Properties

Label 2325.2.a.q.1.3
Level $2325$
Weight $2$
Character 2325.1
Self dual yes
Analytic conductor $18.565$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,-3,1,0,1,-2,-3,3,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 2325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.48119 q^{2} -1.00000 q^{3} +0.193937 q^{4} -1.48119 q^{6} -2.48119 q^{7} -2.67513 q^{8} +1.00000 q^{9} +2.00000 q^{11} -0.193937 q^{12} +5.83146 q^{13} -3.67513 q^{14} -4.35026 q^{16} -3.76845 q^{17} +1.48119 q^{18} +2.48119 q^{21} +2.96239 q^{22} -0.806063 q^{23} +2.67513 q^{24} +8.63752 q^{26} -1.00000 q^{27} -0.481194 q^{28} +4.06300 q^{29} +1.00000 q^{31} -1.09332 q^{32} -2.00000 q^{33} -5.58181 q^{34} +0.193937 q^{36} -12.1441 q^{37} -5.83146 q^{39} +9.92478 q^{41} +3.67513 q^{42} +10.3127 q^{43} +0.387873 q^{44} -1.19394 q^{46} +1.58181 q^{47} +4.35026 q^{48} -0.843675 q^{49} +3.76845 q^{51} +1.13093 q^{52} +7.11871 q^{53} -1.48119 q^{54} +6.63752 q^{56} +6.01810 q^{58} +9.41327 q^{59} +6.31265 q^{61} +1.48119 q^{62} -2.48119 q^{63} +7.08110 q^{64} -2.96239 q^{66} +14.4060 q^{67} -0.730841 q^{68} +0.806063 q^{69} +12.2496 q^{71} -2.67513 q^{72} -1.25694 q^{73} -17.9878 q^{74} -4.96239 q^{77} -8.63752 q^{78} +12.8568 q^{79} +1.00000 q^{81} +14.7005 q^{82} +0.0303172 q^{83} +0.481194 q^{84} +15.2750 q^{86} -4.06300 q^{87} -5.35026 q^{88} -13.7259 q^{89} -14.4690 q^{91} -0.156325 q^{92} -1.00000 q^{93} +2.34297 q^{94} +1.09332 q^{96} +12.0000 q^{97} -1.24965 q^{98} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 3 q^{3} + q^{4} + q^{6} - 2 q^{7} - 3 q^{8} + 3 q^{9} + 6 q^{11} - q^{12} + 2 q^{13} - 6 q^{14} - 3 q^{16} - q^{18} + 2 q^{21} - 2 q^{22} - 2 q^{23} + 3 q^{24} + 10 q^{26} - 3 q^{27}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119 1.04736 0.523681 0.851914i \(-0.324558\pi\)
0.523681 + 0.851914i \(0.324558\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.193937 0.0969683
\(5\) 0 0
\(6\) −1.48119 −0.604695
\(7\) −2.48119 −0.937803 −0.468902 0.883250i \(-0.655350\pi\)
−0.468902 + 0.883250i \(0.655350\pi\)
\(8\) −2.67513 −0.945802
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) −0.193937 −0.0559847
\(13\) 5.83146 1.61735 0.808677 0.588252i \(-0.200184\pi\)
0.808677 + 0.588252i \(0.200184\pi\)
\(14\) −3.67513 −0.982220
\(15\) 0 0
\(16\) −4.35026 −1.08757
\(17\) −3.76845 −0.913984 −0.456992 0.889471i \(-0.651073\pi\)
−0.456992 + 0.889471i \(0.651073\pi\)
\(18\) 1.48119 0.349121
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 2.48119 0.541441
\(22\) 2.96239 0.631583
\(23\) −0.806063 −0.168076 −0.0840379 0.996463i \(-0.526782\pi\)
−0.0840379 + 0.996463i \(0.526782\pi\)
\(24\) 2.67513 0.546059
\(25\) 0 0
\(26\) 8.63752 1.69396
\(27\) −1.00000 −0.192450
\(28\) −0.481194 −0.0909372
\(29\) 4.06300 0.754481 0.377240 0.926115i \(-0.376873\pi\)
0.377240 + 0.926115i \(0.376873\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) −1.09332 −0.193274
\(33\) −2.00000 −0.348155
\(34\) −5.58181 −0.957272
\(35\) 0 0
\(36\) 0.193937 0.0323228
\(37\) −12.1441 −1.99648 −0.998239 0.0593136i \(-0.981109\pi\)
−0.998239 + 0.0593136i \(0.981109\pi\)
\(38\) 0 0
\(39\) −5.83146 −0.933780
\(40\) 0 0
\(41\) 9.92478 1.54999 0.774995 0.631967i \(-0.217752\pi\)
0.774995 + 0.631967i \(0.217752\pi\)
\(42\) 3.67513 0.567085
\(43\) 10.3127 1.57266 0.786332 0.617804i \(-0.211977\pi\)
0.786332 + 0.617804i \(0.211977\pi\)
\(44\) 0.387873 0.0584741
\(45\) 0 0
\(46\) −1.19394 −0.176036
\(47\) 1.58181 0.230731 0.115365 0.993323i \(-0.463196\pi\)
0.115365 + 0.993323i \(0.463196\pi\)
\(48\) 4.35026 0.627906
\(49\) −0.843675 −0.120525
\(50\) 0 0
\(51\) 3.76845 0.527689
\(52\) 1.13093 0.156832
\(53\) 7.11871 0.977831 0.488915 0.872331i \(-0.337393\pi\)
0.488915 + 0.872331i \(0.337393\pi\)
\(54\) −1.48119 −0.201565
\(55\) 0 0
\(56\) 6.63752 0.886976
\(57\) 0 0
\(58\) 6.01810 0.790215
\(59\) 9.41327 1.22550 0.612751 0.790276i \(-0.290063\pi\)
0.612751 + 0.790276i \(0.290063\pi\)
\(60\) 0 0
\(61\) 6.31265 0.808252 0.404126 0.914703i \(-0.367576\pi\)
0.404126 + 0.914703i \(0.367576\pi\)
\(62\) 1.48119 0.188112
\(63\) −2.48119 −0.312601
\(64\) 7.08110 0.885138
\(65\) 0 0
\(66\) −2.96239 −0.364645
\(67\) 14.4060 1.75997 0.879985 0.475002i \(-0.157553\pi\)
0.879985 + 0.475002i \(0.157553\pi\)
\(68\) −0.730841 −0.0886274
\(69\) 0.806063 0.0970386
\(70\) 0 0
\(71\) 12.2496 1.45377 0.726883 0.686762i \(-0.240968\pi\)
0.726883 + 0.686762i \(0.240968\pi\)
\(72\) −2.67513 −0.315267
\(73\) −1.25694 −0.147114 −0.0735569 0.997291i \(-0.523435\pi\)
−0.0735569 + 0.997291i \(0.523435\pi\)
\(74\) −17.9878 −2.09104
\(75\) 0 0
\(76\) 0 0
\(77\) −4.96239 −0.565517
\(78\) −8.63752 −0.978006
