Properties

Label 2325.2.a.q.1.2
Level $2325$
Weight $2$
Character 2325.1
Self dual yes
Analytic conductor $18.565$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,-3,1,0,1,-2,-3,3,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 2325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.311108 q^{2} -1.00000 q^{3} -1.90321 q^{4} +0.311108 q^{6} -0.688892 q^{7} +1.21432 q^{8} +1.00000 q^{9} +2.00000 q^{11} +1.90321 q^{12} -3.73975 q^{13} +0.214320 q^{14} +3.42864 q^{16} -2.28100 q^{17} -0.311108 q^{18} +0.688892 q^{21} -0.622216 q^{22} -2.90321 q^{23} -1.21432 q^{24} +1.16346 q^{26} -1.00000 q^{27} +1.31111 q^{28} -4.02074 q^{29} +1.00000 q^{31} -3.49532 q^{32} -2.00000 q^{33} +0.709636 q^{34} -1.90321 q^{36} +8.79060 q^{37} +3.73975 q^{39} +2.75557 q^{41} -0.214320 q^{42} -1.05086 q^{43} -3.80642 q^{44} +0.903212 q^{46} -4.70964 q^{47} -3.42864 q^{48} -6.52543 q^{49} +2.28100 q^{51} +7.11753 q^{52} -2.14764 q^{53} +0.311108 q^{54} -0.836535 q^{56} +1.25088 q^{58} -6.44938 q^{59} -5.05086 q^{61} -0.311108 q^{62} -0.688892 q^{63} -5.76986 q^{64} +0.622216 q^{66} +5.44446 q^{67} +4.34122 q^{68} +2.90321 q^{69} +8.96989 q^{71} +1.21432 q^{72} +8.92396 q^{73} -2.73483 q^{74} -1.37778 q^{77} -1.16346 q^{78} -8.38271 q^{79} +1.00000 q^{81} -0.857279 q^{82} +10.5161 q^{83} -1.31111 q^{84} +0.326929 q^{86} +4.02074 q^{87} +2.42864 q^{88} +13.5002 q^{89} +2.57628 q^{91} +5.52543 q^{92} -1.00000 q^{93} +1.46520 q^{94} +3.49532 q^{96} +12.0000 q^{97} +2.03011 q^{98} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 3 q^{3} + q^{4} + q^{6} - 2 q^{7} - 3 q^{8} + 3 q^{9} + 6 q^{11} - q^{12} + 2 q^{13} - 6 q^{14} - 3 q^{16} - q^{18} + 2 q^{21} - 2 q^{22} - 2 q^{23} + 3 q^{24} + 10 q^{26} - 3 q^{27}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.311108 −0.219986 −0.109993 0.993932i \(-0.535083\pi\)
−0.109993 + 0.993932i \(0.535083\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.90321 −0.951606
\(5\) 0 0
\(6\) 0.311108 0.127009
\(7\) −0.688892 −0.260377 −0.130188 0.991489i \(-0.541558\pi\)
−0.130188 + 0.991489i \(0.541558\pi\)
\(8\) 1.21432 0.429327
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 1.90321 0.549410
\(13\) −3.73975 −1.03722 −0.518610 0.855011i \(-0.673550\pi\)
−0.518610 + 0.855011i \(0.673550\pi\)
\(14\) 0.214320 0.0572794
\(15\) 0 0
\(16\) 3.42864 0.857160
\(17\) −2.28100 −0.553223 −0.276611 0.960982i \(-0.589211\pi\)
−0.276611 + 0.960982i \(0.589211\pi\)
\(18\) −0.311108 −0.0733288
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0.688892 0.150329
\(22\) −0.622216 −0.132657
\(23\) −2.90321 −0.605362 −0.302681 0.953092i \(-0.597882\pi\)
−0.302681 + 0.953092i \(0.597882\pi\)
\(24\) −1.21432 −0.247872
\(25\) 0 0
\(26\) 1.16346 0.228174
\(27\) −1.00000 −0.192450
\(28\) 1.31111 0.247776
\(29\) −4.02074 −0.746633 −0.373317 0.927704i \(-0.621780\pi\)
−0.373317 + 0.927704i \(0.621780\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) −3.49532 −0.617890
\(33\) −2.00000 −0.348155
\(34\) 0.709636 0.121702
\(35\) 0 0
\(36\) −1.90321 −0.317202
\(37\) 8.79060 1.44517 0.722583 0.691284i \(-0.242955\pi\)
0.722583 + 0.691284i \(0.242955\pi\)
\(38\) 0 0
\(39\) 3.73975 0.598839
\(40\) 0 0
\(41\) 2.75557 0.430348 0.215174 0.976576i \(-0.430968\pi\)
0.215174 + 0.976576i \(0.430968\pi\)
\(42\) −0.214320 −0.0330703
\(43\) −1.05086 −0.160254 −0.0801270 0.996785i \(-0.525533\pi\)
−0.0801270 + 0.996785i \(0.525533\pi\)
\(44\) −3.80642 −0.573840
\(45\) 0 0
\(46\) 0.903212 0.133171
\(47\) −4.70964 −0.686971 −0.343485 0.939158i \(-0.611608\pi\)
−0.343485 + 0.939158i \(0.611608\pi\)
\(48\) −3.42864 −0.494881
\(49\) −6.52543 −0.932204
\(50\) 0 0
\(51\) 2.28100 0.319403
\(52\) 7.11753 0.987024
\(53\) −2.14764 −0.295001 −0.147501 0.989062i \(-0.547123\pi\)
−0.147501 + 0.989062i \(0.547123\pi\)
\(54\) 0.311108 0.0423364
\(55\) 0 0
\(56\) −0.836535 −0.111787
\(57\) 0 0
\(58\) 1.25088 0.164249
\(59\) −6.44938 −0.839638 −0.419819 0.907608i \(-0.637906\pi\)
−0.419819 + 0.907608i \(0.637906\pi\)
\(60\) 0 0
\(61\) −5.05086 −0.646696 −0.323348 0.946280i \(-0.604808\pi\)
−0.323348 + 0.946280i \(0.604808\pi\)
\(62\) −0.311108 −0.0395107
\(63\) −0.688892 −0.0867923
\(64\) −5.76986 −0.721232
\(65\) 0 0
\(66\) 0.622216 0.0765895
