Properties

Label 2325.2.a.r.1.1
Level $2325$
Weight $2$
Character 2325.1
Self dual yes
Analytic conductor $18.565$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2325,2,Mod(1,2325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2325.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5652184699\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.51414\) of defining polynomial
Character \(\chi\) \(=\) 2325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51414 q^{2} +1.00000 q^{3} +4.32088 q^{4} -2.51414 q^{6} -0.485863 q^{7} -5.83502 q^{8} +1.00000 q^{9} +5.02827 q^{11} +4.32088 q^{12} -3.51414 q^{13} +1.22153 q^{14} +6.02827 q^{16} +1.32088 q^{17} -2.51414 q^{18} -6.64177 q^{19} -0.485863 q^{21} -12.6418 q^{22} -0.292611 q^{23} -5.83502 q^{24} +8.83502 q^{26} +1.00000 q^{27} -2.09936 q^{28} -9.86330 q^{29} +1.00000 q^{31} -3.48586 q^{32} +5.02827 q^{33} -3.32088 q^{34} +4.32088 q^{36} -5.51414 q^{37} +16.6983 q^{38} -3.51414 q^{39} -7.02827 q^{41} +1.22153 q^{42} +1.02827 q^{43} +21.7266 q^{44} +0.735663 q^{46} +6.93438 q^{47} +6.02827 q^{48} -6.76394 q^{49} +1.32088 q^{51} -15.1842 q^{52} +1.70739 q^{53} -2.51414 q^{54} +2.83502 q^{56} -6.64177 q^{57} +24.7977 q^{58} -2.19325 q^{59} -2.00000 q^{61} -2.51414 q^{62} -0.485863 q^{63} -3.29261 q^{64} -12.6418 q^{66} -9.12763 q^{67} +5.70739 q^{68} -0.292611 q^{69} +13.4768 q^{71} -5.83502 q^{72} -12.5424 q^{73} +13.8633 q^{74} -28.6983 q^{76} -2.44305 q^{77} +8.83502 q^{78} -0.349158 q^{79} +1.00000 q^{81} +17.6700 q^{82} -10.9344 q^{83} -2.09936 q^{84} -2.58522 q^{86} -9.86330 q^{87} -29.3401 q^{88} +5.03374 q^{89} +1.70739 q^{91} -1.26434 q^{92} +1.00000 q^{93} -17.4340 q^{94} -3.48586 q^{96} -10.4431 q^{97} +17.0055 q^{98} +5.02827 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + 5 q^{4} - q^{6} - 8 q^{7} - 3 q^{8} + 3 q^{9} + 2 q^{11} + 5 q^{12} - 4 q^{13} - 8 q^{14} + 5 q^{16} - 4 q^{17} - q^{18} - 4 q^{19} - 8 q^{21} - 22 q^{22} - 6 q^{23} - 3 q^{24}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.51414 −1.77776 −0.888882 0.458137i \(-0.848517\pi\)
−0.888882 + 0.458137i \(0.848517\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.32088 2.16044
\(5\) 0 0
\(6\) −2.51414 −1.02639
\(7\) −0.485863 −0.183639 −0.0918195 0.995776i \(-0.529268\pi\)
−0.0918195 + 0.995776i \(0.529268\pi\)
\(8\) −5.83502 −2.06299
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.02827 1.51608 0.758041 0.652207i \(-0.226157\pi\)
0.758041 + 0.652207i \(0.226157\pi\)
\(12\) 4.32088 1.24733
\(13\) −3.51414 −0.974646 −0.487323 0.873222i \(-0.662027\pi\)
−0.487323 + 0.873222i \(0.662027\pi\)
\(14\) 1.22153 0.326467
\(15\) 0 0
\(16\) 6.02827 1.50707
\(17\) 1.32088 0.320362 0.160181 0.987088i \(-0.448792\pi\)
0.160181 + 0.987088i \(0.448792\pi\)
\(18\) −2.51414 −0.592588
\(19\) −6.64177 −1.52373 −0.761863 0.647738i \(-0.775715\pi\)
−0.761863 + 0.647738i \(0.775715\pi\)
\(20\) 0 0
\(21\) −0.485863 −0.106024
\(22\) −12.6418 −2.69523
\(23\) −0.292611 −0.0610135 −0.0305068 0.999535i \(-0.509712\pi\)
−0.0305068 + 0.999535i \(0.509712\pi\)
\(24\) −5.83502 −1.19107
\(25\) 0 0
\(26\) 8.83502 1.73269
\(27\) 1.00000 0.192450
\(28\) −2.09936 −0.396741
\(29\) −9.86330 −1.83157 −0.915784 0.401671i \(-0.868429\pi\)
−0.915784 + 0.401671i \(0.868429\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) −3.48586 −0.616219
\(33\) 5.02827 0.875310
\(34\) −3.32088 −0.569527
\(35\) 0 0
\(36\) 4.32088 0.720147
\(37\) −5.51414 −0.906519 −0.453259 0.891379i \(-0.649739\pi\)
−0.453259 + 0.891379i \(0.649739\pi\)
\(38\) 16.6983 2.70882
\(39\) −3.51414 −0.562712
\(40\) 0 0
\(41\) −7.02827 −1.09763 −0.548816 0.835943i \(-0.684921\pi\)
−0.548816 + 0.835943i \(0.684921\pi\)
\(42\) 1.22153 0.188486
\(43\) 1.02827 0.156810 0.0784051 0.996922i \(-0.475017\pi\)
0.0784051 + 0.996922i \(0.475017\pi\)
\(44\) 21.7266 3.27541
\(45\) 0 0
\(46\) 0.735663 0.108468
\(47\) 6.93438 1.01148 0.505742 0.862685i \(-0.331219\pi\)
0.505742 + 0.862685i \(0.331219\pi\)
\(48\) 6.02827 0.870106
\(49\) −6.76394 −0.966277
\(50\) 0 0
\(51\) 1.32088 0.184961
\(52\) −15.1842 −2.10567
\(53\) 1.70739 0.234528 0.117264 0.993101i \(-0.462588\pi\)
0.117264 + 0.993101i \(0.462588\pi\)
\(54\) −2.51414 −0.342131
\(55\) 0 0
\(56\) 2.83502 0.378846
\(57\) −6.64177 −0.879724
\(58\) 24.7977 3.25609
\(59\) −2.19325 −0.285537 −0.142769 0.989756i \(-0.545600\pi\)
−0.142769 + 0.989756i \(0.545600\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) −2.51414 −0.319296
\(63\) −0.485863 −0.0612130
\(64\) −3.29261 −0.411576
\(65\) 0 0
\(66\) −12.6418 −1.55609
\(67\) −9.12763 −1.11512 −0.557559 0.830137i \(-0.688262\pi\)
−0.557559 + 0.830137i \(0.688262\pi\)
\(68\) 5.70739 0.692123
\(69\) −0.292611 −0.0352262
\(70\) 0 0