\(79\) 12.8568 1.44651 0.723254 0.690582i \(-0.242645\pi\)
0.723254 + 0.690582i \(0.242645\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 14.7005 1.62340
\(83\) 0.0303172 0.00332774 0.00166387 0.999999i \(-0.499470\pi\)
0.00166387 + 0.999999i \(0.499470\pi\)
\(84\) 0.481194 0.0525026
\(85\) 0 0
\(86\) 15.2750 1.64715
\(87\) −4.06300 −0.435600
\(88\) −5.35026 −0.570340
\(89\) −13.7259 −1.45494 −0.727472 0.686137i \(-0.759305\pi\)
−0.727472 + 0.686137i \(0.759305\pi\)
\(90\) 0 0
\(91\) −14.4690 −1.51676
\(92\) −0.156325 −0.0162980
\(93\) −1.00000 −0.103695
\(94\) 2.34297 0.241659
\(95\) 0 0
\(96\) 1.09332 0.111587
\(97\) 12.0000 1.21842 0.609208 0.793011i \(-0.291488\pi\)
0.609208 + 0.793011i \(0.291488\pi\)
\(98\) −1.24965 −0.126233
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −10.2374 −1.01866 −0.509331 0.860571i \(-0.670107\pi\)
−0.509331 + 0.860571i \(0.670107\pi\)
\(102\) 5.58181 0.552682
\(103\) 13.7562 1.35544 0.677721 0.735319i \(-0.262968\pi\)
0.677721 + 0.735319i \(0.262968\pi\)
\(104\) −15.5999 −1.52970
\(105\) 0 0
\(106\) 10.5442 1.02414
\(107\) 4.15633 0.401807 0.200904 0.979611i \(-0.435612\pi\)
0.200904 + 0.979611i \(0.435612\pi\)
\(108\) −0.193937 −0.0186616
\(109\) −13.8945 −1.33085 −0.665424 0.746466i \(-0.731749\pi\)
−0.665424 + 0.746466i \(0.731749\pi\)
\(110\) 0 0
\(111\) 12.1441 1.15267
\(112\) 10.7938 1.01992
\(113\) 8.57452 0.806623 0.403311 0.915063i \(-0.367859\pi\)
0.403311 + 0.915063i \(0.367859\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.787965 0.0731607
\(117\) 5.83146 0.539118
\(118\) 13.9429 1.28355
\(119\) 9.35026 0.857137
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 9.35026 0.846533
\(123\) −9.92478 −0.894887
\(124\) 0.193937 0.0174160
\(125\) 0 0
\(126\) −3.67513 −0.327407
\(127\) −7.66291 −0.679973 −0.339987 0.940430i \(-0.610423\pi\)
−0.339987 + 0.940430i \(0.610423\pi\)
\(128\) 12.6751 1.12033
\(129\) −10.3127 −0.907978
\(130\) 0 0
\(131\) −6.37565 −0.557044 −0.278522 0.960430i \(-0.589844\pi\)
−0.278522 + 0.960430i \(0.589844\pi\)
\(132\) −0.387873 −0.0337600
\(133\) 0 0
\(134\) 21.3380 1.84333
\(135\) 0 0
\(136\) 10.0811 0.864447
\(137\) −2.93207 −0.250504 −0.125252 0.992125i \(-0.539974\pi\)
−0.125252 + 0.992125i \(0.539974\pi\)
\(138\) 1.19394 0.101635
\(139\) −1.73813 −0.147427 −0.0737133 0.997279i \(-0.523485\pi\)
−0.0737133 + 0.997279i \(0.523485\pi\)
\(140\) 0 0
\(141\) −1.58181 −0.133212
\(142\) 18.1441 1.52262
\(143\) 11.6629 0.975302
\(144\) −4.35026 −0.362522
\(145\) 0 0
\(146\) −1.86177 −0.154081
\(147\) 0.843675 0.0695851
\(148\) −2.35519 −0.193595
\(149\) −15.8496 −1.29845 −0.649223 0.760598i \(-0.724906\pi\)
−0.649223 + 0.760598i \(0.724906\pi\)
\(150\) 0 0
\(151\) 15.8945 1.29347 0.646736 0.762714i \(-0.276133\pi\)
0.646736 + 0.762714i \(0.276133\pi\)
\(152\) 0 0
\(153\) −3.76845 −0.304661
\(154\) −7.35026 −0.592301
\(155\) 0 0
\(156\) −1.13093 −0.0905471
\(157\) 0.463096 0.0369591 0.0184795 0.999829i \(-0.494117\pi\)
0.0184795 + 0.999829i \(0.494117\pi\)
\(158\) 19.0435 1.51502
\(159\) −7.11871 −0.564551
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 1.48119 0.116374
\(163\) −14.5320 −1.13823 −0.569116 0.822257i \(-0.692715\pi\)
−0.569116 + 0.822257i \(0.692715\pi\)
\(164\) 1.92478 0.150300
\(165\) 0 0
\(166\) 0.0449056 0.00348535
\(167\) 3.87399 0.299779 0.149889 0.988703i \(-0.452108\pi\)
0.149889 + 0.988703i \(0.452108\pi\)
\(168\) −6.63752 −0.512096
\(169\) 21.0059 1.61584
\(170\) 0 0
\(171\) 0 0
\(172\) 2.00000 0.152499
\(173\) −12.8265 −0.975183 −0.487592 0.873072i \(-0.662124\pi\)
−0.487592 + 0.873072i \(0.662124\pi\)
\(174\) −6.01810 −0.456231
\(175\) 0 0
\(176\) −8.70052 −0.655827
\(177\) −9.41327 −0.707544
\(178\) −20.3307 −1.52385
\(179\) −2.23743 −0.167233 −0.0836166 0.996498i \(-0.526647\pi\)
−0.0836166 + 0.996498i \(0.526647\pi\)
\(180\) 0 0
\(181\) −20.2374 −1.50424 −0.752118 0.659028i \(-0.770968\pi\)
−0.752118 + 0.659028i \(0.770968\pi\)
\(182\) −21.4314 −1.58860
\(183\) −6.31265 −0.466645
\(184\) 2.15633 0.158966
\(185\) 0 0
\(186\) −1.48119 −0.108606
\(187\) −7.53690 −0.551153
\(188\) 0.306771 0.0223736
\(189\) 2.48119 0.180480
\(190\) 0 0
\(191\) −9.78655 −0.708130 −0.354065 0.935221i \(-0.615201\pi\)
−0.354065 + 0.935221i \(0.615201\pi\)
\(192\) −7.08110 −0.511035
\(193\) −4.83638 −0.348130 −0.174065 0.984734i \(-0.555690\pi\)
−0.174065 + 0.984734i \(0.555690\pi\)
\(194\) 17.7743 1.27612
\(195\) 0 0
\(196\) −0.163619 −0.0116871
\(197\) 10.0059 0.712889 0.356445 0.934316i \(-0.383989\pi\)
0.356445 + 0.934316i \(0.383989\pi\)
\(198\) 2.96239 0.210528
\(199\) −3.05808 −0.216782 −0.108391 0.994108i \(-0.534570\pi\)
−0.108391 + 0.994108i \(0.534570\pi\)