\(67\) 5.44446 0.665147 0.332573 0.943077i \(-0.392083\pi\)
0.332573 + 0.943077i \(0.392083\pi\)
\(68\) 4.34122 0.526450
\(69\) 2.90321 0.349506
\(70\) 0 0
\(71\) 8.96989 1.06453 0.532265 0.846578i \(-0.321341\pi\)
0.532265 + 0.846578i \(0.321341\pi\)
\(72\) 1.21432 0.143109
\(73\) 8.92396 1.04447 0.522235 0.852802i \(-0.325098\pi\)
0.522235 + 0.852802i \(0.325098\pi\)
\(74\) −2.73483 −0.317917
\(75\) 0 0
\(76\) 0 0
\(77\) −1.37778 −0.157013
\(78\) −1.16346 −0.131736
\(79\) −8.38271 −0.943128 −0.471564 0.881832i \(-0.656310\pi\)
−0.471564 + 0.881832i \(0.656310\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −0.857279 −0.0946706
\(83\) 10.5161 1.15429 0.577144 0.816643i \(-0.304167\pi\)
0.577144 + 0.816643i \(0.304167\pi\)
\(84\) −1.31111 −0.143054
\(85\) 0 0
\(86\) 0.326929 0.0352537
\(87\) 4.02074 0.431069
\(88\) 2.42864 0.258894
\(89\) 13.5002 1.43102 0.715511 0.698601i \(-0.246194\pi\)
0.715511 + 0.698601i \(0.246194\pi\)
\(90\) 0 0
\(91\) 2.57628 0.270068
\(92\) 5.52543 0.576066
\(93\) −1.00000 −0.103695
\(94\) 1.46520 0.151124
\(95\) 0 0
\(96\) 3.49532 0.356739
\(97\) 12.0000 1.21842 0.609208 0.793011i \(-0.291488\pi\)
0.609208 + 0.793011i \(0.291488\pi\)
\(98\) 2.03011 0.205072
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) 8.29529 0.825412 0.412706 0.910864i \(-0.364584\pi\)
0.412706 + 0.910864i \(0.364584\pi\)
\(102\) −0.709636 −0.0702644
\(103\) −2.98418 −0.294040 −0.147020 0.989134i \(-0.546968\pi\)
−0.147020 + 0.989134i \(0.546968\pi\)
\(104\) −4.54125 −0.445306
\(105\) 0 0
\(106\) 0.668149 0.0648963
\(107\) −1.52543 −0.147469 −0.0737343 0.997278i \(-0.523492\pi\)
−0.0737343 + 0.997278i \(0.523492\pi\)
\(108\) 1.90321 0.183137
\(109\) 3.76049 0.360190 0.180095 0.983649i \(-0.442360\pi\)
0.180095 + 0.983649i \(0.442360\pi\)
\(110\) 0 0
\(111\) −8.79060 −0.834367
\(112\) −2.36196 −0.223185
\(113\) 9.18421 0.863978 0.431989 0.901879i \(-0.357812\pi\)
0.431989 + 0.901879i \(0.357812\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 7.65233 0.710501
\(117\) −3.73975 −0.345740
\(118\) 2.00645 0.184709
\(119\) 1.57136 0.144046
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 1.57136 0.142264
\(123\) −2.75557 −0.248461
\(124\) −1.90321 −0.170913
\(125\) 0 0
\(126\) 0.214320 0.0190931
\(127\) 11.4795 1.01864 0.509320 0.860577i \(-0.329897\pi\)
0.509320 + 0.860577i \(0.329897\pi\)
\(128\) 8.78568 0.776552
\(129\) 1.05086 0.0925226
\(130\) 0 0
\(131\) 13.0716 1.14207 0.571035 0.820925i \(-0.306542\pi\)
0.571035 + 0.820925i \(0.306542\pi\)
\(132\) 3.80642 0.331307
\(133\) 0 0
\(134\) −1.69381 −0.146323
\(135\) 0 0
\(136\) −2.76986 −0.237513
\(137\) 11.1383 0.951607 0.475804 0.879552i \(-0.342157\pi\)
0.475804 + 0.879552i \(0.342157\pi\)
\(138\) −0.903212 −0.0768865
\(139\) 10.2351 0.868127 0.434063 0.900882i \(-0.357079\pi\)
0.434063 + 0.900882i \(0.357079\pi\)
\(140\) 0 0
\(141\) 4.70964 0.396623
\(142\) −2.79060 −0.234182
\(143\) −7.47949 −0.625467
\(144\) 3.42864 0.285720
\(145\) 0 0
\(146\) −2.77631 −0.229769
\(147\) 6.52543 0.538208
\(148\) −16.7304 −1.37523
\(149\) −1.51114 −0.123797 −0.0618986 0.998082i \(-0.519716\pi\)
−0.0618986 + 0.998082i \(0.519716\pi\)
\(150\) 0 0
\(151\) −1.76049 −0.143267 −0.0716334 0.997431i \(-0.522821\pi\)
−0.0716334 + 0.997431i \(0.522821\pi\)
\(152\) 0 0
\(153\) −2.28100 −0.184408
\(154\) 0.428639 0.0345408
\(155\) 0 0
\(156\) −7.11753 −0.569859
\(157\) 3.43801 0.274383 0.137191 0.990545i \(-0.456192\pi\)
0.137191 + 0.990545i \(0.456192\pi\)
\(158\) 2.60793 0.207475
\(159\) 2.14764 0.170319
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) −0.311108 −0.0244429
\(163\) 10.5970 0.830023 0.415012 0.909816i \(-0.363778\pi\)
0.415012 + 0.909816i \(0.363778\pi\)
\(164\) −5.24443 −0.409521
\(165\) 0 0
\(166\) −3.27163 −0.253928
\(167\) 20.0415 1.55086 0.775428 0.631435i \(-0.217534\pi\)
0.775428 + 0.631435i \(0.217534\pi\)
\(168\) 0.836535 0.0645401
\(169\) 0.985710 0.0758238
\(170\) 0 0
\(171\) 0 0
\(172\) 2.00000 0.152499
\(173\) 18.8988 1.43685 0.718423 0.695606i \(-0.244864\pi\)
0.718423 + 0.695606i \(0.244864\pi\)
\(174\) −1.25088 −0.0948293
\(175\) 0 0
\(176\) 6.85728 0.516887
\(177\) 6.44938 0.484765
\(178\) −4.20003 −0.314806
\(179\) 16.2953 1.21797 0.608983 0.793183i \(-0.291578\pi\)
