2.00000 −0.0822690
\(592\) 8.00000i 0.328798i
\(593\) 18.0000i 0.739171i 0.929197 + 0.369586i \(0.120500\pi\)
−0.929197 + 0.369586i \(0.879500\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) − 8.00000i − 0.327418i
\(598\) 0 0
\(599\) 14.0000 0.572024 0.286012 0.958226i \(-0.407670\pi\)
0.286012 + 0.958226i \(0.407670\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 2.00000i 0.0814463i
\(604\) −24.0000 −0.976546
\(605\) 0 0
\(606\) −14.0000 −0.568711
\(607\) 46.0000i 1.86708i 0.358470 + 0.933541i \(0.383298\pi\)
−0.358470 + 0.933541i \(0.616702\pi\)
\(608\) − 40.0000i − 1.62221i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 2.00000i 0.0808452i
\(613\) − 44.0000i − 1.77714i −0.458738 0.888572i \(-0.651698\pi\)
0.458738 0.888572i \(-0.348302\pi\)
\(614\) −22.0000 −0.887848
\(615\) 0 0
\(616\) −24.0000 −0.966988
\(617\) 38.0000i 1.52982i 0.644136 + 0.764911i \(0.277217\pi\)
−0.644136 + 0.764911i \(0.722783\pi\)
\(618\) − 2.00000i − 0.0804518i
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) − 18.0000i − 0.721734i
\(623\) − 8.00000i − 0.320513i
\(624\) 0 0
\(625\) 0 0
\(626\) −8.00000 −0.319744
\(627\) 32.0000i 1.27796i
\(628\) − 2.00000i − 0.0798087i
\(629\) −16.0000 −0.637962
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) − 8.00000i − 0.317971i
\(634\) 6.00000 0.238290
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) 0 0
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 40.0000 1.57991 0.789953 0.613168i \(-0.210105\pi\)
0.789953 + 0.613168i \(0.210105\pi\)
\(642\) 16.0000i 0.631470i
\(643\) 16.0000i 0.630978i 0.948929 + 0.315489i \(0.102169\pi\)
−0.948929 + 0.315489i \(0.897831\pi\)
\(644\) 16.0000 0.630488
\(645\) 0 0
\(646\) −16.0000 −0.629512
\(647\) 16.0000i 0.629025i 0.949253 + 0.314512i \(0.101841\pi\)
−0.949253 + 0.314512i \(0.898159\pi\)
\(648\) − 3.00000i − 0.117851i
\(649\) 40.0000 1.57014
\(650\) 0 0
\(651\) 2.00000 0.0783862
\(652\) 2.00000i 0.0783260i
\(653\) 10.0000i 0.391330i 0.980671 + 0.195665i \(0.0626866\pi\)
−0.980671 + 0.195665i \(0.937313\pi\)
\(654\) −14.0000 −0.547443
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) 16.0000i 0.624219i
\(658\) − 8.00000i − 0.311872i
\(659\) 42.0000 1.63609 0.818044 0.575156i \(-0.195059\pi\)
0.818044 + 0.575156i \(0.195059\pi\)
\(660\) 0 0
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) 4.00000i 0.155464i
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 8.00000 0.309994
\(667\) 0 0
\(668\) − 16.0000i − 0.619059i
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) 56.0000 2.16186
\(672\) − 10.0000i − 0.385758i
\(673\) − 44.0000i − 1.69608i −0.529936 0.848038i \(-0.677784\pi\)
0.529936 0.848038i \(-0.322216\pi\)
\(674\) −28.0000 −1.07852
\(675\) 0 0
\(676\) 13.0000 0.500000
\(677\) 26.0000i 0.999261i 0.866239 + 0.499631i \(0.166531\pi\)
−0.866239 + 0.499631i \(0.833469\pi\)
\(678\) 6.00000i 0.230429i
\(679\) 12.0000 0.460518
\(680\) 0 0
\(681\) 20.0000 0.766402
\(682\) 4.00000i 0.153168i
\(683\) − 4.00000i − 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) −8.00000 −0.305888
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) 6.00000i 0.228914i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 6.00000i 0.228086i
\(693\) 8.00000i 0.303895i
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) 12.0000i 0.454532i