\(200\) 0 0
\(201\) −14.4060 −1.01612
\(202\) −15.1636 −1.06691
\(203\) −10.0811 −0.707555
\(204\) 0.730841 0.0511691
\(205\) 0 0
\(206\) 20.3757 1.41964
\(207\) −0.806063 −0.0560253
\(208\) −25.3684 −1.75898
\(209\) 0 0
\(210\) 0 0
\(211\) −8.49929 −0.585115 −0.292558 0.956248i \(-0.594506\pi\)
−0.292558 + 0.956248i \(0.594506\pi\)
\(212\) 1.38058 0.0948185
\(213\) −12.2496 −0.839332
\(214\) 6.15633 0.420838
\(215\) 0 0
\(216\) 2.67513 0.182020
\(217\) −2.48119 −0.168434
\(218\) −20.5804 −1.39388
\(219\) 1.25694 0.0849362
\(220\) 0 0
\(221\) −21.9756 −1.47824
\(222\) 17.9878 1.20726
\(223\) −21.7235 −1.45472 −0.727358 0.686258i \(-0.759252\pi\)
−0.727358 + 0.686258i \(0.759252\pi\)
\(224\) 2.71274 0.181253
\(225\) 0 0
\(226\) 12.7005 0.844826
\(227\) 14.0205 0.930571 0.465286 0.885161i \(-0.345952\pi\)
0.465286 + 0.885161i \(0.345952\pi\)
\(228\) 0 0
\(229\) −7.02302 −0.464094 −0.232047 0.972705i \(-0.574542\pi\)
−0.232047 + 0.972705i \(0.574542\pi\)
\(230\) 0 0
\(231\) 4.96239 0.326501
\(232\) −10.8691 −0.713589
\(233\) 10.9321 0.716184 0.358092 0.933686i \(-0.383427\pi\)
0.358092 + 0.933686i \(0.383427\pi\)
\(234\) 8.63752 0.564652
\(235\) 0 0
\(236\) 1.82558 0.118835
\(237\) −12.8568 −0.835142
\(238\) 13.8496 0.897733
\(239\) 7.42548 0.480315 0.240157 0.970734i \(-0.422801\pi\)
0.240157 + 0.970734i \(0.422801\pi\)
\(240\) 0 0
\(241\) −10.4387 −0.672413 −0.336207 0.941788i \(-0.609144\pi\)
−0.336207 + 0.941788i \(0.609144\pi\)
\(242\) −10.3684 −0.666503
\(243\) −1.00000 −0.0641500
\(244\) 1.22425 0.0783748
\(245\) 0 0
\(246\) −14.7005 −0.937271
\(247\) 0 0
\(248\) −2.67513 −0.169871
\(249\) −0.0303172 −0.00192127
\(250\) 0 0
\(251\) 10.7612 0.679238 0.339619 0.940563i \(-0.389702\pi\)
0.339619 + 0.940563i \(0.389702\pi\)
\(252\) −0.481194 −0.0303124
\(253\) −1.61213 −0.101354
\(254\) −11.3503 −0.712179
\(255\) 0 0
\(256\) 4.61213 0.288258
\(257\) 21.9452 1.36891 0.684453 0.729057i \(-0.260041\pi\)
0.684453 + 0.729057i \(0.260041\pi\)
\(258\) −15.2750 −0.950982
\(259\) 30.1319 1.87230
\(260\) 0 0
\(261\) 4.06300 0.251494
\(262\) −9.44358 −0.583427
\(263\) −5.73813 −0.353829 −0.176914 0.984226i \(-0.556612\pi\)
−0.176914 + 0.984226i \(0.556612\pi\)
\(264\) 5.35026 0.329286
\(265\) 0 0
\(266\) 0 0
\(267\) 13.7259 0.840012
\(268\) 2.79384 0.170661
\(269\) 13.3625 0.814725 0.407362 0.913267i \(-0.366449\pi\)
0.407362 + 0.913267i \(0.366449\pi\)
\(270\) 0 0
\(271\) 3.03761 0.184522 0.0922609 0.995735i \(-0.470591\pi\)
0.0922609 + 0.995735i \(0.470591\pi\)
\(272\) 16.3938 0.994017
\(273\) 14.4690 0.875702
\(274\) −4.34297 −0.262368
\(275\) 0 0
\(276\) 0.156325 0.00940967
\(277\) 16.1441 0.970005 0.485003 0.874513i \(-0.338819\pi\)
0.485003 + 0.874513i \(0.338819\pi\)
\(278\) −2.57452 −0.154409
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 28.2130 1.68305 0.841523 0.540221i \(-0.181660\pi\)
0.841523 + 0.540221i \(0.181660\pi\)
\(282\) −2.34297 −0.139522
\(283\) 13.0557 0.776081 0.388041 0.921642i \(-0.373152\pi\)
0.388041 + 0.921642i \(0.373152\pi\)
\(284\) 2.37565 0.140969
\(285\) 0 0
\(286\) 17.2750 1.02149
\(287\) −24.6253 −1.45359
\(288\) −1.09332 −0.0644246
\(289\) −2.79877 −0.164633
\(290\) 0 0
\(291\) −12.0000 −0.703452
\(292\) −0.243767 −0.0142654
\(293\) −2.00588 −0.117185 −0.0585924 0.998282i \(-0.518661\pi\)
−0.0585924 + 0.998282i \(0.518661\pi\)
\(294\) 1.24965 0.0728809
\(295\) 0 0
\(296\) 32.4871 1.88827
\(297\) −2.00000 −0.116052
\(298\) −23.4763 −1.35994
\(299\) −4.70052 −0.271838
\(300\) 0 0
\(301\) −25.5877 −1.47485
\(302\) 23.5428 1.35473
\(303\) 10.2374 0.588125
\(304\) 0 0
\(305\) 0 0
\(306\) −5.58181 −0.319091
\(307\) −0.743059 −0.0424086 −0.0212043 0.999775i \(-0.506750\pi\)
−0.0212043 + 0.999775i \(0.506750\pi\)
\(308\) −0.962389 −0.0548372
\(309\) −13.7562 −0.782565
\(310\) 0 0
\(311\) 19.1368 1.08515 0.542575 0.840008i \(-0.317450\pi\)
0.542575 + 0.840008i \(0.317450\pi\)
\(312\) 15.5999 0.883171
\(313\) 11.3176 0.639707 0.319854 0.947467i \(-0.396366\pi\)
0.319854 + 0.947467i \(0.396366\pi\)
\(314\) 0.685935 0.0387096
\(315\) 0 0
\(316\) 2.49341 0.140265
\(317\) −30.3185 −1.70286 −0.851429 0.524470i \(-0.824264\pi\)
−0.851429 + 0.524470i \(0.824264\pi\)
\(318\) −10.5442 −0.591289
\(319\) 8.12601 0.454969
\(320\) 0 0
\(321\) −4.15633 −0.231983
\(322\) 2.96239 0.165087
\(323\) 0 0
\(324\) 0.193937 0.0107743
\(325\) 0 0
\(326\) −21.5247 −1.19214
\(327\) 13.8945 0.768365
\(328\) −26.5501 −1.46598
\(329\) −3.92478 −0.216380
\(330\) 0 0
\(331\) −6.68006 −0.367169 −0.183585 0.983004i \(-0.558770\pi\)
−0.183585 + 0.983004i \(0.558770\pi\)
\(332\) 0.00587961 0.000322685 0
\(333\) −12.1441 −0.665493
\(334\) 5.73813 0.313977