0.608983 + 0.793183i \(0.291578\pi\)
\(180\) 0 0
\(181\) −1.70471 −0.126710 −0.0633552 0.997991i \(-0.520180\pi\)
−0.0633552 + 0.997991i \(0.520180\pi\)
\(182\) −0.801502 −0.0594113
\(183\) 5.05086 0.373370
\(184\) −3.52543 −0.259898
\(185\) 0 0
\(186\) 0.311108 0.0228115
\(187\) −4.56199 −0.333606
\(188\) 8.96343 0.653726
\(189\) 0.688892 0.0501095
\(190\) 0 0
\(191\) −3.53188 −0.255558 −0.127779 0.991803i \(-0.540785\pi\)
−0.127779 + 0.991803i \(0.540785\pi\)
\(192\) 5.76986 0.416404
\(193\) −17.4193 −1.25387 −0.626933 0.779073i \(-0.715690\pi\)
−0.626933 + 0.779073i \(0.715690\pi\)
\(194\) −3.73329 −0.268035
\(195\) 0 0
\(196\) 12.4193 0.887091
\(197\) −10.0143 −0.713489 −0.356744 0.934202i \(-0.616113\pi\)
−0.356744 + 0.934202i \(0.616113\pi\)
\(198\) −0.622216 −0.0442189
\(199\) 27.1798 1.92672 0.963361 0.268208i \(-0.0864313\pi\)
0.963361 + 0.268208i \(0.0864313\pi\)
\(200\) 0 0
\(201\) −5.44446 −0.384023
\(202\) −2.58073 −0.181579
\(203\) 2.76986 0.194406
\(204\) −4.34122 −0.303946
\(205\) 0 0
\(206\) 0.928401 0.0646848
\(207\) −2.90321 −0.201787
\(208\) −12.8222 −0.889063
\(209\) 0 0
\(210\) 0 0
\(211\) −1.93978 −0.133540 −0.0667699 0.997768i \(-0.521269\pi\)
−0.0667699 + 0.997768i \(0.521269\pi\)
\(212\) 4.08742 0.280725
\(213\) −8.96989 −0.614607
\(214\) 0.474572 0.0324411
\(215\) 0 0
\(216\) −1.21432 −0.0826240
\(217\) −0.688892 −0.0467650
\(218\) −1.16992 −0.0792369
\(219\) −8.92396 −0.603025
\(220\) 0 0
\(221\) 8.53035 0.573813
\(222\) 2.73483 0.183549
\(223\) −23.5526 −1.57720 −0.788600 0.614906i \(-0.789194\pi\)
−0.788600 + 0.614906i \(0.789194\pi\)
\(224\) 2.40790 0.160884
\(225\) 0 0
\(226\) −2.85728 −0.190063
\(227\) −19.8020 −1.31430 −0.657152 0.753758i \(-0.728239\pi\)
−0.657152 + 0.753758i \(0.728239\pi\)
\(228\) 0 0
\(229\) −24.4099 −1.61305 −0.806526 0.591199i \(-0.798655\pi\)
−0.806526 + 0.591199i \(0.798655\pi\)
\(230\) 0 0
\(231\) 1.37778 0.0906516
\(232\) −4.88247 −0.320550
\(233\) −3.13828 −0.205595 −0.102798 0.994702i \(-0.532779\pi\)
−0.102798 + 0.994702i \(0.532779\pi\)
\(234\) 1.16346 0.0760581
\(235\) 0 0
\(236\) 12.2745 0.799005
\(237\) 8.38271 0.544515
\(238\) −0.488863 −0.0316883
\(239\) 6.81579 0.440877 0.220438 0.975401i \(-0.429251\pi\)
0.220438 + 0.975401i \(0.429251\pi\)
\(240\) 0 0
\(241\) 17.0923 1.10101 0.550507 0.834830i \(-0.314434\pi\)
0.550507 + 0.834830i \(0.314434\pi\)
\(242\) 2.17775 0.139991
\(243\) −1.00000 −0.0641500
\(244\) 9.61285 0.615400
\(245\) 0 0
\(246\) 0.857279 0.0546581
\(247\) 0 0
\(248\) 1.21432 0.0771094
\(249\) −10.5161 −0.666428
\(250\) 0 0
\(251\) 16.1748 1.02095 0.510473 0.859894i \(-0.329470\pi\)
0.510473 + 0.859894i \(0.329470\pi\)
\(252\) 1.31111 0.0825920
\(253\) −5.80642 −0.365047
\(254\) −3.57136 −0.224087
\(255\) 0 0
\(256\) 8.80642 0.550401
\(257\) −19.0464 −1.18808 −0.594041 0.804435i \(-0.702468\pi\)
−0.594041 + 0.804435i \(0.702468\pi\)
\(258\) −0.326929 −0.0203537
\(259\) −6.05578 −0.376288
\(260\) 0 0
\(261\) −4.02074 −0.248878
\(262\) −4.06668 −0.251240
\(263\) 6.23506 0.384470 0.192235 0.981349i \(-0.438426\pi\)
0.192235 + 0.981349i \(0.438426\pi\)
\(264\) −2.42864 −0.149472
\(265\) 0 0
\(266\) 0 0
\(267\) −13.5002 −0.826201
\(268\) −10.3620 −0.632958
\(269\) 20.8365 1.27043 0.635213 0.772337i \(-0.280912\pi\)
0.635213 + 0.772337i \(0.280912\pi\)
\(270\) 0 0
\(271\) 6.62222 0.402271 0.201135 0.979563i \(-0.435537\pi\)
0.201135 + 0.979563i \(0.435537\pi\)
\(272\) −7.82071 −0.474200
\(273\) −2.57628 −0.155924
\(274\) −3.46520 −0.209341
\(275\) 0 0
\(276\) −5.52543 −0.332592
\(277\) −4.79060 −0.287839 −0.143920 0.989589i \(-0.545971\pi\)
−0.143920 + 0.989589i \(0.545971\pi\)
\(278\) −3.18421 −0.190976
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −20.8256 −1.24235 −0.621177 0.783671i \(-0.713345\pi\)
−0.621177 + 0.783671i \(0.713345\pi\)
\(282\) −1.46520 −0.0872517
\(283\) 11.8731 0.705783 0.352891 0.935664i \(-0.385199\pi\)
0.352891 + 0.935664i \(0.385199\pi\)
\(284\) −17.0716 −1.01301
\(285\) 0 0
\(286\) 2.32693 0.137594
\(287\) −1.89829 −0.112053
\(288\) −3.49532 −0.205963
\(289\) −11.7971 −0.693944
\(290\) 0 0
\(291\) −12.0000 −0.703452
\(292\) −16.9842 −0.993924
\(293\) 18.0143 1.05241 0.526203 0.850359i \(-0.323615\pi\)