\(71\) 13.4768 1.59940 0.799700 0.600399i \(-0.204992\pi\)
0.799700 + 0.600399i \(0.204992\pi\)
\(72\) −5.83502 −0.687664
\(73\) −12.5424 −1.46798 −0.733989 0.679161i \(-0.762344\pi\)
−0.733989 + 0.679161i \(0.762344\pi\)
\(74\) 13.8633 1.61158
\(75\) 0 0
\(76\) −28.6983 −3.29192
\(77\) −2.44305 −0.278412
\(78\) 8.83502 1.00037
\(79\) −0.349158 −0.0392834 −0.0196417 0.999807i \(-0.506253\pi\)
−0.0196417 + 0.999807i \(0.506253\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 17.6700 1.95133
\(83\) −10.9344 −1.20020 −0.600102 0.799923i \(-0.704873\pi\)
−0.600102 + 0.799923i \(0.704873\pi\)
\(84\) −2.09936 −0.229059
\(85\) 0 0
\(86\) −2.58522 −0.278772
\(87\) −9.86330 −1.05746
\(88\) −29.3401 −3.12766
\(89\) 5.03374 0.533575 0.266788 0.963755i \(-0.414038\pi\)
0.266788 + 0.963755i \(0.414038\pi\)
\(90\) 0 0
\(91\) 1.70739 0.178983
\(92\) −1.26434 −0.131816
\(93\) 1.00000 0.103695
\(94\) −17.4340 −1.79818
\(95\) 0 0
\(96\) −3.48586 −0.355774
\(97\) −10.4431 −1.06033 −0.530166 0.847894i \(-0.677870\pi\)
−0.530166 + 0.847894i \(0.677870\pi\)
\(98\) 17.0055 1.71781
\(99\) 5.02827 0.505361
\(100\) 0 0
\(101\) −11.6135 −1.15559 −0.577793 0.816183i \(-0.696086\pi\)
−0.577793 + 0.816183i \(0.696086\pi\)
\(102\) −3.32088 −0.328817
\(103\) 3.76940 0.371410 0.185705 0.982606i \(-0.440543\pi\)
0.185705 + 0.982606i \(0.440543\pi\)
\(104\) 20.5051 2.01069
\(105\) 0 0
\(106\) −4.29261 −0.416935
\(107\) 6.73566 0.651161 0.325581 0.945514i \(-0.394440\pi\)
0.325581 + 0.945514i \(0.394440\pi\)
\(108\) 4.32088 0.415777
\(109\) −3.90611 −0.374137 −0.187069 0.982347i \(-0.559899\pi\)
−0.187069 + 0.982347i \(0.559899\pi\)
\(110\) 0 0
\(111\) −5.51414 −0.523379
\(112\) −2.92892 −0.276757
\(113\) 15.0848 1.41906 0.709530 0.704675i \(-0.248907\pi\)
0.709530 + 0.704675i \(0.248907\pi\)
\(114\) 16.6983 1.56394
\(115\) 0 0
\(116\) −42.6182 −3.95700
\(117\) −3.51414 −0.324882
\(118\) 5.51414 0.507617
\(119\) −0.641769 −0.0588309
\(120\) 0 0
\(121\) 14.2835 1.29850
\(122\) 5.02827 0.455239
\(123\) −7.02827 −0.633718
\(124\) 4.32088 0.388027
\(125\) 0 0
\(126\) 1.22153 0.108822
\(127\) 6.25526 0.555065 0.277532 0.960716i \(-0.410483\pi\)
0.277532 + 0.960716i \(0.410483\pi\)
\(128\) 15.2498 1.34790
\(129\) 1.02827 0.0905345
\(130\) 0 0
\(131\) −22.1186 −1.93251 −0.966254 0.257592i \(-0.917071\pi\)
−0.966254 + 0.257592i \(0.917071\pi\)
\(132\) 21.7266 1.89106
\(133\) 3.22699 0.279816
\(134\) 22.9481 1.98242
\(135\) 0 0
\(136\) −7.70739 −0.660903
\(137\) 14.6044 1.24774 0.623870 0.781528i \(-0.285559\pi\)
0.623870 + 0.781528i \(0.285559\pi\)
\(138\) 0.735663 0.0626238
\(139\) 12.8970 1.09391 0.546956 0.837161i \(-0.315786\pi\)
0.546956 + 0.837161i \(0.315786\pi\)
\(140\) 0 0
\(141\) 6.93438 0.583980
\(142\) −33.8825 −2.84336
\(143\) −17.6700 −1.47764
\(144\) 6.02827 0.502356
\(145\) 0 0
\(146\) 31.5333 2.60972
\(147\) −6.76394 −0.557880
\(148\) −23.8259 −1.95848
\(149\) 16.3118 1.33632 0.668158 0.744020i \(-0.267083\pi\)
0.668158 + 0.744020i \(0.267083\pi\)
\(150\) 0 0
\(151\) 19.3774 1.57691 0.788457 0.615090i \(-0.210881\pi\)
0.788457 + 0.615090i \(0.210881\pi\)
\(152\) 38.7549 3.14343
\(153\) 1.32088 0.106787
\(154\) 6.14217 0.494950
\(155\) 0 0
\(156\) −15.1842 −1.21571
\(157\) 3.80128 0.303375 0.151688 0.988428i \(-0.451529\pi\)
0.151688 + 0.988428i \(0.451529\pi\)
\(158\) 0.877832 0.0698366
\(159\) 1.70739 0.135405
\(160\) 0 0
\(161\) 0.142169 0.0112045
\(162\) −2.51414 −0.197529
\(163\) −12.5424 −0.982397 −0.491199 0.871048i \(-0.663441\pi\)
−0.491199 + 0.871048i \(0.663441\pi\)
\(164\) −30.3684 −2.37137
\(165\) 0 0
\(166\) 27.4905 2.13368
\(167\) −22.2553 −1.72216 −0.861082 0.508466i \(-0.830213\pi\)
−0.861082 + 0.508466i \(0.830213\pi\)
\(168\) 2.83502 0.218727
\(169\) −0.650842 −0.0500647
\(170\) 0 0
\(171\) −6.64177 −0.507909
\(172\) 4.44305 0.338780
\(173\) 10.9717 0.834165 0.417082 0.908869i \(-0.363053\pi\)
0.417082 + 0.908869i \(0.363053\pi\)
\(174\) 24.7977 1.87991
\(175\) 0 0
\(176\) 30.3118 2.28484
\(177\) −2.19325 −0.164855
\(178\) −12.6555 −0.948570
\(179\) −15.9253 −1.19031 −0.595157 0.803610i \(-0.702910\pi\)
−0.595157 + 0.803610i \(0.702910\pi\)
\(180\) 0 0
\(181\) −8.05655 −0.598838 −0.299419 0.954122i \(-0.596793\pi\)
−0.299419 + 0.954122i \(0.596793\pi\)
\(182\) −4.29261 −0.318189
\(183\) −2.00000 −0.147844
\(184\) 1.70739 0.125870
\(185\) 0 0
\(186\) −2.51414 −0.184345
\(187\) 6.64177 0.485694
\(188\) 29.9627 2.18525
\(189\) −0.485863 −0.0353413
\(190\) 0 0
\(191\) 6.19325 0.448128 0.224064 0.974574i \(-0.428068\pi\)
0.224064 + 0.974574i \(0.428068\pi\)
\(192\) −3.29261 −0.237624
\(193\) 2.25526 0.162337 0.0811687 0.996700i \(-0.474135\pi\)
0.0811687 + 0.996700i \(0.474135\pi\)
\(194\) 26.2553 1.88502
\(195\) 0 0
\(196\) −29.2262 −2.08759