\(335\) 0 0
\(336\) −10.7938 −0.588853
\(337\) −14.2193 −0.774576 −0.387288 0.921959i \(-0.626588\pi\)
−0.387288 + 0.921959i \(0.626588\pi\)
\(338\) 31.1138 1.69237
\(339\) −8.57452 −0.465704
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) 19.4617 1.05083
\(344\) −27.5877 −1.48743
\(345\) 0 0
\(346\) −18.9986 −1.02137
\(347\) −17.5271 −0.940902 −0.470451 0.882426i \(-0.655909\pi\)
−0.470451 + 0.882426i \(0.655909\pi\)
\(348\) −0.787965 −0.0422394
\(349\) −14.7308 −0.788524 −0.394262 0.918998i \(-0.629000\pi\)
−0.394262 + 0.918998i \(0.629000\pi\)
\(350\) 0 0
\(351\) −5.83146 −0.311260
\(352\) −2.18664 −0.116548
\(353\) 30.9321 1.64635 0.823174 0.567789i \(-0.192201\pi\)
0.823174 + 0.567789i \(0.192201\pi\)
\(354\) −13.9429 −0.741055
\(355\) 0 0
\(356\) −2.66196 −0.141083
\(357\) −9.35026 −0.494868
\(358\) −3.31406 −0.175154
\(359\) −3.02539 −0.159674 −0.0798371 0.996808i \(-0.525440\pi\)
−0.0798371 + 0.996808i \(0.525440\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −29.9756 −1.57548
\(363\) 7.00000 0.367405
\(364\) −2.80606 −0.147078
\(365\) 0 0
\(366\) −9.35026 −0.488746
\(367\) 31.3258 1.63519 0.817597 0.575790i \(-0.195306\pi\)
0.817597 + 0.575790i \(0.195306\pi\)
\(368\) 3.50659 0.182793
\(369\) 9.92478 0.516663
\(370\) 0 0
\(371\) −17.6629 −0.917013
\(372\) −0.193937 −0.0100551
\(373\) 33.4518 1.73207 0.866035 0.499983i \(-0.166660\pi\)
0.866035 + 0.499983i \(0.166660\pi\)
\(374\) −11.1636 −0.577257
\(375\) 0 0
\(376\) −4.23155 −0.218225
\(377\) 23.6932 1.22026
\(378\) 3.67513 0.189028
\(379\) −1.40105 −0.0719669 −0.0359835 0.999352i \(-0.511456\pi\)
−0.0359835 + 0.999352i \(0.511456\pi\)
\(380\) 0 0
\(381\) 7.66291 0.392583
\(382\) −14.4958 −0.741669
\(383\) 32.1319 1.64186 0.820931 0.571027i \(-0.193455\pi\)
0.820931 + 0.571027i \(0.193455\pi\)
\(384\) −12.6751 −0.646825
\(385\) 0 0
\(386\) −7.16362 −0.364619
\(387\) 10.3127 0.524221
\(388\) 2.32724 0.118148
\(389\) 25.7621 1.30619 0.653095 0.757276i \(-0.273470\pi\)
0.653095 + 0.757276i \(0.273470\pi\)
\(390\) 0 0
\(391\) 3.03761 0.153619
\(392\) 2.25694 0.113993
\(393\) 6.37565 0.321609
\(394\) 14.8207 0.746654
\(395\) 0 0
\(396\) 0.387873 0.0194914
\(397\) −4.38787 −0.220221 −0.110111 0.993919i \(-0.535120\pi\)
−0.110111 + 0.993919i \(0.535120\pi\)
\(398\) −4.52961 −0.227049
\(399\) 0 0
\(400\) 0 0
\(401\) −17.3479 −0.866312 −0.433156 0.901319i \(-0.642600\pi\)
−0.433156 + 0.901319i \(0.642600\pi\)
\(402\) −21.3380 −1.06424
\(403\) 5.83146 0.290486
\(404\) −1.98541 −0.0987779
\(405\) 0 0
\(406\) −14.9321 −0.741066
\(407\) −24.2882 −1.20392
\(408\) −10.0811 −0.499089
\(409\) 14.3127 0.707715 0.353858 0.935299i \(-0.384870\pi\)
0.353858 + 0.935299i \(0.384870\pi\)
\(410\) 0 0
\(411\) 2.93207 0.144628
\(412\) 2.66784 0.131435
\(413\) −23.3561 −1.14928
\(414\) −1.19394 −0.0586788
\(415\) 0 0
\(416\) −6.37565 −0.312592
\(417\) 1.73813 0.0851168
\(418\) 0 0
\(419\) −8.31028 −0.405984 −0.202992 0.979180i \(-0.565067\pi\)
−0.202992 + 0.979180i \(0.565067\pi\)
\(420\) 0 0
\(421\) 0.00587961 0.000286555 0 0.000143277 1.00000i \(-0.499954\pi\)
0.000143277 1.00000i \(0.499954\pi\)
\(422\) −12.5891 −0.612828
\(423\) 1.58181 0.0769102
\(424\) −19.0435 −0.924834
\(425\) 0 0
\(426\) −18.1441 −0.879085
\(427\) −15.6629 −0.757981
\(428\) 0.806063 0.0389625
\(429\) −11.6629 −0.563091
\(430\) 0 0
\(431\) −1.86177 −0.0896785 −0.0448392 0.998994i \(-0.514278\pi\)
−0.0448392 + 0.998994i \(0.514278\pi\)
\(432\) 4.35026 0.209302
\(433\) −23.6566 −1.13686 −0.568431 0.822731i \(-0.692449\pi\)
−0.568431 + 0.822731i \(0.692449\pi\)
\(434\) −3.67513 −0.176412
\(435\) 0 0
\(436\) −2.69464 −0.129050
\(437\) 0 0
\(438\) 1.86177 0.0889590
\(439\) 1.67276 0.0798365 0.0399183 0.999203i \(-0.487290\pi\)
0.0399183 + 0.999203i \(0.487290\pi\)
\(440\) 0 0
\(441\) −0.843675 −0.0401750
\(442\) −32.5501 −1.54825
\(443\) 10.2315 0.486116 0.243058 0.970012i \(-0.421850\pi\)
0.243058 + 0.970012i \(0.421850\pi\)
\(444\) 2.35519 0.111772
\(445\) 0 0
\(446\) −32.1768 −1.52362
\(447\) 15.8496 0.749658
\(448\) −17.5696 −0.830085
\(449\) 11.9224 0.562653 0.281327 0.959612i \(-0.409226\pi\)
0.281327 + 0.959612i \(0.409226\pi\)
\(450\) 0 0
\(451\) 19.8496 0.934679
\(452\) 1.66291 0.0782168
\(453\) −15.8945 −0.746787
\(454\) 20.7670 0.974645
\(455\) 0 0
\(456\) 0 0
\(457\) −9.16713 −0.428820 −0.214410 0.976744i \(-0.568783\pi\)
−0.214410 + 0.976744i \(0.568783\pi\)
\(458\) −10.4025 −0.486075
\(459\) 3.76845 0.175896
\(460\) 0 0
\(461\) 27.2628 1.26976 0.634878 0.772612i \(-0.281050\pi\)
0.634878 + 0.772612i \(0.281050\pi\)
\(462\) 7.35026 0.341965
\(463\) −6.77575 −0.314896 −0.157448 0.987527i \(-0.550327\pi\)
−0.157448 + 0.987527i \(0.550327\pi\)