\(698\) − 14.0000i − 0.529908i
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) − 64.0000i − 2.41381i
\(704\) 28.0000 1.05529
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) 28.0000i 1.05305i
\(708\) 10.0000i 0.375823i
\(709\) 42.0000 1.57734 0.788672 0.614815i \(-0.210769\pi\)
0.788672 + 0.614815i \(0.210769\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12.0000i 0.449719i
\(713\) − 8.00000i − 0.299602i
\(714\) −4.00000 −0.149696
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) − 20.0000i − 0.746914i
\(718\) 26.0000i 0.970311i
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) − 45.0000i − 1.67473i
\(723\) 22.0000i 0.818189i
\(724\) −6.00000 −0.222988
\(725\) 0 0
\(726\) −5.00000 −0.185567
\(727\) − 30.0000i − 1.11264i −0.830969 0.556319i \(-0.812213\pi\)
0.830969 0.556319i \(-0.187787\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 14.0000i 0.517455i
\(733\) − 26.0000i − 0.960332i −0.877178 0.480166i \(-0.840576\pi\)
0.877178 0.480166i \(-0.159424\pi\)
\(734\) 32.0000 1.18114
\(735\) 0 0
\(736\) −40.0000 −1.47442
\(737\) 8.00000i 0.294684i
\(738\) − 6.00000i − 0.220863i
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 12.0000i 0.440534i
\(743\) 24.0000i 0.880475i 0.897881 + 0.440237i \(0.145106\pi\)
−0.897881 + 0.440237i \(0.854894\pi\)
\(744\) −3.00000 −0.109985
\(745\) 0 0
\(746\) −22.0000 −0.805477
\(747\) − 4.00000i − 0.146352i
\(748\) 8.00000i 0.292509i
\(749\) 32.0000 1.16925
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 4.00000i 0.145865i
\(753\) − 20.0000i − 0.728841i
\(754\) 0 0
\(755\) 0 0
\(756\) −2.00000 −0.0727393
\(757\) 8.00000i 0.290765i 0.989376 + 0.145382i \(0.0464413\pi\)
−0.989376 + 0.145382i \(0.953559\pi\)
\(758\) 16.0000i 0.581146i
\(759\) 32.0000 1.16153
\(760\) 0 0
\(761\) −24.0000 −0.869999 −0.435000 0.900431i \(-0.643252\pi\)
−0.435000 + 0.900431i \(0.643252\pi\)
\(762\) − 4.00000i − 0.144905i
\(763\) 28.0000i 1.01367i
\(764\) −14.0000 −0.506502
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 17.0000i 0.613435i
\(769\) −46.0000 −1.65880 −0.829401 0.558653i \(-0.811318\pi\)
−0.829401 + 0.558653i \(0.811318\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 6.00000i 0.215945i
\(773\) 30.0000i 1.07903i 0.841978 + 0.539513i \(0.181391\pi\)
−0.841978 + 0.539513i \(0.818609\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −18.0000 −0.646162
\(777\) − 16.0000i − 0.573997i
\(778\) 16.0000i 0.573628i
\(779\) −48.0000 −1.71978
\(780\) 0 0
\(781\) −24.0000 −0.858788
\(782\) 16.0000i 0.572159i
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 14.0000 0.499363
\(787\) − 52.0000i − 1.85360i −0.375555 0.926800i \(-0.622548\pi\)
0.375555 0.926800i \(-0.377452\pi\)
\(788\) − 2.00000i − 0.0712470i
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) − 12.0000i − 0.426401i
\(793\) 0 0
\(794\) −14.0000 −0.496841
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) − 42.0000i − 1.48772i −0.668338 0.743858i \(-0.732994\pi\)
0.668338 0.743858i \(-0.267006\pi\)
\(798\) − 16.0000i − 0.566394i
\(799\) −8.00000 −0.283020
\(800\) 0 0
\(801\) 4.00000 0.141333
\(802\) − 16.0000i − 0.564980i
\(803\) 64.0000i 2.25851i
\(804\) −2.00000 −0.0705346
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) − 42.0000i − 1.47755i