\(197\) −9.32088 −0.664086 −0.332043 0.943264i \(-0.607738\pi\)
−0.332043 + 0.943264i \(0.607738\pi\)
\(198\) −12.6418 −0.898411
\(199\) 16.5479 1.17305 0.586524 0.809932i \(-0.300496\pi\)
0.586524 + 0.809932i \(0.300496\pi\)
\(200\) 0 0
\(201\) −9.12763 −0.643814
\(202\) 29.1979 2.05436
\(203\) 4.79221 0.336347
\(204\) 5.70739 0.399597
\(205\) 0 0
\(206\) −9.47679 −0.660279
\(207\) −0.292611 −0.0203378
\(208\) −21.1842 −1.46886
\(209\) −33.3966 −2.31009
\(210\) 0 0
\(211\) 25.0101 1.72177 0.860884 0.508801i \(-0.169911\pi\)
0.860884 + 0.508801i \(0.169911\pi\)
\(212\) 7.37743 0.506684
\(213\) 13.4768 0.923414
\(214\) −16.9344 −1.15761
\(215\) 0 0
\(216\) −5.83502 −0.397023
\(217\) −0.485863 −0.0329825
\(218\) 9.82048 0.665127
\(219\) −12.5424 −0.847538
\(220\) 0 0
\(221\) −4.64177 −0.312239
\(222\) 13.8633 0.930443
\(223\) −19.2835 −1.29132 −0.645661 0.763625i \(-0.723418\pi\)
−0.645661 + 0.763625i \(0.723418\pi\)
\(224\) 1.69365 0.113162
\(225\) 0 0
\(226\) −37.9253 −2.52275
\(227\) −23.4340 −1.55537 −0.777684 0.628655i \(-0.783606\pi\)
−0.777684 + 0.628655i \(0.783606\pi\)
\(228\) −28.6983 −1.90059
\(229\) −25.0283 −1.65391 −0.826957 0.562265i \(-0.809930\pi\)
−0.826957 + 0.562265i \(0.809930\pi\)
\(230\) 0 0
\(231\) −2.44305 −0.160741
\(232\) 57.5525 3.77851
\(233\) −18.7175 −1.22623 −0.613113 0.789995i \(-0.710083\pi\)
−0.613113 + 0.789995i \(0.710083\pi\)
\(234\) 8.83502 0.577563
\(235\) 0 0
\(236\) −9.47679 −0.616887
\(237\) −0.349158 −0.0226803
\(238\) 1.61350 0.104587
\(239\) −3.86876 −0.250249 −0.125125 0.992141i \(-0.539933\pi\)
−0.125125 + 0.992141i \(0.539933\pi\)
\(240\) 0 0
\(241\) −1.61350 −0.103934 −0.0519672 0.998649i \(-0.516549\pi\)
−0.0519672 + 0.998649i \(0.516549\pi\)
\(242\) −35.9108 −2.30843
\(243\) 1.00000 0.0641500
\(244\) −8.64177 −0.553233
\(245\) 0 0
\(246\) 17.6700 1.12660
\(247\) 23.3401 1.48509
\(248\) −5.83502 −0.370524
\(249\) −10.9344 −0.692938
\(250\) 0 0
\(251\) −25.4713 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(252\) −2.09936 −0.132247
\(253\) −1.47133 −0.0925015
\(254\) −15.7266 −0.986774
\(255\) 0 0
\(256\) −31.7549 −1.98468
\(257\) −18.0192 −1.12401 −0.562003 0.827135i \(-0.689969\pi\)
−0.562003 + 0.827135i \(0.689969\pi\)
\(258\) −2.58522 −0.160949
\(259\) 2.67912 0.166472
\(260\) 0 0
\(261\) −9.86330 −0.610523
\(262\) 55.6091 3.43554
\(263\) −1.15951 −0.0714987 −0.0357494 0.999361i \(-0.511382\pi\)
−0.0357494 + 0.999361i \(0.511382\pi\)
\(264\) −29.3401 −1.80576
\(265\) 0 0
\(266\) −8.11310 −0.497446
\(267\) 5.03374 0.308060
\(268\) −39.4394 −2.40915
\(269\) −7.80675 −0.475986 −0.237993 0.971267i \(-0.576489\pi\)
−0.237993 + 0.971267i \(0.576489\pi\)
\(270\) 0 0
\(271\) 17.7831 1.08025 0.540124 0.841585i \(-0.318377\pi\)
0.540124 + 0.841585i \(0.318377\pi\)
\(272\) 7.96265 0.482807
\(273\) 1.70739 0.103336
\(274\) −36.7175 −2.21819
\(275\) 0 0
\(276\) −1.26434 −0.0761041
\(277\) −25.9390 −1.55853 −0.779263 0.626697i \(-0.784406\pi\)
−0.779263 + 0.626697i \(0.784406\pi\)
\(278\) −32.4249 −1.94472
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −13.0283 −0.777202 −0.388601 0.921406i \(-0.627041\pi\)
−0.388601 + 0.921406i \(0.627041\pi\)
\(282\) −17.4340 −1.03818
\(283\) −15.9006 −0.945195 −0.472598 0.881278i \(-0.656684\pi\)
−0.472598 + 0.881278i \(0.656684\pi\)
\(284\) 58.2317 3.45541
\(285\) 0 0
\(286\) 44.4249 2.62690
\(287\) 3.41478 0.201568
\(288\) −3.48586 −0.205406
\(289\) −15.2553 −0.897368
\(290\) 0 0
\(291\) −10.4431 −0.612183
\(292\) −54.1943 −3.17148
\(293\) 29.4340 1.71955 0.859776 0.510672i \(-0.170603\pi\)
0.859776 + 0.510672i \(0.170603\pi\)
\(294\) 17.0055 0.991779
\(295\) 0 0
\(296\) 32.1751 1.87014
\(297\) 5.02827 0.291770
\(298\) −41.0101 −2.37565
\(299\) 1.02827 0.0594666
\(300\) 0 0
\(301\) −0.499600 −0.0287965
\(302\) −48.7175 −2.80338
\(303\) −11.6135 −0.667178
\(304\) −40.0384 −2.29636
\(305\) 0 0
\(306\) −3.32088 −0.189842
\(307\) −9.96812 −0.568911 −0.284455 0.958689i \(-0.591813\pi\)
−0.284455 + 0.958689i \(0.591813\pi\)
\(308\) −10.5561 −0.601492
\(309\) 3.76940 0.214434
\(310\) 0 0
\(311\) 15.9945 0.906967 0.453483 0.891265i \(-0.350181\pi\)
0.453483 + 0.891265i \(0.350181\pi\)
\(312\) 20.5051 1.16087
\(313\) 22.8542 1.29180 0.645899 0.763423i \(-0.276483\pi\)
0.645899 + 0.763423i \(0.276483\pi\)
\(314\) −9.55695 −0.539330
\(315\) 0 0
\(316\) −1.50867 −0.0848695
\(317\) −14.6044 −0.820266 −0.410133 0.912026i \(-0.634518\pi\)
−0.410133 + 0.912026i \(0.634518\pi\)
\(318\) −4.29261 −0.240718
\(319\) −49.5953 −2.77681
\(320\) 0 0
\(321\) 6.73566 0.375948
\(322\) −0.357432 −0.0199189
\(323\) −8.77301 −0.488143
\(324\) 4.32088 0.240049
\(325\) 0 0
\(326\) 31.5333 1.74647
\(327\) −3.90611 −0.216008
\(328\) 41.0101 2.26441