\(464\) −17.6751 −0.820547
\(465\) 0 0
\(466\) 16.1925 0.750104
\(467\) −0.655618 −0.0303384 −0.0151692 0.999885i \(-0.504829\pi\)
−0.0151692 + 0.999885i \(0.504829\pi\)
\(468\) 1.13093 0.0522774
\(469\) −35.7440 −1.65051
\(470\) 0 0
\(471\) −0.463096 −0.0213383
\(472\) −25.1817 −1.15908
\(473\) 20.6253 0.948352
\(474\) −19.0435 −0.874697
\(475\) 0 0
\(476\) 1.81336 0.0831151
\(477\) 7.11871 0.325944
\(478\) 10.9986 0.503064
\(479\) 8.31028 0.379706 0.189853 0.981812i \(-0.439199\pi\)
0.189853 + 0.981812i \(0.439199\pi\)
\(480\) 0 0
\(481\) −70.8178 −3.22901
\(482\) −15.4617 −0.704260
\(483\) −2.00000 −0.0910032
\(484\) −1.35756 −0.0617071
\(485\) 0 0
\(486\) −1.48119 −0.0671883
\(487\) −9.17347 −0.415690 −0.207845 0.978162i \(-0.566645\pi\)
−0.207845 + 0.978162i \(0.566645\pi\)
\(488\) −16.8872 −0.764446
\(489\) 14.5320 0.657159
\(490\) 0 0
\(491\) 30.4241 1.37302 0.686510 0.727121i \(-0.259142\pi\)
0.686510 + 0.727121i \(0.259142\pi\)
\(492\) −1.92478 −0.0867757
\(493\) −15.3112 −0.689583
\(494\) 0 0
\(495\) 0 0
\(496\) −4.35026 −0.195333
\(497\) −30.3938 −1.36335
\(498\) −0.0449056 −0.00201227
\(499\) −25.1490 −1.12583 −0.562913 0.826516i \(-0.690319\pi\)
−0.562913 + 0.826516i \(0.690319\pi\)
\(500\) 0 0
\(501\) −3.87399 −0.173077
\(502\) 15.9394 0.711409
\(503\) −39.2955 −1.75210 −0.876050 0.482220i \(-0.839831\pi\)
−0.876050 + 0.482220i \(0.839831\pi\)
\(504\) 6.63752 0.295659
\(505\) 0 0
\(506\) −2.38787 −0.106154
\(507\) −21.0059 −0.932904
\(508\) −1.48612 −0.0659359
\(509\) 26.9356 1.19390 0.596949 0.802279i \(-0.296379\pi\)
0.596949 + 0.802279i \(0.296379\pi\)
\(510\) 0 0
\(511\) 3.11871 0.137964
\(512\) −18.5188 −0.818423
\(513\) 0 0
\(514\) 32.5052 1.43374
\(515\) 0 0
\(516\) −2.00000 −0.0880451
\(517\) 3.16362 0.139136
\(518\) 44.6312 1.96098
\(519\) 12.8265 0.563022
\(520\) 0 0
\(521\) 9.25060 0.405276 0.202638 0.979254i \(-0.435048\pi\)
0.202638 + 0.979254i \(0.435048\pi\)
\(522\) 6.01810 0.263405
\(523\) 5.79877 0.253562 0.126781 0.991931i \(-0.459535\pi\)
0.126781 + 0.991931i \(0.459535\pi\)
\(524\) −1.23647 −0.0540156
\(525\) 0 0
\(526\) −8.49929 −0.370587
\(527\) −3.76845 −0.164156
\(528\) 8.70052 0.378642
\(529\) −22.3503 −0.971751
\(530\) 0 0
\(531\) 9.41327 0.408501
\(532\) 0 0
\(533\) 57.8759 2.50688
\(534\) 20.3307 0.879798
\(535\) 0 0
\(536\) −38.5379 −1.66458
\(537\) 2.23743 0.0965521
\(538\) 19.7924 0.853312
\(539\) −1.68735 −0.0726793
\(540\) 0 0
\(541\) −12.3674 −0.531716 −0.265858 0.964012i \(-0.585655\pi\)
−0.265858 + 0.964012i \(0.585655\pi\)
\(542\) 4.49929 0.193261
\(543\) 20.2374 0.868471
\(544\) 4.12013 0.176649
\(545\) 0 0
\(546\) 21.4314 0.917178
\(547\) −35.7826 −1.52995 −0.764976 0.644058i \(-0.777249\pi\)
−0.764976 + 0.644058i \(0.777249\pi\)
\(548\) −0.568636 −0.0242909
\(549\) 6.31265 0.269417
\(550\) 0 0
\(551\) 0 0
\(552\) −2.15633 −0.0917793
\(553\) −31.9003 −1.35654
\(554\) 23.9126 1.01595
\(555\) 0 0
\(556\) −0.337088 −0.0142957
\(557\) 12.2433 0.518766 0.259383 0.965775i \(-0.416481\pi\)
0.259383 + 0.965775i \(0.416481\pi\)
\(558\) 1.48119 0.0627040
\(559\) 60.1378 2.54356
\(560\) 0 0
\(561\) 7.53690 0.318208
\(562\) 41.7889 1.76276
\(563\) −42.0322 −1.77145 −0.885724 0.464213i \(-0.846337\pi\)
−0.885724 + 0.464213i \(0.846337\pi\)
\(564\) −0.306771 −0.0129174
\(565\) 0 0
\(566\) 19.3380 0.812839
\(567\) −2.48119 −0.104200
\(568\) −32.7694 −1.37497
\(569\) −32.8505 −1.37716 −0.688582 0.725158i \(-0.741767\pi\)
−0.688582 + 0.725158i \(0.741767\pi\)
\(570\) 0 0
\(571\) 36.8119 1.54053 0.770266 0.637723i \(-0.220123\pi\)
0.770266 + 0.637723i \(0.220123\pi\)
\(572\) 2.26187 0.0945733
\(573\) 9.78655 0.408839
\(574\) −36.4749 −1.52243
\(575\) 0 0
\(576\) 7.08110 0.295046
\(577\) 16.8119 0.699890 0.349945 0.936770i \(-0.386200\pi\)
0.349945 + 0.936770i \(0.386200\pi\)
\(578\) −4.14552 −0.172431
\(579\) 4.83638 0.200993
\(580\) 0 0
\(581\) −0.0752228 −0.00312077
\(582\) −17.7743 −0.736770
\(583\) 14.2374 0.589654
\(584\) 3.36248 0.139140
\(585\) 0 0
\(586\) −2.97110 −0.122735
\(587\) 20.9624 0.865210 0.432605 0.901583i \(-0.357594\pi\)
0.432605 + 0.901583i \(0.357594\pi\)
\(588\) 0.163619 0.00674755
\(589\) 0 0
\(590\) 0 0
\(591\) −10.0059 −0.411587
\(592\) 52.8300 2.17130
\(593\) −22.6907 −0.931794 −0.465897 0.884839i \(-0.654268\pi\)
−0.465897 + 0.884839i \(0.654268\pi\)
\(594\) −2.96239 −0.121548
\(595\) 0 0
\(596\) −3.07381 −0.125908
\(597\) 3.05808 0.125159
\(598\) −6.96239 −0.284713
\(599\) −24.7245 −1.01022 −0.505108 0.863056i \(-0.668547\pi\)
−0.505108 + 0.863056i \(0.668547\pi\)
\(600\) 0 0
\(601\) −0.412311 −0.0168185 −0.00840925 0.999965i \(-0.502677\pi\)
−0.00840925 + 0.999965i \(0.502677\pi\)