0.526203 + 0.850359i \(0.323615\pi\)
\(294\) −2.03011 −0.118399
\(295\) 0 0
\(296\) 10.6746 0.620449
\(297\) −2.00000 −0.116052
\(298\) 0.470127 0.0272337
\(299\) 10.8573 0.627893
\(300\) 0 0
\(301\) 0.723926 0.0417264
\(302\) 0.547702 0.0315167
\(303\) −8.29529 −0.476552
\(304\) 0 0
\(305\) 0 0
\(306\) 0.709636 0.0405672
\(307\) −10.9240 −0.623463 −0.311732 0.950170i \(-0.600909\pi\)
−0.311732 + 0.950170i \(0.600909\pi\)
\(308\) 2.62222 0.149415
\(309\) 2.98418 0.169764
\(310\) 0 0
\(311\) 5.10324 0.289378 0.144689 0.989477i \(-0.453782\pi\)
0.144689 + 0.989477i \(0.453782\pi\)
\(312\) 4.54125 0.257098
\(313\) 22.1082 1.24963 0.624814 0.780774i \(-0.285175\pi\)
0.624814 + 0.780774i \(0.285175\pi\)
\(314\) −1.06959 −0.0603605
\(315\) 0 0
\(316\) 15.9541 0.897486
\(317\) 1.06515 0.0598245 0.0299123 0.999553i \(-0.490477\pi\)
0.0299123 + 0.999553i \(0.490477\pi\)
\(318\) −0.668149 −0.0374679
\(319\) −8.04149 −0.450237
\(320\) 0 0
\(321\) 1.52543 0.0851411
\(322\) −0.622216 −0.0346747
\(323\) 0 0
\(324\) −1.90321 −0.105734
\(325\) 0 0
\(326\) −3.29682 −0.182594
\(327\) −3.76049 −0.207956
\(328\) 3.34614 0.184760
\(329\) 3.24443 0.178871
\(330\) 0 0
\(331\) −24.9447 −1.37108 −0.685542 0.728033i \(-0.740435\pi\)
−0.685542 + 0.728033i \(0.740435\pi\)
\(332\) −20.0143 −1.09843
\(333\) 8.79060 0.481722
\(334\) −6.23506 −0.341167
\(335\) 0 0
\(336\) 2.36196 0.128856
\(337\) −0.453829 −0.0247216 −0.0123608 0.999924i \(-0.503935\pi\)
−0.0123608 + 0.999924i \(0.503935\pi\)
\(338\) −0.306662 −0.0166802
\(339\) −9.18421 −0.498818
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) 9.31756 0.503101
\(344\) −1.27607 −0.0688013
\(345\) 0 0
\(346\) −5.87955 −0.316087
\(347\) 29.7560 1.59739 0.798694 0.601737i \(-0.205525\pi\)
0.798694 + 0.601737i \(0.205525\pi\)
\(348\) −7.65233 −0.410208
\(349\) −9.65878 −0.517023 −0.258511 0.966008i \(-0.583232\pi\)
−0.258511 + 0.966008i \(0.583232\pi\)
\(350\) 0 0
\(351\) 3.73975 0.199613
\(352\) −6.99063 −0.372602
\(353\) 16.8617 0.897459 0.448730 0.893668i \(-0.351877\pi\)
0.448730 + 0.893668i \(0.351877\pi\)
\(354\) −2.00645 −0.106642
\(355\) 0 0
\(356\) −25.6938 −1.36177
\(357\) −1.57136 −0.0831652
\(358\) −5.06959 −0.267936
\(359\) 8.64296 0.456158 0.228079 0.973643i \(-0.426756\pi\)
0.228079 + 0.973643i \(0.426756\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0.530350 0.0278746
\(363\) 7.00000 0.367405
\(364\) −4.90321 −0.256998
\(365\) 0 0
\(366\) −1.57136 −0.0821363
\(367\) −6.95899 −0.363256 −0.181628 0.983367i \(-0.558137\pi\)
−0.181628 + 0.983367i \(0.558137\pi\)
\(368\) −9.95407 −0.518892
\(369\) 2.75557 0.143449
\(370\) 0 0
\(371\) 1.47949 0.0768115
\(372\) 1.90321 0.0986769
\(373\) −21.0005 −1.08736 −0.543682 0.839291i \(-0.682970\pi\)
−0.543682 + 0.839291i \(0.682970\pi\)
\(374\) 1.41927 0.0733888
\(375\) 0 0
\(376\) −5.71900 −0.294935
\(377\) 15.0366 0.774422
\(378\) −0.214320 −0.0110234
\(379\) 29.7146 1.52633 0.763167 0.646201i \(-0.223643\pi\)
0.763167 + 0.646201i \(0.223643\pi\)
\(380\) 0 0
\(381\) −11.4795 −0.588112
\(382\) 1.09880 0.0562193
\(383\) −4.05578 −0.207241 −0.103620 0.994617i \(-0.533043\pi\)
−0.103620 + 0.994617i \(0.533043\pi\)
\(384\) −8.78568 −0.448342
\(385\) 0 0
\(386\) 5.41927 0.275834
\(387\) −1.05086 −0.0534180
\(388\) −22.8385 −1.15945
\(389\) −10.9985 −0.557644 −0.278822 0.960343i \(-0.589944\pi\)
−0.278822 + 0.960343i \(0.589944\pi\)
\(390\) 0 0
\(391\) 6.62222 0.334900
\(392\) −7.92396 −0.400220
\(393\) −13.0716 −0.659375
\(394\) 3.11552 0.156958
\(395\) 0 0
\(396\) −3.80642 −0.191280
\(397\) −0.193576 −0.00971531 −0.00485765 0.999988i \(-0.501546\pi\)
−0.00485765 + 0.999988i \(0.501546\pi\)
\(398\) −8.45584 −0.423853
\(399\) 0 0
\(400\) 0 0
\(401\) −38.6242 −1.92880 −0.964401 0.264445i \(-0.914811\pi\)
−0.964401 + 0.264445i \(0.914811\pi\)
\(402\) 1.69381 0.0844798
\(403\) −3.73975 −0.186290
\(404\) −15.7877 −0.785467
\(405\) 0 0
\(406\) −0.861725 −0.0427667
\(407\) 17.5812 0.871468
\(408\) 2.76986 0.137128
\(409\) 2.94914 0.145826 0.0729129 0.997338i \(-0.476770\pi\)
0.0729129 + 0.997338i \(0.476770\pi\)
\(410\) 0 0
\(411\) −11.1383 −0.549411
\(412\) 5.67952 0.279810
\(413\) 4.44293 0.218622
\(414\) 0.903212 0.0443904
\(415\) 0 0
\(416\) 13.0716 0.640888