\(809\) −24.0000 −0.843795 −0.421898 0.906644i \(-0.638636\pi\)
−0.421898 + 0.906644i \(0.638636\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 0 0
\(813\) − 8.00000i − 0.280572i
\(814\) 32.0000 1.12160
\(815\) 0 0
\(816\) 2.00000 0.0700140
\(817\) 0 0
\(818\) − 18.0000i − 0.629355i
\(819\) 0 0
\(820\) 0 0
\(821\) 24.0000 0.837606 0.418803 0.908077i \(-0.362450\pi\)
0.418803 + 0.908077i \(0.362450\pi\)
\(822\) − 18.0000i − 0.627822i
\(823\) − 44.0000i − 1.53374i −0.641800 0.766872i \(-0.721812\pi\)
0.641800 0.766872i \(-0.278188\pi\)
\(824\) 6.00000 0.209020
\(825\) 0 0
\(826\) −20.0000 −0.695889
\(827\) 12.0000i 0.417281i 0.977992 + 0.208640i \(0.0669038\pi\)
−0.977992 + 0.208640i \(0.933096\pi\)
\(828\) 8.00000i 0.278019i
\(829\) 22.0000 0.764092 0.382046 0.924143i \(-0.375220\pi\)
0.382046 + 0.924143i \(0.375220\pi\)
\(830\) 0 0
\(831\) 28.0000 0.971309
\(832\) 0 0
\(833\) − 6.00000i − 0.207888i
\(834\) −12.0000 −0.415526
\(835\) 0 0
\(836\) −32.0000 −1.10674
\(837\) 1.00000i 0.0345651i
\(838\) 14.0000i 0.483622i
\(839\) 6.00000 0.207143 0.103572 0.994622i \(-0.466973\pi\)
0.103572 + 0.994622i \(0.466973\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) − 18.0000i − 0.620321i
\(843\) − 30.0000i − 1.03325i
\(844\) 8.00000 0.275371
\(845\) 0 0
\(846\) 4.00000 0.137523
\(847\) 10.0000i 0.343604i
\(848\) − 6.00000i − 0.206041i
\(849\) 10.0000 0.343199
\(850\) 0 0
\(851\) −64.0000 −2.19389
\(852\) − 6.00000i − 0.205557i
\(853\) − 2.00000i − 0.0684787i −0.999414 0.0342393i \(-0.989099\pi\)
0.999414 0.0342393i \(-0.0109009\pi\)
\(854\) −28.0000 −0.958140
\(855\) 0 0
\(856\) −48.0000 −1.64061
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) −12.0000 −0.408959
\(862\) − 2.00000i − 0.0681203i
\(863\) 8.00000i 0.272323i 0.990687 + 0.136162i \(0.0434766\pi\)
−0.990687 + 0.136162i \(0.956523\pi\)
\(864\) 5.00000 0.170103
\(865\) 0 0
\(866\) 24.0000 0.815553
\(867\) − 13.0000i − 0.441503i
\(868\) 2.00000i 0.0678844i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) − 42.0000i − 1.42230i
\(873\) 6.00000i 0.203069i
\(874\) −64.0000 −2.16483
\(875\) 0 0
\(876\) −16.0000 −0.540590
\(877\) 18.0000i 0.607817i 0.952701 + 0.303908i \(0.0982917\pi\)
−0.952701 + 0.303908i \(0.901708\pi\)
\(878\) 24.0000i 0.809961i
\(879\) 26.0000 0.876958
\(880\) 0 0
\(881\) −28.0000 −0.943344 −0.471672 0.881774i \(-0.656349\pi\)
−0.471672 + 0.881774i \(0.656349\pi\)
\(882\) 3.00000i 0.101015i
\(883\) 28.0000i 0.942275i 0.882060 + 0.471138i \(0.156156\pi\)
−0.882060 + 0.471138i \(0.843844\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −20.0000 −0.671913
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 24.0000i 0.805387i
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) 16.0000i 0.535720i
\(893\) − 32.0000i − 1.07084i
\(894\) −18.0000 −0.602010
\(895\) 0 0
\(896\) 6.00000 0.200446
\(897\) 0 0
\(898\) − 8.00000i − 0.266963i
\(899\) 0 0
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) − 24.0000i − 0.799113i
\(903\) 0 0
\(904\) −18.0000 −0.598671
\(905\) 0 0
\(906\) 24.0000 0.797347
\(907\) 18.0000i 0.597680i 0.954303 + 0.298840i \(0.0965997\pi\)
−0.954303 + 0.298840i \(0.903400\pi\)
\(908\) 20.0000i 0.663723i
\(909\) −14.0000 −0.464351
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 8.00000i 0.264906i