\(602\) −37.9003 −1.54470
\(603\) 14.4060 0.586657
\(604\) 3.08252 0.125426
\(605\) 0 0
\(606\) 15.1636 0.615980
\(607\) −34.7186 −1.40919 −0.704593 0.709612i \(-0.748870\pi\)
−0.704593 + 0.709612i \(0.748870\pi\)
\(608\) 0 0
\(609\) 10.0811 0.408507
\(610\) 0 0
\(611\) 9.22425 0.373173
\(612\) −0.730841 −0.0295425
\(613\) 28.5682 1.15386 0.576929 0.816794i \(-0.304251\pi\)
0.576929 + 0.816794i \(0.304251\pi\)
\(614\) −1.10062 −0.0444172
\(615\) 0 0
\(616\) 13.2750 0.534867
\(617\) 28.5501 1.14938 0.574691 0.818370i \(-0.305122\pi\)
0.574691 + 0.818370i \(0.305122\pi\)
\(618\) −20.3757 −0.819629
\(619\) 4.23155 0.170080 0.0850401 0.996378i \(-0.472898\pi\)
0.0850401 + 0.996378i \(0.472898\pi\)
\(620\) 0 0
\(621\) 0.806063 0.0323462
\(622\) 28.3453 1.13654
\(623\) 34.0567 1.36445
\(624\) 25.3684 1.01555
\(625\) 0 0
\(626\) 16.7635 0.670005
\(627\) 0 0
\(628\) 0.0898112 0.00358386
\(629\) 45.7645 1.82475
\(630\) 0 0
\(631\) −2.17679 −0.0866568 −0.0433284 0.999061i \(-0.513796\pi\)
−0.0433284 + 0.999061i \(0.513796\pi\)
\(632\) −34.3938 −1.36811
\(633\) 8.49929 0.337817
\(634\) −44.9076 −1.78351
\(635\) 0 0
\(636\) −1.38058 −0.0547435
\(637\) −4.91985 −0.194932
\(638\) 12.0362 0.476518
\(639\) 12.2496 0.484589
\(640\) 0 0
\(641\) −44.3268 −1.75080 −0.875401 0.483397i \(-0.839403\pi\)
−0.875401 + 0.483397i \(0.839403\pi\)
\(642\) −6.15633 −0.242971
\(643\) 34.8265 1.37342 0.686712 0.726929i \(-0.259053\pi\)
0.686712 + 0.726929i \(0.259053\pi\)
\(644\) 0.387873 0.0152843
\(645\) 0 0
\(646\) 0 0
\(647\) 28.4142 1.11708 0.558539 0.829478i \(-0.311362\pi\)
0.558539 + 0.829478i \(0.311362\pi\)
\(648\) −2.67513 −0.105089
\(649\) 18.8265 0.739006
\(650\) 0 0
\(651\) 2.48119 0.0972457
\(652\) −2.81828 −0.110372
\(653\) 28.4544 1.11351 0.556753 0.830678i \(-0.312047\pi\)
0.556753 + 0.830678i \(0.312047\pi\)
\(654\) 20.5804 0.804757
\(655\) 0 0
\(656\) −43.1754 −1.68572
\(657\) −1.25694 −0.0490379
\(658\) −5.81336 −0.226628
\(659\) 19.3479 0.753687 0.376843 0.926277i \(-0.377009\pi\)
0.376843 + 0.926277i \(0.377009\pi\)
\(660\) 0 0
\(661\) −20.1721 −0.784602 −0.392301 0.919837i \(-0.628321\pi\)
−0.392301 + 0.919837i \(0.628321\pi\)
\(662\) −9.89446 −0.384559
\(663\) 21.9756 0.853460
\(664\) −0.0811024 −0.00314738
\(665\) 0 0
\(666\) −17.9878 −0.697012
\(667\) −3.27504 −0.126810
\(668\) 0.751309 0.0290690
\(669\) 21.7235 0.839881
\(670\) 0 0
\(671\) 12.6253 0.487394
\(672\) −2.71274 −0.104646
\(673\) −46.7040 −1.80031 −0.900154 0.435572i \(-0.856546\pi\)
−0.900154 + 0.435572i \(0.856546\pi\)
\(674\) −21.0616 −0.811262
\(675\) 0 0
\(676\) 4.07381 0.156685
\(677\) −44.4299 −1.70758 −0.853791 0.520616i \(-0.825702\pi\)
−0.853791 + 0.520616i \(0.825702\pi\)
\(678\) −12.7005 −0.487761
\(679\) −29.7743 −1.14263
\(680\) 0 0
\(681\) −14.0205 −0.537266
\(682\) 2.96239 0.113436
\(683\) −3.21837 −0.123148 −0.0615738 0.998103i \(-0.519612\pi\)
−0.0615738 + 0.998103i \(0.519612\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 28.8265 1.10060
\(687\) 7.02302 0.267945
\(688\) −44.8627 −1.71038
\(689\) 41.5125 1.58150
\(690\) 0 0
\(691\) −32.9741 −1.25440 −0.627198 0.778860i \(-0.715798\pi\)
−0.627198 + 0.778860i \(0.715798\pi\)
\(692\) −2.48753 −0.0945618
\(693\) −4.96239 −0.188506
\(694\) −25.9610 −0.985465
\(695\) 0 0
\(696\) 10.8691 0.411991
\(697\) −37.4010 −1.41667
\(698\) −21.8192 −0.825870
\(699\) −10.9321 −0.413489
\(700\) 0 0
\(701\) 33.3357 1.25907 0.629536 0.776972i \(-0.283245\pi\)
0.629536 + 0.776972i \(0.283245\pi\)
\(702\) −8.63752 −0.326002
\(703\) 0 0
\(704\) 14.1622 0.533758
\(705\) 0 0
\(706\) 45.8164 1.72432
\(707\) 25.4010 0.955305
\(708\) −1.82558 −0.0686094
\(709\) −34.8773 −1.30985 −0.654923 0.755696i \(-0.727299\pi\)
−0.654923 + 0.755696i \(0.727299\pi\)
\(710\) 0 0
\(711\) 12.8568 0.482169
\(712\) 36.7186 1.37609
\(713\) −0.806063 −0.0301873
\(714\) −13.8496 −0.518307
\(715\) 0 0
\(716\) −0.433919 −0.0162163
\(717\) −7.42548 −0.277310
\(718\) −4.48119 −0.167237
\(719\) 1.37470 0.0512676 0.0256338 0.999671i \(-0.491840\pi\)
0.0256338 + 0.999671i \(0.491840\pi\)
\(720\) 0 0
\(721\) −34.1319 −1.27114
\(722\) −28.1427 −1.04736
\(723\) 10.4387 0.388218
\(724\) −3.92478 −0.145863
\(725\) 0 0
\(726\) 10.3684 0.384806
\(727\) −46.3209 −1.71795 −0.858974 0.512020i \(-0.828897\pi\)
−0.858974 + 0.512020i \(0.828897\pi\)
\(728\) 38.7064 1.43455
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −38.8627 −1.43739
\(732\) −1.22425 −0.0452497
\(733\) 29.0738 1.07387 0.536933 0.843625i \(-0.319583\pi\)
0.536933 + 0.843625i \(0.319583\pi\)
\(734\) 46.3996 1.71264
\(735\) 0 0
\(736\) 0.881286 0.0324846
\(737\) 28.8119 1.06130
\(738\) 14.7005 0.541134