\(417\) −10.2351 −0.501213
\(418\) 0 0
\(419\) −26.0020 −1.27028 −0.635141 0.772397i \(-0.719058\pi\)
−0.635141 + 0.772397i \(0.719058\pi\)
\(420\) 0 0
\(421\) −20.0143 −0.975437 −0.487718 0.873001i \(-0.662171\pi\)
−0.487718 + 0.873001i \(0.662171\pi\)
\(422\) 0.603480 0.0293769
\(423\) −4.70964 −0.228990
\(424\) −2.60793 −0.126652
\(425\) 0 0
\(426\) 2.79060 0.135205
\(427\) 3.47949 0.168385
\(428\) 2.90321 0.140332
\(429\) 7.47949 0.361113
\(430\) 0 0
\(431\) −2.77631 −0.133730 −0.0668651 0.997762i \(-0.521300\pi\)
−0.0668651 + 0.997762i \(0.521300\pi\)
\(432\) −3.42864 −0.164960
\(433\) 30.7590 1.47818 0.739091 0.673606i \(-0.235256\pi\)
0.739091 + 0.673606i \(0.235256\pi\)
\(434\) 0.214320 0.0102877
\(435\) 0 0
\(436\) −7.15701 −0.342759
\(437\) 0 0
\(438\) 2.77631 0.132657
\(439\) 26.8385 1.28093 0.640467 0.767986i \(-0.278741\pi\)
0.640467 + 0.767986i \(0.278741\pi\)
\(440\) 0 0
\(441\) −6.52543 −0.310735
\(442\) −2.65386 −0.126231
\(443\) 11.7190 0.556787 0.278393 0.960467i \(-0.410198\pi\)
0.278393 + 0.960467i \(0.410198\pi\)
\(444\) 16.7304 0.793989
\(445\) 0 0
\(446\) 7.32741 0.346963
\(447\) 1.51114 0.0714743
\(448\) 3.97481 0.187792
\(449\) 33.8084 1.59552 0.797759 0.602976i \(-0.206019\pi\)
0.797759 + 0.602976i \(0.206019\pi\)
\(450\) 0 0
\(451\) 5.51114 0.259509
\(452\) −17.4795 −0.822166
\(453\) 1.76049 0.0827151
\(454\) 6.16055 0.289129
\(455\) 0 0
\(456\) 0 0
\(457\) −5.61930 −0.262860 −0.131430 0.991325i \(-0.541957\pi\)
−0.131430 + 0.991325i \(0.541957\pi\)
\(458\) 7.59411 0.354850
\(459\) 2.28100 0.106468
\(460\) 0 0
\(461\) −2.93825 −0.136848 −0.0684239 0.997656i \(-0.521797\pi\)
−0.0684239 + 0.997656i \(0.521797\pi\)
\(462\) −0.428639 −0.0199421
\(463\) 1.61285 0.0749554 0.0374777 0.999297i \(-0.488068\pi\)
0.0374777 + 0.999297i \(0.488068\pi\)
\(464\) −13.7857 −0.639984
\(465\) 0 0
\(466\) 0.976342 0.0452282
\(467\) 11.5857 0.536120 0.268060 0.963402i \(-0.413617\pi\)
0.268060 + 0.963402i \(0.413617\pi\)
\(468\) 7.11753 0.329008
\(469\) −3.75065 −0.173189
\(470\) 0 0
\(471\) −3.43801 −0.158415
\(472\) −7.83161 −0.360479
\(473\) −2.10171 −0.0966367
\(474\) −2.60793 −0.119786
\(475\) 0 0
\(476\) −2.99063 −0.137075
\(477\) −2.14764 −0.0983338
\(478\) −2.12045 −0.0969869
\(479\) 26.0020 1.18806 0.594031 0.804442i \(-0.297536\pi\)
0.594031 + 0.804442i \(0.297536\pi\)
\(480\) 0 0
\(481\) −32.8746 −1.49895
\(482\) −5.31756 −0.242208
\(483\) −2.00000 −0.0910032
\(484\) 13.3225 0.605567
\(485\) 0 0
\(486\) 0.311108 0.0141121
\(487\) −40.8988 −1.85330 −0.926650 0.375925i \(-0.877325\pi\)
−0.926650 + 0.375925i \(0.877325\pi\)
\(488\) −6.13335 −0.277644
\(489\) −10.5970 −0.479214
\(490\) 0 0
\(491\) 16.6953 0.753450 0.376725 0.926325i \(-0.377050\pi\)
0.376725 + 0.926325i \(0.377050\pi\)
\(492\) 5.24443 0.236437
\(493\) 9.17130 0.413055
\(494\) 0 0
\(495\) 0 0
\(496\) 3.42864 0.153950
\(497\) −6.17929 −0.277179
\(498\) 3.27163 0.146605
\(499\) −26.3684 −1.18041 −0.590206 0.807253i \(-0.700954\pi\)
−0.590206 + 0.807253i \(0.700954\pi\)
\(500\) 0 0
\(501\) −20.0415 −0.895388
\(502\) −5.03212 −0.224594
\(503\) 9.47505 0.422472 0.211236 0.977435i \(-0.432251\pi\)
0.211236 + 0.977435i \(0.432251\pi\)
\(504\) −0.836535 −0.0372622
\(505\) 0 0
\(506\) 1.80642 0.0803053
\(507\) −0.985710 −0.0437769
\(508\) −21.8479 −0.969344
\(509\) 21.9003 0.970714 0.485357 0.874316i \(-0.338690\pi\)
0.485357 + 0.874316i \(0.338690\pi\)
\(510\) 0 0
\(511\) −6.14764 −0.271956
\(512\) −20.3111 −0.897633
\(513\) 0 0
\(514\) 5.92549 0.261362
\(515\) 0 0
\(516\) −2.00000 −0.0880451
\(517\) −9.41927 −0.414259
\(518\) 1.88400 0.0827782
\(519\) −18.8988 −0.829564
\(520\) 0 0
\(521\) −36.2034 −1.58610 −0.793050 0.609156i \(-0.791508\pi\)
−0.793050 + 0.609156i \(0.791508\pi\)
\(522\) 1.25088 0.0547497
\(523\) 14.7971 0.647030 0.323515 0.946223i \(-0.395135\pi\)
0.323515 + 0.946223i \(0.395135\pi\)
\(524\) −24.8780 −1.08680
\(525\) 0 0
\(526\) −1.93978 −0.0845783
\(527\) −2.28100 −0.0993618
\(528\) −6.85728 −0.298425
\(529\) −14.5714 −0.633537
\(530\) 0 0
\(531\) −6.44938 −0.279879
\(532\) 0 0
\(533\) −10.3051 −0.446365
\(534\) 4.20003 0.181753
\(535\) 0 0
\(536\) 6.61132 0.285565
\(537\) −16.2953 −0.703194
\(538\) −6.48241 −0.279476
\(539\) −13.0509 −0.562140