\(329\) −3.36916 −0.185748
\(330\) 0 0
\(331\) −8.16137 −0.448589 −0.224295 0.974521i \(-0.572008\pi\)
−0.224295 + 0.974521i \(0.572008\pi\)
\(332\) −47.2462 −2.59297
\(333\) −5.51414 −0.302173
\(334\) 55.9528 3.06160
\(335\) 0 0
\(336\) −2.92892 −0.159785
\(337\) 11.8825 0.647281 0.323640 0.946180i \(-0.395093\pi\)
0.323640 + 0.946180i \(0.395093\pi\)
\(338\) 1.63631 0.0890033
\(339\) 15.0848 0.819295
\(340\) 0 0
\(341\) 5.02827 0.272296
\(342\) 16.6983 0.902942
\(343\) 6.68739 0.361085
\(344\) −6.00000 −0.323498
\(345\) 0 0
\(346\) −27.5844 −1.48295
\(347\) 18.3684 0.986065 0.493033 0.870011i \(-0.335888\pi\)
0.493033 + 0.870011i \(0.335888\pi\)
\(348\) −42.6182 −2.28457
\(349\) 11.2462 0.601995 0.300997 0.953625i \(-0.402680\pi\)
0.300997 + 0.953625i \(0.402680\pi\)
\(350\) 0 0
\(351\) −3.51414 −0.187571
\(352\) −17.5279 −0.934239
\(353\) −25.3593 −1.34974 −0.674869 0.737937i \(-0.735800\pi\)
−0.674869 + 0.737937i \(0.735800\pi\)
\(354\) 5.51414 0.293073
\(355\) 0 0
\(356\) 21.7502 1.15276
\(357\) −0.641769 −0.0339660
\(358\) 40.0384 2.11610
\(359\) 15.2890 0.806923 0.403461 0.914997i \(-0.367807\pi\)
0.403461 + 0.914997i \(0.367807\pi\)
\(360\) 0 0
\(361\) 25.1131 1.32174
\(362\) 20.2553 1.06459
\(363\) 14.2835 0.749691
\(364\) 7.37743 0.386683
\(365\) 0 0
\(366\) 5.02827 0.262832
\(367\) −6.05655 −0.316149 −0.158075 0.987427i \(-0.550529\pi\)
−0.158075 + 0.987427i \(0.550529\pi\)
\(368\) −1.76394 −0.0919516
\(369\) −7.02827 −0.365877
\(370\) 0 0
\(371\) −0.829557 −0.0430685
\(372\) 4.32088 0.224027
\(373\) −8.06748 −0.417718 −0.208859 0.977946i \(-0.566975\pi\)
−0.208859 + 0.977946i \(0.566975\pi\)
\(374\) −16.6983 −0.863449
\(375\) 0 0
\(376\) −40.4623 −2.08668
\(377\) 34.6610 1.78513
\(378\) 1.22153 0.0628285
\(379\) −36.8114 −1.89088 −0.945438 0.325803i \(-0.894365\pi\)
−0.945438 + 0.325803i \(0.894365\pi\)
\(380\) 0 0
\(381\) 6.25526 0.320467
\(382\) −15.5707 −0.796666
\(383\) 3.63270 0.185622 0.0928111 0.995684i \(-0.470415\pi\)
0.0928111 + 0.995684i \(0.470415\pi\)
\(384\) 15.2498 0.778213
\(385\) 0 0
\(386\) −5.67004 −0.288598
\(387\) 1.02827 0.0522701
\(388\) −45.1232 −2.29078
\(389\) 15.2781 0.774629 0.387315 0.921948i \(-0.373403\pi\)
0.387315 + 0.921948i \(0.373403\pi\)
\(390\) 0 0
\(391\) −0.386505 −0.0195464
\(392\) 39.4677 1.99342
\(393\) −22.1186 −1.11573
\(394\) 23.4340 1.18059
\(395\) 0 0
\(396\) 21.7266 1.09180
\(397\) 18.5852 0.932766 0.466383 0.884583i \(-0.345557\pi\)
0.466383 + 0.884583i \(0.345557\pi\)
\(398\) −41.6036 −2.08540
\(399\) 3.22699 0.161552
\(400\) 0 0
\(401\) 6.19325 0.309276 0.154638 0.987971i \(-0.450579\pi\)
0.154638 + 0.987971i \(0.450579\pi\)
\(402\) 22.9481 1.14455
\(403\) −3.51414 −0.175052
\(404\) −50.1806 −2.49658
\(405\) 0 0
\(406\) −12.0483 −0.597946
\(407\) −27.7266 −1.37436
\(408\) −7.70739 −0.381573
\(409\) −32.0565 −1.58509 −0.792547 0.609811i \(-0.791245\pi\)
−0.792547 + 0.609811i \(0.791245\pi\)
\(410\) 0 0
\(411\) 14.6044 0.720383
\(412\) 16.2871 0.802410
\(413\) 1.06562 0.0524357
\(414\) 0.735663 0.0361559
\(415\) 0 0
\(416\) 12.2498 0.600596
\(417\) 12.8970 0.631570
\(418\) 83.9637 4.10680
\(419\) 9.78860 0.478205 0.239102 0.970994i \(-0.423147\pi\)
0.239102 + 0.970994i \(0.423147\pi\)
\(420\) 0 0
\(421\) −14.2745 −0.695695 −0.347847 0.937551i \(-0.613087\pi\)
−0.347847 + 0.937551i \(0.613087\pi\)
\(422\) −62.8789 −3.06090
\(423\) 6.93438 0.337161
\(424\) −9.96265 −0.483829
\(425\) 0 0
\(426\) −33.8825 −1.64161
\(427\) 0.971726 0.0470251
\(428\) 29.1040 1.40680
\(429\) −17.6700 −0.853118
\(430\) 0 0
\(431\) −22.8350 −1.09992 −0.549962 0.835190i \(-0.685358\pi\)
−0.549962 + 0.835190i \(0.685358\pi\)
\(432\) 6.02827 0.290035
\(433\) −13.8259 −0.664433 −0.332216 0.943203i \(-0.607796\pi\)
−0.332216 + 0.943203i \(0.607796\pi\)
\(434\) 1.22153 0.0586351
\(435\) 0 0
\(436\) −16.8778 −0.808302
\(437\) 1.94345 0.0929679
\(438\) 31.5333 1.50672
\(439\) 39.8506 1.90197 0.950983 0.309243i \(-0.100076\pi\)
0.950983 + 0.309243i \(0.100076\pi\)
\(440\) 0 0
\(441\) −6.76394 −0.322092
\(442\) 11.6700 0.555087
\(443\) 10.1504 0.482262 0.241131 0.970493i \(-0.422482\pi\)
0.241131 + 0.970493i \(0.422482\pi\)
\(444\) −23.8259 −1.13073
\(445\) 0 0
\(446\) 48.4815 2.29566
\(447\) 16.3118 0.771522
\(448\) 1.59976 0.0755815
\(449\) −3.75020 −0.176983 −0.0884914 0.996077i \(-0.528205\pi\)
−0.0884914 + 0.996077i \(0.528205\pi\)
\(450\) 0 0
\(451\) −35.3401 −1.66410
\(452\) 65.1798 3.06580
\(453\) 19.3774 0.910431
\(454\) 58.9162 2.76508
\(455\) 0 0
\(456\) 38.7549 1.81486
\(457\) 1.70193 0.0796127 0.0398064 0.999207i \(-0.487326\pi\)
0.0398064 + 0.999207i \(0.487326\pi\)
\(458\) 62.9245 2.94027
\(459\) 1.32088 0.0616536
\(460\) 0 0
\(461\) 7.40931 0.345086 0.172543 0.985002i \(-0.444802\pi\)