\(739\) 18.7454 0.689562 0.344781 0.938683i \(-0.387953\pi\)
0.344781 + 0.938683i \(0.387953\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −26.1622 −0.960445
\(743\) −51.8858 −1.90350 −0.951752 0.306869i \(-0.900719\pi\)
−0.951752 + 0.306869i \(0.900719\pi\)
\(744\) 2.67513 0.0980751
\(745\) 0 0
\(746\) 49.5487 1.81411
\(747\) 0.0303172 0.00110925
\(748\) −1.46168 −0.0534444
\(749\) −10.3127 −0.376816
\(750\) 0 0
\(751\) 47.9149 1.74844 0.874220 0.485530i \(-0.161373\pi\)
0.874220 + 0.485530i \(0.161373\pi\)
\(752\) −6.88129 −0.250935
\(753\) −10.7612 −0.392158
\(754\) 35.0943 1.27806
\(755\) 0 0
\(756\) 0.481194 0.0175009
\(757\) −27.6302 −1.00424 −0.502119 0.864799i \(-0.667446\pi\)
−0.502119 + 0.864799i \(0.667446\pi\)
\(758\) −2.07522 −0.0753755
\(759\) 1.61213 0.0585165
\(760\) 0 0
\(761\) 11.0108 0.399141 0.199571 0.979883i \(-0.436045\pi\)
0.199571 + 0.979883i \(0.436045\pi\)
\(762\) 11.3503 0.411177
\(763\) 34.4749 1.24807
\(764\) −1.89797 −0.0686661
\(765\) 0 0
\(766\) 47.5936 1.71963
\(767\) 54.8930 1.98207
\(768\) −4.61213 −0.166426
\(769\) −1.52118 −0.0548550 −0.0274275 0.999624i \(-0.508732\pi\)
−0.0274275 + 0.999624i \(0.508732\pi\)
\(770\) 0 0
\(771\) −21.9452 −0.790339
\(772\) −0.937951 −0.0337576
\(773\) 47.5085 1.70876 0.854381 0.519647i \(-0.173937\pi\)
0.854381 + 0.519647i \(0.173937\pi\)
\(774\) 15.2750 0.549050
\(775\) 0 0
\(776\) −32.1016 −1.15238
\(777\) −30.1319 −1.08098
\(778\) 38.1587 1.36806
\(779\) 0 0
\(780\) 0 0
\(781\) 24.4993 0.876654
\(782\) 4.49929 0.160894
\(783\) −4.06300 −0.145200
\(784\) 3.67021 0.131079
\(785\) 0 0
\(786\) 9.44358 0.336841
\(787\) 27.2144 0.970089 0.485044 0.874490i \(-0.338803\pi\)
0.485044 + 0.874490i \(0.338803\pi\)
\(788\) 1.94051 0.0691277
\(789\) 5.73813 0.204283
\(790\) 0 0
\(791\) −21.2750 −0.756453
\(792\) −5.35026 −0.190113
\(793\) 36.8119 1.30723
\(794\) −6.49929 −0.230651
\(795\) 0 0
\(796\) −0.593073 −0.0210209
\(797\) 1.94525 0.0689041 0.0344521 0.999406i \(-0.489031\pi\)
0.0344521 + 0.999406i \(0.489031\pi\)
\(798\) 0 0
\(799\) −5.96097 −0.210884
\(800\) 0 0
\(801\) −13.7259 −0.484981
\(802\) −25.6956 −0.907343
\(803\) −2.51388 −0.0887129
\(804\) −2.79384 −0.0985313
\(805\) 0 0
\(806\) 8.63752 0.304244
\(807\) −13.3625 −0.470382
\(808\) 27.3865 0.963452
\(809\) 9.81573 0.345103 0.172551 0.985001i \(-0.444799\pi\)
0.172551 + 0.985001i \(0.444799\pi\)
\(810\) 0 0
\(811\) 3.71179 0.130338 0.0651692 0.997874i \(-0.479241\pi\)
0.0651692 + 0.997874i \(0.479241\pi\)
\(812\) −1.95509 −0.0686104
\(813\) −3.03761 −0.106534
\(814\) −35.9756 −1.26094
\(815\) 0 0
\(816\) −16.3938 −0.573896
\(817\) 0 0
\(818\) 21.1998 0.741234
\(819\) −14.4690 −0.505587
\(820\) 0 0
\(821\) 30.9403 1.07982 0.539912 0.841721i \(-0.318457\pi\)
0.539912 + 0.841721i \(0.318457\pi\)
\(822\) 4.34297 0.151478
\(823\) −29.4471 −1.02646 −0.513231 0.858251i \(-0.671551\pi\)
−0.513231 + 0.858251i \(0.671551\pi\)
\(824\) −36.7997 −1.28198
\(825\) 0 0
\(826\) −34.5950 −1.20371
\(827\) −9.11871 −0.317089 −0.158544 0.987352i \(-0.550680\pi\)
−0.158544 + 0.987352i \(0.550680\pi\)
\(828\) −0.156325 −0.00543268
\(829\) 1.19982 0.0416713 0.0208357 0.999783i \(-0.493367\pi\)
0.0208357 + 0.999783i \(0.493367\pi\)
\(830\) 0 0
\(831\) −16.1441 −0.560033
\(832\) 41.2931 1.43158
\(833\) 3.17935 0.110158
\(834\) 2.57452 0.0891482
\(835\) 0 0
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) −12.3091 −0.425212
\(839\) 20.7753 0.717243 0.358621 0.933483i \(-0.383247\pi\)
0.358621 + 0.933483i \(0.383247\pi\)
\(840\) 0 0
\(841\) −12.4920 −0.430759
\(842\) 0.00870884 0.000300126 0
\(843\) −28.2130 −0.971707
\(844\) −1.64832 −0.0567376
\(845\) 0 0
\(846\) 2.34297 0.0805529
\(847\) 17.3684 0.596784
\(848\) −30.9683 −1.06345
\(849\) −13.0557 −0.448071
\(850\) 0 0
\(851\) 9.78892 0.335560
\(852\) −2.37565 −0.0813886
\(853\) −41.0757 −1.40641 −0.703203 0.710989i \(-0.748247\pi\)
−0.703203 + 0.710989i \(0.748247\pi\)
\(854\) −23.1998 −0.793881
\(855\) 0 0
\(856\) −11.1187 −0.380030
\(857\) 27.3766 0.935167 0.467584 0.883949i \(-0.345125\pi\)
0.467584 + 0.883949i \(0.345125\pi\)
\(858\) −17.2750 −0.589760
\(859\) −32.1016 −1.09529 −0.547646 0.836710i \(-0.684476\pi\)
−0.547646 + 0.836710i \(0.684476\pi\)
\(860\) 0 0
\(861\) 24.6253 0.839228
\(862\) −2.75765 −0.0939259
\(863\) −55.2966 −1.88232 −0.941160 0.337962i \(-0.890263\pi\)
−0.941160 + 0.337962i \(0.890263\pi\)
\(864\) 1.09332 0.0371955
\(865\) 0 0
\(866\) −35.0400 −1.19071
\(867\) 2.79877 0.0950512
\(868\) −0.481194 −0.0163328
\(869\) 25.7137 0.872277
\(870\) 0 0
\(871\) 84.0078 2.84650
\(872\) 37.1695 1.25872
\(873\) 12.0000 0.406138
\(874\) 0 0
\(875\) 0 0
\(876\) 0.243767 0.00823611