\(540\) 0 0
\(541\) −41.9956 −1.80553 −0.902765 0.430134i \(-0.858466\pi\)
−0.902765 + 0.430134i \(0.858466\pi\)
\(542\) −2.06022 −0.0884942
\(543\) 1.70471 0.0731563
\(544\) 7.97280 0.341831
\(545\) 0 0
\(546\) 0.801502 0.0343011
\(547\) 34.8004 1.48796 0.743980 0.668202i \(-0.232936\pi\)
0.743980 + 0.668202i \(0.232936\pi\)
\(548\) −21.1985 −0.905555
\(549\) −5.05086 −0.215565
\(550\) 0 0
\(551\) 0 0
\(552\) 3.52543 0.150052
\(553\) 5.77478 0.245569
\(554\) 1.49039 0.0633208
\(555\) 0 0
\(556\) −19.4795 −0.826115
\(557\) −26.3096 −1.11477 −0.557386 0.830253i \(-0.688196\pi\)
−0.557386 + 0.830253i \(0.688196\pi\)
\(558\) −0.311108 −0.0131702
\(559\) 3.92993 0.166218
\(560\) 0 0
\(561\) 4.56199 0.192607
\(562\) 6.47902 0.273301
\(563\) 31.8306 1.34150 0.670749 0.741684i \(-0.265973\pi\)
0.670749 + 0.741684i \(0.265973\pi\)
\(564\) −8.96343 −0.377429
\(565\) 0 0
\(566\) −3.69381 −0.155263
\(567\) −0.688892 −0.0289308
\(568\) 10.8923 0.457031
\(569\) 23.6622 0.991970 0.495985 0.868331i \(-0.334807\pi\)
0.495985 + 0.868331i \(0.334807\pi\)
\(570\) 0 0
\(571\) 18.8889 0.790477 0.395238 0.918579i \(-0.370662\pi\)
0.395238 + 0.918579i \(0.370662\pi\)
\(572\) 14.2351 0.595198
\(573\) 3.53188 0.147546
\(574\) 0.590573 0.0246500
\(575\) 0 0
\(576\) −5.76986 −0.240411
\(577\) −1.11108 −0.0462548 −0.0231274 0.999733i \(-0.507362\pi\)
−0.0231274 + 0.999733i \(0.507362\pi\)
\(578\) 3.67016 0.152658
\(579\) 17.4193 0.723920
\(580\) 0 0
\(581\) −7.24443 −0.300550
\(582\) 3.73329 0.154750
\(583\) −4.29529 −0.177893
\(584\) 10.8365 0.448419
\(585\) 0 0
\(586\) −5.60439 −0.231515
\(587\) 17.3778 0.717258 0.358629 0.933480i \(-0.383244\pi\)
0.358629 + 0.933480i \(0.383244\pi\)
\(588\) −12.4193 −0.512162
\(589\) 0 0
\(590\) 0 0
\(591\) 10.0143 0.411933
\(592\) 30.1398 1.23874
\(593\) 37.1753 1.52661 0.763304 0.646040i \(-0.223576\pi\)
0.763304 + 0.646040i \(0.223576\pi\)
\(594\) 0.622216 0.0255298
\(595\) 0 0
\(596\) 2.87601 0.117806
\(597\) −27.1798 −1.11239
\(598\) −3.37778 −0.138128
\(599\) 15.6207 0.638244 0.319122 0.947714i \(-0.396612\pi\)
0.319122 + 0.947714i \(0.396612\pi\)
\(600\) 0 0
\(601\) −26.7239 −1.09009 −0.545046 0.838406i \(-0.683488\pi\)
−0.545046 + 0.838406i \(0.683488\pi\)
\(602\) −0.225219 −0.00917924
\(603\) 5.44446 0.221716
\(604\) 3.35059 0.136333
\(605\) 0 0
\(606\) 2.58073 0.104835
\(607\) −14.3936 −0.584218 −0.292109 0.956385i \(-0.594357\pi\)
−0.292109 + 0.956385i \(0.594357\pi\)
\(608\) 0 0
\(609\) −2.76986 −0.112240
\(610\) 0 0
\(611\) 17.6128 0.712540
\(612\) 4.34122 0.175483
\(613\) −6.09526 −0.246185 −0.123093 0.992395i \(-0.539281\pi\)
−0.123093 + 0.992395i \(0.539281\pi\)
\(614\) 3.39853 0.137153
\(615\) 0 0
\(616\) −1.67307 −0.0674099
\(617\) −1.34614 −0.0541936 −0.0270968 0.999633i \(-0.508626\pi\)
−0.0270968 + 0.999633i \(0.508626\pi\)
\(618\) −0.928401 −0.0373458
\(619\) 5.71900 0.229866 0.114933 0.993373i \(-0.463335\pi\)
0.114933 + 0.993373i \(0.463335\pi\)
\(620\) 0 0
\(621\) 2.90321 0.116502
\(622\) −1.58766 −0.0636593
\(623\) −9.30021 −0.372605
\(624\) 12.8222 0.513301
\(625\) 0 0
\(626\) −6.87802 −0.274901
\(627\) 0 0
\(628\) −6.54326 −0.261104
\(629\) −20.0513 −0.799499
\(630\) 0 0
\(631\) 37.3274 1.48598 0.742990 0.669302i \(-0.233407\pi\)
0.742990 + 0.669302i \(0.233407\pi\)
\(632\) −10.1793 −0.404910
\(633\) 1.93978 0.0770992
\(634\) −0.331375 −0.0131606
\(635\) 0 0
\(636\) −4.08742 −0.162077
\(637\) 24.4035 0.966900
\(638\) 2.50177 0.0990460
\(639\) 8.96989 0.354843
\(640\) 0 0
\(641\) 36.1323 1.42714 0.713570 0.700584i \(-0.247077\pi\)
0.713570 + 0.700584i \(0.247077\pi\)
\(642\) −0.474572 −0.0187299
\(643\) 3.10123 0.122301 0.0611504 0.998129i \(-0.480523\pi\)
0.0611504 + 0.998129i \(0.480523\pi\)
\(644\) −3.80642 −0.149994
\(645\) 0 0
\(646\) 0 0
\(647\) −29.6227 −1.16459 −0.582294 0.812978i \(-0.697845\pi\)
−0.582294 + 0.812978i \(0.697845\pi\)
\(648\) 1.21432 0.0477030
\(649\) −12.8988 −0.506321
\(650\) 0 0
\(651\) 0.688892 0.0269998
\(652\) −20.1684 −0.789855
\(653\) 25.2114 0.986599 0.493299 0.869860i \(-0.335791\pi\)
0.493299 + 0.869860i \(0.335791\pi\)
\(654\) 1.16992 0.0457474
\(655\) 0 0
\(656\) 9.44785 0.368877
\(657\) 8.92396 0.348157
\(658\) −1.00937 −0.0393493