0.172543 + 0.985002i \(0.444802\pi\)
\(462\) 6.14217 0.285760
\(463\) 30.3865 1.41218 0.706090 0.708122i \(-0.250457\pi\)
0.706090 + 0.708122i \(0.250457\pi\)
\(464\) −59.4586 −2.76030
\(465\) 0 0
\(466\) 47.0584 2.17994
\(467\) −17.1040 −0.791480 −0.395740 0.918363i \(-0.629512\pi\)
−0.395740 + 0.918363i \(0.629512\pi\)
\(468\) −15.1842 −0.701889
\(469\) 4.43478 0.204779
\(470\) 0 0
\(471\) 3.80128 0.175154
\(472\) 12.7977 0.589061
\(473\) 5.17044 0.237737
\(474\) 0.877832 0.0403202
\(475\) 0 0
\(476\) −2.77301 −0.127101
\(477\) 1.70739 0.0781760
\(478\) 9.72659 0.444884
\(479\) 21.2890 0.972719 0.486360 0.873759i \(-0.338324\pi\)
0.486360 + 0.873759i \(0.338324\pi\)
\(480\) 0 0
\(481\) 19.3774 0.883535
\(482\) 4.05655 0.184771
\(483\) 0.142169 0.00646890
\(484\) 61.7175 2.80534
\(485\) 0 0
\(486\) −2.51414 −0.114044
\(487\) −20.4996 −0.928926 −0.464463 0.885593i \(-0.653753\pi\)
−0.464463 + 0.885593i \(0.653753\pi\)
\(488\) 11.6700 0.528278
\(489\) −12.5424 −0.567187
\(490\) 0 0
\(491\) −31.0667 −1.40202 −0.701010 0.713152i \(-0.747267\pi\)
−0.701010 + 0.713152i \(0.747267\pi\)
\(492\) −30.3684 −1.36911
\(493\) −13.0283 −0.586764
\(494\) −58.6802 −2.64015
\(495\) 0 0
\(496\) 6.02827 0.270677
\(497\) −6.54787 −0.293712
\(498\) 27.4905 1.23188
\(499\) 15.3401 0.686717 0.343358 0.939205i \(-0.388435\pi\)
0.343358 + 0.939205i \(0.388435\pi\)
\(500\) 0 0
\(501\) −22.2553 −0.994292
\(502\) 64.0384 2.85817
\(503\) 14.9344 0.665891 0.332946 0.942946i \(-0.391957\pi\)
0.332946 + 0.942946i \(0.391957\pi\)
\(504\) 2.83502 0.126282
\(505\) 0 0
\(506\) 3.69912 0.164446
\(507\) −0.650842 −0.0289049
\(508\) 27.0283 1.19919
\(509\) −1.22153 −0.0541432 −0.0270716 0.999633i \(-0.508618\pi\)
−0.0270716 + 0.999633i \(0.508618\pi\)
\(510\) 0 0
\(511\) 6.09389 0.269578
\(512\) 49.3365 2.18038
\(513\) −6.64177 −0.293241
\(514\) 45.3027 1.99822
\(515\) 0 0
\(516\) 4.44305 0.195594
\(517\) 34.8680 1.53349
\(518\) −6.73566 −0.295948
\(519\) 10.9717 0.481605
\(520\) 0 0
\(521\) 4.57429 0.200403 0.100202 0.994967i \(-0.468051\pi\)
0.100202 + 0.994967i \(0.468051\pi\)
\(522\) 24.7977 1.08536
\(523\) 29.7831 1.30233 0.651163 0.758938i \(-0.274281\pi\)
0.651163 + 0.758938i \(0.274281\pi\)
\(524\) −95.5717 −4.17507
\(525\) 0 0
\(526\) 2.91518 0.127108
\(527\) 1.32088 0.0575386
\(528\) 30.3118 1.31915
\(529\) −22.9144 −0.996277
\(530\) 0 0
\(531\) −2.19325 −0.0951790
\(532\) 13.9435 0.604525
\(533\) 24.6983 1.06980
\(534\) −12.6555 −0.547657
\(535\) 0 0
\(536\) 53.2599 2.30048
\(537\) −15.9253 −0.687228
\(538\) 19.6272 0.846190
\(539\) −34.0109 −1.46495
\(540\) 0 0
\(541\) −3.04748 −0.131021 −0.0655106 0.997852i \(-0.520868\pi\)
−0.0655106 + 0.997852i \(0.520868\pi\)
\(542\) −44.7092 −1.92043
\(543\) −8.05655 −0.345740
\(544\) −4.60442 −0.197413
\(545\) 0 0
\(546\) −4.29261 −0.183707
\(547\) −9.82595 −0.420127 −0.210064 0.977688i \(-0.567367\pi\)
−0.210064 + 0.977688i \(0.567367\pi\)
\(548\) 63.1040 2.69567
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 65.5097 2.79081
\(552\) 1.70739 0.0726713
\(553\) 0.169643 0.00721396
\(554\) 65.2143 2.77069
\(555\) 0 0
\(556\) 55.7266 2.36333
\(557\) 38.7922 1.64368 0.821839 0.569719i \(-0.192948\pi\)
0.821839 + 0.569719i \(0.192948\pi\)
\(558\) −2.51414 −0.106432
\(559\) −3.61350 −0.152835
\(560\) 0 0
\(561\) 6.64177 0.280416
\(562\) 32.7549 1.38168
\(563\) −2.73566 −0.115294 −0.0576472 0.998337i \(-0.518360\pi\)
−0.0576472 + 0.998337i \(0.518360\pi\)
\(564\) 29.9627 1.26166
\(565\) 0 0
\(566\) 39.9764 1.68033
\(567\) −0.485863 −0.0204043
\(568\) −78.6374 −3.29955
\(569\) 4.39197 0.184121 0.0920605 0.995753i \(-0.470655\pi\)
0.0920605 + 0.995753i \(0.470655\pi\)
\(570\) 0 0
\(571\) 9.67004 0.404679 0.202339 0.979315i \(-0.435146\pi\)
0.202339 + 0.979315i \(0.435146\pi\)
\(572\) −76.3502 −3.19236
\(573\) 6.19325 0.258727
\(574\) −8.58522 −0.358340
\(575\) 0 0
\(576\) −3.29261 −0.137192
\(577\) −31.4148 −1.30781 −0.653907 0.756575i \(-0.726871\pi\)
−0.653907 + 0.756575i \(0.726871\pi\)
\(578\) 38.3538 1.59531
\(579\) 2.25526 0.0937256
\(580\) 0 0
\(581\) 5.31261 0.220404
\(582\) 26.2553 1.08832
\(583\) 8.58522 0.355564
\(584\) 73.1852 3.02843
\(585\) 0 0
\(586\) −74.0011 −3.05696
\(587\) 27.2161 1.12333 0.561664 0.827366i \(-0.310162\pi\)
0.561664 + 0.827366i \(0.310162\pi\)
\(588\) −29.2262 −1.20527
\(589\) −6.64177 −0.273669
\(590\) 0 0
\(591\) −9.32088 −0.383410
\(592\) −33.2407 −1.36619
\(593\) −32.5561 −1.33692 −0.668460 0.743748i \(-0.733046\pi\)
−0.668460 + 0.743748i \(0.733046\pi\)
\(594\) −12.6418 −0.518698
\(595\) 0 0
\(596\) 70.4815 2.88703
\(597\) 16.5479 0.677259
\(598\) −2.58522 −0.105718
\(599\) 27.8067 1.13615 0.568076 0.822976i \(-0.307688\pi\)
0.568076 + 0.822976i \(0.307688\pi\)