\(877\) −51.1392 −1.72685 −0.863424 0.504479i \(-0.831684\pi\)
−0.863424 + 0.504479i \(0.831684\pi\)
\(878\) 2.47768 0.0836178
\(879\) 2.00588 0.0676566
\(880\) 0 0
\(881\) 39.1632 1.31944 0.659720 0.751511i \(-0.270675\pi\)
0.659720 + 0.751511i \(0.270675\pi\)
\(882\) −1.24965 −0.0420778
\(883\) −40.6155 −1.36682 −0.683409 0.730035i \(-0.739504\pi\)
−0.683409 + 0.730035i \(0.739504\pi\)
\(884\) −4.26187 −0.143342
\(885\) 0 0
\(886\) 15.1549 0.509139
\(887\) 6.16617 0.207040 0.103520 0.994627i \(-0.466989\pi\)
0.103520 + 0.994627i \(0.466989\pi\)
\(888\) −32.4871 −1.09019
\(889\) 19.0132 0.637681
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) −4.21299 −0.141061
\(893\) 0 0
\(894\) 23.4763 0.785164
\(895\) 0 0
\(896\) −31.4495 −1.05065
\(897\) 4.70052 0.156946
\(898\) 17.6594 0.589302
\(899\) 4.06300 0.135509
\(900\) 0 0
\(901\) −26.8265 −0.893721
\(902\) 29.4010 0.978948
\(903\) 25.5877 0.851505
\(904\) −22.9380 −0.762905
\(905\) 0 0
\(906\) −23.5428 −0.782157
\(907\) 21.4944 0.713709 0.356854 0.934160i \(-0.383849\pi\)
0.356854 + 0.934160i \(0.383849\pi\)
\(908\) 2.71908 0.0902359
\(909\) −10.2374 −0.339554
\(910\) 0 0
\(911\) 17.4471 0.578048 0.289024 0.957322i \(-0.406669\pi\)
0.289024 + 0.957322i \(0.406669\pi\)
\(912\) 0 0
\(913\) 0.0606343 0.00200670
\(914\) −13.5783 −0.449130
\(915\) 0 0
\(916\) −1.36202 −0.0450024
\(917\) 15.8192 0.522397
\(918\) 5.58181 0.184227
\(919\) 32.5355 1.07325 0.536623 0.843822i \(-0.319700\pi\)
0.536623 + 0.843822i \(0.319700\pi\)
\(920\) 0 0
\(921\) 0.743059 0.0244846
\(922\) 40.3815 1.32989
\(923\) 71.4333 2.35125
\(924\) 0.962389 0.0316603
\(925\) 0 0
\(926\) −10.0362 −0.329810
\(927\) 13.7562 0.451814
\(928\) −4.44217 −0.145821
\(929\) 45.4641 1.49163 0.745814 0.666155i \(-0.232061\pi\)
0.745814 + 0.666155i \(0.232061\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 2.12013 0.0694471
\(933\) −19.1368 −0.626511
\(934\) −0.971097 −0.0317753
\(935\) 0 0
\(936\) −15.5999 −0.509899
\(937\) 56.2031 1.83608 0.918038 0.396492i \(-0.129772\pi\)
0.918038 + 0.396492i \(0.129772\pi\)
\(938\) −52.9438 −1.72868
\(939\) −11.3176 −0.369335
\(940\) 0 0
\(941\) 13.1251 0.427864 0.213932 0.976849i \(-0.431373\pi\)
0.213932 + 0.976849i \(0.431373\pi\)
\(942\) −0.685935 −0.0223490
\(943\) −8.00000 −0.260516
\(944\) −40.9502 −1.33281
\(945\) 0 0
\(946\) 30.5501 0.993269
\(947\) 55.1939 1.79356 0.896781 0.442475i \(-0.145899\pi\)
0.896781 + 0.442475i \(0.145899\pi\)
\(948\) −2.49341 −0.0809823
\(949\) −7.32979 −0.237935
\(950\) 0 0
\(951\) 30.3185 0.983146
\(952\) −25.0132 −0.810682
\(953\) −10.4690 −0.339123 −0.169562 0.985520i \(-0.554235\pi\)
−0.169562 + 0.985520i \(0.554235\pi\)
\(954\) 10.5442 0.341381
\(955\) 0 0
\(956\) 1.44007 0.0465753
\(957\) −8.12601 −0.262677
\(958\) 12.3091 0.397690
\(959\) 7.27504 0.234923
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −104.895 −3.38195
\(963\) 4.15633 0.133936
\(964\) −2.02444 −0.0652027
\(965\) 0 0
\(966\) −2.96239 −0.0953133
\(967\) 7.37661 0.237216 0.118608 0.992941i \(-0.462157\pi\)
0.118608 + 0.992941i \(0.462157\pi\)
\(968\) 18.7259 0.601874
\(969\) 0 0
\(970\) 0 0
\(971\) 30.4020 0.975647 0.487823 0.872942i \(-0.337791\pi\)
0.487823 + 0.872942i \(0.337791\pi\)
\(972\) −0.193937 −0.00622052
\(973\) 4.31265 0.138257
\(974\) −13.5877 −0.435378
\(975\) 0 0
\(976\) −27.4617 −0.879027
\(977\) −12.8510 −0.411139 −0.205569 0.978643i \(-0.565905\pi\)
−0.205569 + 0.978643i \(0.565905\pi\)
\(978\) 21.5247 0.688284
\(979\) −27.4518 −0.877364
\(980\) 0 0
\(981\) −13.8945 −0.443616
\(982\) 45.0640 1.43805
\(983\) −30.1162 −0.960556 −0.480278 0.877116i \(-0.659464\pi\)
−0.480278 + 0.877116i \(0.659464\pi\)
\(984\) 26.5501 0.846386
\(985\) 0 0
\(986\) −22.6789 −0.722244
\(987\) 3.92478 0.124927
\(988\) 0 0
\(989\) −8.31265 −0.264327
\(990\) 0 0
\(991\) −27.9873 −0.889047 −0.444523 0.895767i \(-0.646627\pi\)
−0.444523 + 0.895767i \(0.646627\pi\)
\(992\) −1.09332 −0.0347130
\(993\) 6.68006 0.211985
\(994\) −45.0191 −1.42792
\(995\) 0 0
\(996\) −0.00587961 −0.000186302 0
\(997\) 22.0968 0.699814 0.349907 0.936785i \(-0.386213\pi\)
0.349907 + 0.936785i \(0.386213\pi\)
\(998\) −37.2506 −1.17915
\(999\) 12.1441 0.384223
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.a.q.1.3 3
3.2 odd 2 6975.2.a.be.1.1 3
5.2 odd 4 2325.2.c.o.1024.5 6
5.3 odd 4 2325.2.c.o.1024.2 6
5.4 even 2 465.2.a.f.1.1 3
15.14 odd 2 1395.2.a.i.1.3 3
20.19 odd 2 7440.2.a.bp.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.f.1.1 3 5.4 even 2
1395.2.a.i.1.3 3 15.14 odd 2
2325.2.a.q.1.3 3 1.1 even 1 trivial
2325.2.c.o.1024.2 6 5.3 odd 4
2325.2.c.o.1024.5 6 5.2 odd 4
6975.2.a.be.1.1 3 3.2 odd 2
7440.2.a.bp.1.1 3 20.19 odd 2