\(659\) 40.6242 1.58250 0.791248 0.611496i \(-0.209432\pi\)
0.791248 + 0.611496i \(0.209432\pi\)
\(660\) 0 0
\(661\) −38.7783 −1.50830 −0.754151 0.656701i \(-0.771951\pi\)
−0.754151 + 0.656701i \(0.771951\pi\)
\(662\) 7.76049 0.301620
\(663\) −8.53035 −0.331291
\(664\) 12.7699 0.495567
\(665\) 0 0
\(666\) −2.73483 −0.105972
\(667\) 11.6731 0.451983
\(668\) −38.1432 −1.47580
\(669\) 23.5526 0.910597
\(670\) 0 0
\(671\) −10.1017 −0.389972
\(672\) −2.40790 −0.0928866
\(673\) −40.1813 −1.54888 −0.774438 0.632650i \(-0.781967\pi\)
−0.774438 + 0.632650i \(0.781967\pi\)
\(674\) 0.141190 0.00543842
\(675\) 0 0
\(676\) −1.87601 −0.0721544
\(677\) −10.6811 −0.410506 −0.205253 0.978709i \(-0.565802\pi\)
−0.205253 + 0.978709i \(0.565802\pi\)
\(678\) 2.85728 0.109733
\(679\) −8.26671 −0.317247
\(680\) 0 0
\(681\) 19.8020 0.758813
\(682\) −0.622216 −0.0238259
\(683\) −31.6271 −1.21018 −0.605089 0.796158i \(-0.706863\pi\)
−0.605089 + 0.796158i \(0.706863\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −2.89877 −0.110675
\(687\) 24.4099 0.931296
\(688\) −3.60300 −0.137363
\(689\) 8.03164 0.305981
\(690\) 0 0
\(691\) 10.6508 0.405175 0.202588 0.979264i \(-0.435065\pi\)
0.202588 + 0.979264i \(0.435065\pi\)
\(692\) −35.9684 −1.36731
\(693\) −1.37778 −0.0523377
\(694\) −9.25734 −0.351404
\(695\) 0 0
\(696\) 4.88247 0.185069
\(697\) −6.28544 −0.238078
\(698\) 3.00492 0.113738
\(699\) 3.13828 0.118700
\(700\) 0 0
\(701\) 39.3590 1.48657 0.743285 0.668974i \(-0.233266\pi\)
0.743285 + 0.668974i \(0.233266\pi\)
\(702\) −1.16346 −0.0439121
\(703\) 0 0
\(704\) −11.5397 −0.434919
\(705\) 0 0
\(706\) −5.24581 −0.197429
\(707\) −5.71456 −0.214918
\(708\) −12.2745 −0.461306
\(709\) 20.1847 0.758052 0.379026 0.925386i \(-0.376259\pi\)
0.379026 + 0.925386i \(0.376259\pi\)
\(710\) 0 0
\(711\) −8.38271 −0.314376
\(712\) 16.3936 0.614376
\(713\) −2.90321 −0.108726
\(714\) 0.488863 0.0182952
\(715\) 0 0
\(716\) −31.0134 −1.15902
\(717\) −6.81579 −0.254540
\(718\) −2.68889 −0.100349
\(719\) 24.1017 0.898842 0.449421 0.893320i \(-0.351630\pi\)
0.449421 + 0.893320i \(0.351630\pi\)
\(720\) 0 0
\(721\) 2.05578 0.0765611
\(722\) 5.91105 0.219986
\(723\) −17.0923 −0.635671
\(724\) 3.24443 0.120578
\(725\) 0 0
\(726\) −2.17775 −0.0808241
\(727\) 14.1180 0.523608 0.261804 0.965121i \(-0.415683\pi\)
0.261804 + 0.965121i \(0.415683\pi\)
\(728\) 3.12843 0.115947
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 2.39700 0.0886561
\(732\) −9.61285 −0.355301
\(733\) 23.1240 0.854104 0.427052 0.904227i \(-0.359552\pi\)
0.427052 + 0.904227i \(0.359552\pi\)
\(734\) 2.16500 0.0799115
\(735\) 0 0
\(736\) 10.1476 0.374047
\(737\) 10.8889 0.401099
\(738\) −0.857279 −0.0315569
\(739\) −0.128907 −0.00474193 −0.00237097 0.999997i \(-0.500755\pi\)
−0.00237097 + 0.999997i \(0.500755\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.460282 −0.0168975
\(743\) −28.0129 −1.02769 −0.513847 0.857882i \(-0.671780\pi\)
−0.513847 + 0.857882i \(0.671780\pi\)
\(744\) −1.21432 −0.0445191
\(745\) 0 0
\(746\) 6.53341 0.239205
\(747\) 10.5161 0.384763
\(748\) 8.68244 0.317461
\(749\) 1.05086 0.0383974
\(750\) 0 0
\(751\) −3.56247 −0.129996 −0.0649982 0.997885i \(-0.520704\pi\)
−0.0649982 + 0.997885i \(0.520704\pi\)
\(752\) −16.1476 −0.588844
\(753\) −16.1748 −0.589444
\(754\) −4.67799 −0.170362
\(755\) 0 0
\(756\) −1.31111 −0.0476845
\(757\) −27.0573 −0.983415 −0.491707 0.870761i \(-0.663627\pi\)
−0.491707 + 0.870761i \(0.663627\pi\)
\(758\) −9.24443 −0.335773
\(759\) 5.80642 0.210760
\(760\) 0 0
\(761\) 13.1447 0.476496 0.238248 0.971204i \(-0.423427\pi\)
0.238248 + 0.971204i \(0.423427\pi\)
\(762\) 3.57136 0.129377
\(763\) −2.59057 −0.0937850
\(764\) 6.72192 0.243190
\(765\) 0 0
\(766\) 1.26178 0.0455901
\(767\) 24.1191 0.870889
\(768\) −8.80642 −0.317774
\(769\) 25.7418 0.928271 0.464136 0.885764i \(-0.346365\pi\)
0.464136 + 0.885764i \(0.346365\pi\)
\(770\) 0 0
\(771\) 19.0464 0.685940
\(772\) 33.1526 1.19319
\(773\) −50.3007 −1.80919 −0.904595 0.426272i \(-0.859827\pi\)
−0.904595 + 0.426272i \(0.859827\pi\)
\(774\) 0.326929 0.0117512
\(775\) 0 0
\(776\) 14.5718 0.523098
\(777\) 6.05578 0.217250
\(778\) 3.42171 0.122674
\(779\) 0 0
\(780\) 0 0
\(781\) 17.9398 0.641936
\(782\) −2.06022 −0.0736734
\(783\) 4.02074 0.143690