\(600\) 0 0
\(601\) 17.6519 0.720036 0.360018 0.932945i \(-0.382771\pi\)
0.360018 + 0.932945i \(0.382771\pi\)
\(602\) 1.25606 0.0511933
\(603\) −9.12763 −0.371706
\(604\) 83.7276 3.40683
\(605\) 0 0
\(606\) 29.1979 1.18608
\(607\) −44.9673 −1.82517 −0.912584 0.408890i \(-0.865916\pi\)
−0.912584 + 0.408890i \(0.865916\pi\)
\(608\) 23.1523 0.938950
\(609\) 4.79221 0.194190
\(610\) 0 0
\(611\) −24.3684 −0.985838
\(612\) 5.70739 0.230708
\(613\) −33.7694 −1.36393 −0.681967 0.731383i \(-0.738875\pi\)
−0.681967 + 0.731383i \(0.738875\pi\)
\(614\) 25.0612 1.01139
\(615\) 0 0
\(616\) 14.2553 0.574361
\(617\) 26.1131 1.05127 0.525637 0.850709i \(-0.323827\pi\)
0.525637 + 0.850709i \(0.323827\pi\)
\(618\) −9.47679 −0.381212
\(619\) −20.8597 −0.838422 −0.419211 0.907889i \(-0.637693\pi\)
−0.419211 + 0.907889i \(0.637693\pi\)
\(620\) 0 0
\(621\) −0.292611 −0.0117421
\(622\) −40.2125 −1.61237
\(623\) −2.44571 −0.0979852
\(624\) −21.1842 −0.848046
\(625\) 0 0
\(626\) −57.4586 −2.29651
\(627\) −33.3966 −1.33373
\(628\) 16.4249 0.655425
\(629\) −7.28354 −0.290414
\(630\) 0 0
\(631\) −20.5105 −0.816511 −0.408256 0.912868i \(-0.633863\pi\)
−0.408256 + 0.912868i \(0.633863\pi\)
\(632\) 2.03735 0.0810413
\(633\) 25.0101 0.994063
\(634\) 36.7175 1.45824
\(635\) 0 0
\(636\) 7.37743 0.292534
\(637\) 23.7694 0.941778
\(638\) 124.690 4.93650
\(639\) 13.4768 0.533134
\(640\) 0 0
\(641\) 23.9945 0.947727 0.473864 0.880598i \(-0.342859\pi\)
0.473864 + 0.880598i \(0.342859\pi\)
\(642\) −16.9344 −0.668347
\(643\) 13.6700 0.539094 0.269547 0.962987i \(-0.413126\pi\)
0.269547 + 0.962987i \(0.413126\pi\)
\(644\) 0.614295 0.0242066
\(645\) 0 0
\(646\) 22.0565 0.867803
\(647\) 11.1523 0.438442 0.219221 0.975675i \(-0.429648\pi\)
0.219221 + 0.975675i \(0.429648\pi\)
\(648\) −5.83502 −0.229221
\(649\) −11.0283 −0.432898
\(650\) 0 0
\(651\) −0.485863 −0.0190425
\(652\) −54.1943 −2.12241
\(653\) 39.1896 1.53361 0.766805 0.641881i \(-0.221846\pi\)
0.766805 + 0.641881i \(0.221846\pi\)
\(654\) 9.82048 0.384011
\(655\) 0 0
\(656\) −42.3684 −1.65421
\(657\) −12.5424 −0.489326
\(658\) 8.47053 0.330216
\(659\) −31.6464 −1.23277 −0.616385 0.787445i \(-0.711403\pi\)
−0.616385 + 0.787445i \(0.711403\pi\)
\(660\) 0 0
\(661\) −3.59535 −0.139843 −0.0699215 0.997553i \(-0.522275\pi\)
−0.0699215 + 0.997553i \(0.522275\pi\)
\(662\) 20.5188 0.797486
\(663\) −4.64177 −0.180271
\(664\) 63.8023 2.47601
\(665\) 0 0
\(666\) 13.8633 0.537192
\(667\) 2.88611 0.111750
\(668\) −96.1624 −3.72064
\(669\) −19.2835 −0.745545
\(670\) 0 0
\(671\) −10.0565 −0.388229
\(672\) 1.69365 0.0653340
\(673\) 7.24073 0.279110 0.139555 0.990214i \(-0.455433\pi\)
0.139555 + 0.990214i \(0.455433\pi\)
\(674\) −29.8742 −1.15071
\(675\) 0 0
\(676\) −2.81221 −0.108162
\(677\) −38.5188 −1.48040 −0.740199 0.672388i \(-0.765269\pi\)
−0.740199 + 0.672388i \(0.765269\pi\)
\(678\) −37.9253 −1.45651
\(679\) 5.07389 0.194718
\(680\) 0 0
\(681\) −23.4340 −0.897992
\(682\) −12.6418 −0.484078
\(683\) −40.0192 −1.53129 −0.765646 0.643262i \(-0.777581\pi\)
−0.765646 + 0.643262i \(0.777581\pi\)
\(684\) −28.6983 −1.09731
\(685\) 0 0
\(686\) −16.8130 −0.641924
\(687\) −25.0283 −0.954888
\(688\) 6.19872 0.236324
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) −11.8013 −0.448942 −0.224471 0.974481i \(-0.572065\pi\)
−0.224471 + 0.974481i \(0.572065\pi\)
\(692\) 47.4076 1.80217
\(693\) −2.44305 −0.0928039
\(694\) −46.1806 −1.75299
\(695\) 0 0
\(696\) 57.5525 2.18152
\(697\) −9.28354 −0.351639
\(698\) −28.2745 −1.07020
\(699\) −18.7175 −0.707962
\(700\) 0 0
\(701\) 5.17044 0.195285 0.0976425 0.995222i \(-0.468870\pi\)
0.0976425 + 0.995222i \(0.468870\pi\)
\(702\) 8.83502 0.333456
\(703\) 36.6236 1.38129
\(704\) −16.5561 −0.623983
\(705\) 0 0
\(706\) 63.7567 2.39952
\(707\) 5.64257 0.212211
\(708\) −9.47679 −0.356160
\(709\) 47.7722 1.79412 0.897062 0.441906i \(-0.145697\pi\)
0.897062 + 0.441906i \(0.145697\pi\)
\(710\) 0 0
\(711\) −0.349158 −0.0130945
\(712\) −29.3720 −1.10076
\(713\) −0.292611 −0.0109584
\(714\) 1.61350 0.0603835
\(715\) 0 0
\(716\) −68.8114 −2.57160
\(717\) −3.86876 −0.144481
\(718\) −38.4386 −1.43452
\(719\) 23.0848 0.860919 0.430459 0.902610i \(-0.358352\pi\)
0.430459 + 0.902610i \(0.358352\pi\)
\(720\) 0 0
\(721\) −1.83141 −0.0682054
\(722\) −63.1378 −2.34974
\(723\) −1.61350 −0.0600065
\(724\) −34.8114 −1.29376
\(725\) 0 0
\(726\) −35.9108 −1.33277
\(727\) 22.2125 0.823814 0.411907 0.911226i \(-0.364863\pi\)
0.411907 + 0.911226i \(0.364863\pi\)
\(728\) −9.96265 −0.369241
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 1.35823 0.0502360
\(732\) −8.64177 −0.319409
\(733\) 43.9072 1.62175 0.810874 0.585221i \(-0.198992\pi\)
0.810874 + 0.585221i \(0.198992\pi\)
\(734\) 15.2270 0.562038
\(735\) 0 0