\(913\) − 16.0000i − 0.529523i
\(914\) 8.00000 0.264616
\(915\) 0 0
\(916\) −6.00000 −0.198246
\(917\) − 28.0000i − 0.924641i
\(918\) − 2.00000i − 0.0660098i
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) 0 0
\(921\) −22.0000 −0.724925
\(922\) − 12.0000i − 0.395199i
\(923\) 0 0
\(924\) −8.00000 −0.263181
\(925\) 0 0
\(926\) 20.0000 0.657241
\(927\) − 2.00000i − 0.0656886i
\(928\) 0 0
\(929\) 44.0000 1.44359 0.721797 0.692105i \(-0.243317\pi\)
0.721797 + 0.692105i \(0.243317\pi\)
\(930\) 0 0
\(931\) 24.0000 0.786568
\(932\) 6.00000i 0.196537i
\(933\) − 18.0000i − 0.589294i
\(934\) −40.0000 −1.30884
\(935\) 0 0
\(936\) 0 0
\(937\) − 6.00000i − 0.196011i −0.995186 0.0980057i \(-0.968754\pi\)
0.995186 0.0980057i \(-0.0312463\pi\)
\(938\) − 4.00000i − 0.130605i
\(939\) −8.00000 −0.261070
\(940\) 0 0
\(941\) 24.0000 0.782378 0.391189 0.920310i \(-0.372064\pi\)
0.391189 + 0.920310i \(0.372064\pi\)
\(942\) 2.00000i 0.0651635i
\(943\) 48.0000i 1.56310i
\(944\) 10.0000 0.325472
\(945\) 0 0
\(946\) 0 0
\(947\) − 12.0000i − 0.389948i −0.980808 0.194974i \(-0.937538\pi\)
0.980808 0.194974i \(-0.0624622\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 6.00000 0.194563
\(952\) − 12.0000i − 0.388922i
\(953\) 30.0000i 0.971795i 0.874016 + 0.485898i \(0.161507\pi\)
−0.874016 + 0.485898i \(0.838493\pi\)
\(954\) −6.00000 −0.194257
\(955\) 0 0
\(956\) 20.0000 0.646846
\(957\) 0 0
\(958\) − 10.0000i − 0.323085i
\(959\) −36.0000 −1.16250
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 16.0000i 0.515593i
\(964\) −22.0000 −0.708572
\(965\) 0 0
\(966\) −16.0000 −0.514792
\(967\) − 24.0000i − 0.771788i −0.922543 0.385894i \(-0.873893\pi\)
0.922543 0.385894i \(-0.126107\pi\)
\(968\) − 15.0000i − 0.482118i
\(969\) −16.0000 −0.513994
\(970\) 0 0
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) − 1.00000i − 0.0320750i
\(973\) 24.0000i 0.769405i
\(974\) 4.00000 0.128168
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) 30.0000i 0.959785i 0.877327 + 0.479893i \(0.159324\pi\)
−0.877327 + 0.479893i \(0.840676\pi\)
\(978\) − 2.00000i − 0.0639529i
\(979\) 16.0000 0.511362
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) 24.0000i 0.765871i
\(983\) − 8.00000i − 0.255160i −0.991828 0.127580i \(-0.959279\pi\)
0.991828 0.127580i \(-0.0407210\pi\)
\(984\) 18.0000 0.573819
\(985\) 0 0
\(986\) 0 0
\(987\) − 8.00000i − 0.254643i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −56.0000 −1.77890 −0.889449 0.457034i \(-0.848912\pi\)
−0.889449 + 0.457034i \(0.848912\pi\)
\(992\) − 5.00000i − 0.158750i
\(993\) 4.00000i 0.126936i
\(994\) 12.0000 0.380617
\(995\) 0 0
\(996\) 4.00000 0.126745
\(997\) − 42.0000i − 1.33015i −0.746775 0.665077i \(-0.768399\pi\)
0.746775 0.665077i \(-0.231601\pi\)
\(998\) − 20.0000i − 0.633089i
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.c.d.1024.1 2
5.2 odd 4 465.2.a.b.1.1 1
5.3 odd 4 2325.2.a.d.1.1 1
5.4 even 2 inner 2325.2.c.d.1024.2 2
15.2 even 4 1395.2.a.a.1.1 1
15.8 even 4 6975.2.a.q.1.1 1
20.7 even 4 7440.2.a.ba.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.b.1.1 1 5.2 odd 4
1395.2.a.a.1.1 1 15.2 even 4
2325.2.a.d.1.1 1 5.3 odd 4
2325.2.c.d.1024.1 2 1.1 even 1 trivial
2325.2.c.d.1024.2 2 5.4 even 2 inner
6975.2.a.q.1.1 1 15.8 even 4
7440.2.a.ba.1.1 1 20.7 even 4