\(736\) 1.02000 0.0375977
\(737\) −45.8962 −1.69061
\(738\) 17.6700 0.650443
\(739\) 6.86690 0.252603 0.126302 0.991992i \(-0.459689\pi\)
0.126302 + 0.991992i \(0.459689\pi\)
\(740\) 0 0
\(741\) 23.3401 0.857419
\(742\) 2.08562 0.0765656
\(743\) −29.2726 −1.07391 −0.536954 0.843612i \(-0.680425\pi\)
−0.536954 + 0.843612i \(0.680425\pi\)
\(744\) −5.83502 −0.213922
\(745\) 0 0
\(746\) 20.2827 0.742604
\(747\) −10.9344 −0.400068
\(748\) 28.6983 1.04931
\(749\) −3.27261 −0.119579
\(750\) 0 0
\(751\) 9.67004 0.352865 0.176432 0.984313i \(-0.443544\pi\)
0.176432 + 0.984313i \(0.443544\pi\)
\(752\) 41.8023 1.52437
\(753\) −25.4713 −0.928227
\(754\) −87.1424 −3.17354
\(755\) 0 0
\(756\) −2.09936 −0.0763529
\(757\) 49.4104 1.79585 0.897925 0.440148i \(-0.145074\pi\)
0.897925 + 0.440148i \(0.145074\pi\)
\(758\) 92.5489 3.36153
\(759\) −1.47133 −0.0534058
\(760\) 0 0
\(761\) 47.2599 1.71317 0.856586 0.516005i \(-0.172581\pi\)
0.856586 + 0.516005i \(0.172581\pi\)
\(762\) −15.7266 −0.569714
\(763\) 1.89783 0.0687062
\(764\) 26.7603 0.968155
\(765\) 0 0
\(766\) −9.13310 −0.329992
\(767\) 7.70739 0.278298
\(768\) −31.7549 −1.14585
\(769\) 9.49053 0.342237 0.171119 0.985250i \(-0.445262\pi\)
0.171119 + 0.985250i \(0.445262\pi\)
\(770\) 0 0
\(771\) −18.0192 −0.648946
\(772\) 9.74474 0.350721
\(773\) −41.7567 −1.50188 −0.750942 0.660368i \(-0.770400\pi\)
−0.750942 + 0.660368i \(0.770400\pi\)
\(774\) −2.58522 −0.0929239
\(775\) 0 0
\(776\) 60.9354 2.18745
\(777\) 2.67912 0.0961127
\(778\) −38.4112 −1.37711
\(779\) 46.6802 1.67249
\(780\) 0 0
\(781\) 67.7650 2.42482
\(782\) 0.971726 0.0347489
\(783\) −9.86330 −0.352485
\(784\) −40.7749 −1.45625
\(785\) 0 0
\(786\) 55.6091 1.98351
\(787\) 40.0950 1.42923 0.714615 0.699518i \(-0.246602\pi\)
0.714615 + 0.699518i \(0.246602\pi\)
\(788\) −40.2745 −1.43472
\(789\) −1.15951 −0.0412798
\(790\) 0 0
\(791\) −7.32916 −0.260595
\(792\) −29.3401 −1.04255
\(793\) 7.02827 0.249581
\(794\) −46.7258 −1.65824
\(795\) 0 0
\(796\) 71.5015 2.53430
\(797\) 31.1150 1.10215 0.551074 0.834456i \(-0.314218\pi\)
0.551074 + 0.834456i \(0.314218\pi\)
\(798\) −8.11310 −0.287200
\(799\) 9.15951 0.324040
\(800\) 0 0
\(801\) 5.03374 0.177858
\(802\) −15.5707 −0.549820
\(803\) −63.0667 −2.22557
\(804\) −39.4394 −1.39092
\(805\) 0 0
\(806\) 8.83502 0.311200
\(807\) −7.80675 −0.274811
\(808\) 67.7650 2.38396
\(809\) 46.6291 1.63939 0.819696 0.572799i \(-0.194143\pi\)
0.819696 + 0.572799i \(0.194143\pi\)
\(810\) 0 0
\(811\) −47.0283 −1.65139 −0.825693 0.564120i \(-0.809216\pi\)
−0.825693 + 0.564120i \(0.809216\pi\)
\(812\) 20.7066 0.726659
\(813\) 17.7831 0.623682
\(814\) 69.7084 2.44328
\(815\) 0 0
\(816\) 7.96265 0.278749
\(817\) −6.82956 −0.238936
\(818\) 80.5946 2.81792
\(819\) 1.70739 0.0596610
\(820\) 0 0
\(821\) 35.3912 1.23516 0.617580 0.786508i \(-0.288113\pi\)
0.617580 + 0.786508i \(0.288113\pi\)
\(822\) −36.7175 −1.28067
\(823\) 17.2161 0.600114 0.300057 0.953921i \(-0.402994\pi\)
0.300057 + 0.953921i \(0.402994\pi\)
\(824\) −21.9945 −0.766216
\(825\) 0 0
\(826\) −2.67912 −0.0932184
\(827\) −16.3310 −0.567885 −0.283942 0.958841i \(-0.591642\pi\)
−0.283942 + 0.958841i \(0.591642\pi\)
\(828\) −1.26434 −0.0439387
\(829\) −29.0667 −1.00953 −0.504764 0.863258i \(-0.668420\pi\)
−0.504764 + 0.863258i \(0.668420\pi\)
\(830\) 0 0
\(831\) −25.9390 −0.899815
\(832\) 11.5707 0.401141
\(833\) −8.93438 −0.309558
\(834\) −32.4249 −1.12278
\(835\) 0 0
\(836\) −144.303 −4.99082
\(837\) 1.00000 0.0345651
\(838\) −24.6099 −0.850134
\(839\) 27.6646 0.955087 0.477544 0.878608i \(-0.341527\pi\)
0.477544 + 0.878608i \(0.341527\pi\)
\(840\) 0 0
\(841\) 68.2846 2.35464
\(842\) 35.8880 1.23678
\(843\) −13.0283 −0.448718
\(844\) 108.066 3.71978
\(845\) 0 0
\(846\) −17.4340 −0.599393
\(847\) −6.93984 −0.238456
\(848\) 10.2926 0.353450
\(849\) −15.9006 −0.545709
\(850\) 0 0
\(851\) 1.61350 0.0553099
\(852\) 58.2317 1.99498
\(853\) −32.5105 −1.11314 −0.556570 0.830801i \(-0.687883\pi\)
−0.556570 + 0.830801i \(0.687883\pi\)
\(854\) −2.44305 −0.0835995
\(855\) 0 0
\(856\) −39.3027 −1.34334
\(857\) 45.9144 1.56841 0.784203 0.620505i \(-0.213072\pi\)
0.784203 + 0.620505i \(0.213072\pi\)
\(858\) 44.4249 1.51664
\(859\) −19.6026 −0.668831 −0.334415 0.942426i \(-0.608539\pi\)
−0.334415 + 0.942426i \(0.608539\pi\)
\(860\) 0 0
\(861\) 3.41478 0.116375
\(862\) 57.4104 1.95540
\(863\) −46.1696 −1.57163 −0.785816 0.618460i \(-0.787757\pi\)
−0.785816 + 0.618460i \(0.787757\pi\)
\(864\) −3.48586 −0.118591
\(865\) 0 0
\(866\) 34.7603 1.18120
\(867\) −15.2553 −0.518096
\(868\) −2.09936 −0.0712569
\(869\) −1.75566 −0.0595568
\(870\) 0 0
\(871\) 32.0757 1.08685
\(872\) 22.7922 0.771842
\(873\) −10.4431 −0.353444
\(874\) −4.88611 −0.165275
\(875\) 0 0
\(876\) −54.1943 −1.83106
\(877\) −11.3017 −0.381631 −0.190815 0.981626i \(-0.561113\pi\)
−0.190815 + 0.981626i \(0.561113\pi\)
\(878\) −100.190 −3.38125
\(879\) 29.4340 0.992784
\(880\) 0 0
\(881\) −9.60803 −0.323703 −0.161851 0.986815i \(-0.551747\pi\)
−0.161851 + 0.986815i \(0.551747\pi\)
\(882\) 17.0055 0.572604
\(883\) 33.5279 1.12830 0.564151 0.825671i \(-0.309203\pi\)
0.564151 + 0.825671i \(0.309203\pi\)
\(884\) −20.0565 −0.674575
\(885\) 0 0
\(886\) −25.5196 −0.857348
\(887\) 9.76394 0.327841 0.163920 0.986474i \(-0.447586\pi\)
0.163920 + 0.986474i \(0.447586\pi\)
\(888\) 32.1751 1.07973
\(889\) −3.03920 −0.101932
\(890\) 0 0
\(891\) 5.02827 0.168454
\(892\) −83.3219 −2.78982
\(893\) −46.0565 −1.54122
\(894\) −41.0101 −1.37158
\(895\) 0 0
\(896\) −7.40931 −0.247528
\(897\) 1.02827 0.0343331
\(898\) 9.42852 0.314634
\(899\) −9.86330 −0.328959
\(900\) 0 0
\(901\) 2.25526 0.0751337
\(902\) 88.8498 2.95838
\(903\) −0.499600 −0.0166257
\(904\) −88.0203 −2.92751
\(905\) 0 0
\(906\) −48.7175 −1.61853
\(907\) 9.18418 0.304956 0.152478 0.988307i \(-0.451275\pi\)
0.152478 + 0.988307i \(0.451275\pi\)
\(908\) −101.256 −3.36028
\(909\) −11.6135 −0.385195
\(910\) 0 0
\(911\) −12.2553 −0.406035 −0.203018 0.979175i \(-0.565075\pi\)
−0.203018 + 0.979175i \(0.565075\pi\)
\(912\) −40.0384 −1.32580
\(913\) −54.9811 −1.81961
\(914\) −4.27887 −0.141533
\(915\) 0 0
\(916\) −108.144 −3.57319
\(917\) 10.7466 0.354884
\(918\) −3.32088 −0.109606
\(919\) −47.5663 −1.56907 −0.784533 0.620087i \(-0.787097\pi\)
−0.784533 + 0.620087i \(0.787097\pi\)
\(920\) 0 0
\(921\) −9.96812 −0.328461
\(922\) −18.6280 −0.613482
\(923\) −47.3593 −1.55885
\(924\) −10.5561 −0.347272
\(925\) 0 0
\(926\) −76.3958 −2.51052
\(927\) 3.76940 0.123803
\(928\) 34.3821 1.12865
\(929\) 23.5333 0.772104 0.386052 0.922477i \(-0.373839\pi\)
0.386052 + 0.922477i \(0.373839\pi\)
\(930\) 0 0
\(931\) 44.9245 1.47234
\(932\) −80.8762 −2.64919
\(933\) 15.9945 0.523638
\(934\) 43.0019 1.40706
\(935\) 0 0
\(936\) 20.5051 0.670229
\(937\) 56.7258 1.85315 0.926575 0.376109i \(-0.122738\pi\)
0.926575 + 0.376109i \(0.122738\pi\)
\(938\) −11.1496 −0.364049
\(939\) 22.8542 0.745819
\(940\) 0 0
\(941\) −33.5333 −1.09316 −0.546578 0.837408i \(-0.684070\pi\)
−0.546578 + 0.837408i \(0.684070\pi\)
\(942\) −9.55695 −0.311382
\(943\) 2.05655 0.0669704
\(944\) −13.2215 −0.430324
\(945\) 0 0
\(946\) −12.9992 −0.422640
\(947\) 52.0685 1.69200 0.846000 0.533183i \(-0.179004\pi\)
0.846000 + 0.533183i \(0.179004\pi\)
\(948\) −1.50867 −0.0489994
\(949\) 44.0757 1.43076
\(950\) 0 0
\(951\) −14.6044 −0.473581
\(952\) 3.74474 0.121368
\(953\) 11.1896 0.362468 0.181234 0.983440i \(-0.441991\pi\)
0.181234 + 0.983440i \(0.441991\pi\)
\(954\) −4.29261 −0.138978
\(955\) 0 0
\(956\) −16.7165 −0.540649
\(957\) −49.5953 −1.60319
\(958\) −53.5235 −1.72926
\(959\) −7.09575 −0.229134
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −48.7175 −1.57072
\(963\) 6.73566 0.217054
\(964\) −6.97173 −0.224544
\(965\) 0 0
\(966\) −0.357432 −0.0115002
\(967\) −36.8296 −1.18436 −0.592179 0.805806i \(-0.701732\pi\)
−0.592179 + 0.805806i \(0.701732\pi\)
\(968\) −83.3448 −2.67880
\(969\) −8.77301 −0.281830
\(970\) 0 0
\(971\) 18.7494 0.601697 0.300848 0.953672i \(-0.402730\pi\)
0.300848 + 0.953672i \(0.402730\pi\)
\(972\) 4.32088 0.138592
\(973\) −6.26619 −0.200885
\(974\) 51.5388 1.65141
\(975\) 0 0
\(976\) −12.0565 −0.385921
\(977\) 50.2262 1.60688 0.803439 0.595387i \(-0.203001\pi\)
0.803439 + 0.595387i \(0.203001\pi\)
\(978\) 31.5333 1.00832
\(979\) 25.3110 0.808943
\(980\) 0 0
\(981\) −3.90611 −0.124712
\(982\) 78.1059 2.49246
\(983\) −15.5279 −0.495262 −0.247631 0.968854i \(-0.579652\pi\)
−0.247631 + 0.968854i \(0.579652\pi\)
\(984\) 41.0101 1.30736
\(985\) 0 0
\(986\) 32.7549 1.04313
\(987\) −3.36916 −0.107242
\(988\) 100.850 3.20846
\(989\) −0.300884 −0.00956755
\(990\) 0 0
\(991\) −20.1022 −0.638566 −0.319283 0.947659i \(-0.603442\pi\)
−0.319283 + 0.947659i \(0.603442\pi\)
\(992\) −3.48586 −0.110676
\(993\) −8.16137 −0.258993
\(994\) 16.4623 0.522151
\(995\) 0 0
\(996\) −47.2462 −1.49705
\(997\) 20.8186 0.659333 0.329666 0.944098i \(-0.393064\pi\)
0.329666 + 0.944098i \(0.393064\pi\)
\(998\) −38.5671 −1.22082
\(999\) −5.51414 −0.174460
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.a.r.1.1 3
3.2 odd 2 6975.2.a.bf.1.3 3
5.2 odd 4 2325.2.c.k.1024.1 6
5.3 odd 4 2325.2.c.k.1024.6 6
5.4 even 2 465.2.a.e.1.3 3
15.14 odd 2 1395.2.a.j.1.1 3
20.19 odd 2 7440.2.a.bs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.e.1.3 3 5.4 even 2
1395.2.a.j.1.1 3 15.14 odd 2
2325.2.a.r.1.1 3 1.1 even 1 trivial
2325.2.c.k.1024.1 6 5.2 odd 4
2325.2.c.k.1024.6 6 5.3 odd 4
6975.2.a.bf.1.3 3 3.2 odd 2
7440.2.a.bs.1.3 3 20.19 odd 2