\(784\) −22.3733 −0.799048
\(785\) 0 0
\(786\) 4.06668 0.145054
\(787\) −8.70519 −0.310307 −0.155153 0.987890i \(-0.549587\pi\)
−0.155153 + 0.987890i \(0.549587\pi\)
\(788\) 19.0593 0.678960
\(789\) −6.23506 −0.221974
\(790\) 0 0
\(791\) −6.32693 −0.224960
\(792\) 2.42864 0.0862979
\(793\) 18.8889 0.670765
\(794\) 0.0602231 0.00213724
\(795\) 0 0
\(796\) −51.7288 −1.83348
\(797\) −39.0464 −1.38309 −0.691547 0.722331i \(-0.743071\pi\)
−0.691547 + 0.722331i \(0.743071\pi\)
\(798\) 0 0
\(799\) 10.7427 0.380048
\(800\) 0 0
\(801\) 13.5002 0.477007
\(802\) 12.0163 0.424310
\(803\) 17.8479 0.629839
\(804\) 10.3620 0.365438
\(805\) 0 0
\(806\) 1.16346 0.0409813
\(807\) −20.8365 −0.733481
\(808\) 10.0731 0.354371
\(809\) −24.0435 −0.845324 −0.422662 0.906287i \(-0.638904\pi\)
−0.422662 + 0.906287i \(0.638904\pi\)
\(810\) 0 0
\(811\) 45.5812 1.60057 0.800286 0.599618i \(-0.204681\pi\)
0.800286 + 0.599618i \(0.204681\pi\)
\(812\) −5.27163 −0.184998
\(813\) −6.62222 −0.232251
\(814\) −5.46965 −0.191711
\(815\) 0 0
\(816\) 7.82071 0.273780
\(817\) 0 0
\(818\) −0.917502 −0.0320797
\(819\) 2.57628 0.0900226
\(820\) 0 0
\(821\) −32.2054 −1.12398 −0.561989 0.827145i \(-0.689964\pi\)
−0.561989 + 0.827145i \(0.689964\pi\)
\(822\) 3.46520 0.120863
\(823\) −33.1052 −1.15398 −0.576988 0.816752i \(-0.695772\pi\)
−0.576988 + 0.816752i \(0.695772\pi\)
\(824\) −3.62375 −0.126239
\(825\) 0 0
\(826\) −1.38223 −0.0480939
\(827\) 0.147643 0.00513406 0.00256703 0.999997i \(-0.499183\pi\)
0.00256703 + 0.999997i \(0.499183\pi\)
\(828\) 5.52543 0.192022
\(829\) −20.9175 −0.726495 −0.363247 0.931693i \(-0.618332\pi\)
−0.363247 + 0.931693i \(0.618332\pi\)
\(830\) 0 0
\(831\) 4.79060 0.166184
\(832\) 21.5778 0.748076
\(833\) 14.8845 0.515717
\(834\) 3.18421 0.110260
\(835\) 0 0
\(836\) 0 0
\(837\) −1.00000 −0.0345651
\(838\) 8.08943 0.279445
\(839\) −42.9066 −1.48130 −0.740650 0.671891i \(-0.765482\pi\)
−0.740650 + 0.671891i \(0.765482\pi\)
\(840\) 0 0
\(841\) −12.8336 −0.442539
\(842\) 6.22660 0.214583
\(843\) 20.8256 0.717273
\(844\) 3.69181 0.127077
\(845\) 0 0
\(846\) 1.46520 0.0503748
\(847\) 4.82225 0.165694
\(848\) −7.36349 −0.252863
\(849\) −11.8731 −0.407484
\(850\) 0 0
\(851\) −25.5210 −0.874848
\(852\) 17.0716 0.584863
\(853\) 49.2226 1.68535 0.842675 0.538422i \(-0.180979\pi\)
0.842675 + 0.538422i \(0.180979\pi\)
\(854\) −1.08250 −0.0370423
\(855\) 0 0
\(856\) −1.85236 −0.0633123
\(857\) −34.2449 −1.16978 −0.584892 0.811111i \(-0.698863\pi\)
−0.584892 + 0.811111i \(0.698863\pi\)
\(858\) −2.32693 −0.0794401
\(859\) 14.5718 0.497185 0.248592 0.968608i \(-0.420032\pi\)
0.248592 + 0.968608i \(0.420032\pi\)
\(860\) 0 0
\(861\) 1.89829 0.0646935
\(862\) 0.863732 0.0294188
\(863\) −44.6164 −1.51876 −0.759380 0.650648i \(-0.774497\pi\)
−0.759380 + 0.650648i \(0.774497\pi\)
\(864\) 3.49532 0.118913
\(865\) 0 0
\(866\) −9.56935 −0.325180
\(867\) 11.7971 0.400649
\(868\) 1.31111 0.0445019
\(869\) −16.7654 −0.568728
\(870\) 0 0
\(871\) −20.3609 −0.689903
\(872\) 4.56644 0.154639
\(873\) 12.0000 0.406138
\(874\) 0 0
\(875\) 0 0
\(876\) 16.9842 0.573842
\(877\) −8.05038 −0.271842 −0.135921 0.990720i \(-0.543399\pi\)
−0.135921 + 0.990720i \(0.543399\pi\)
\(878\) −8.34968 −0.281788
\(879\) −18.0143 −0.607607
\(880\) 0 0
\(881\) −28.7130 −0.967366 −0.483683 0.875243i \(-0.660701\pi\)
−0.483683 + 0.875243i \(0.660701\pi\)
\(882\) 2.03011 0.0683574
\(883\) 26.4197 0.889095 0.444548 0.895755i \(-0.353364\pi\)
0.444548 + 0.895755i \(0.353364\pi\)
\(884\) −16.2351 −0.546044
\(885\) 0 0
\(886\) −3.64587 −0.122486
\(887\) 44.7926 1.50399 0.751994 0.659170i \(-0.229092\pi\)
0.751994 + 0.659170i \(0.229092\pi\)
\(888\) −10.6746 −0.358216
\(889\) −7.90813 −0.265230
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) 44.8256 1.50087
\(893\) 0 0
\(894\) −0.470127 −0.0157234
\(895\) 0 0
\(896\) −6.05239 −0.202196
\(897\) −10.8573 −0.362514
\(898\) −10.5181 −0.350992
\(899\) −4.02074 −0.134099
\(900\) 0 0
\(901\) 4.89877 0.163202
\(902\) −1.71456 −0.0570885
\(903\) −0.723926 −0.0240907
\(904\) 11.1526 0.370929
\(905\) 0 0
\(906\) −0.547702 −0.0181962
\(907\) −7.21924 −0.239711 −0.119855 0.992791i \(-0.538243\pi\)
−0.119855 + 0.992791i \(0.538243\pi\)
\(908\) 37.6874 1.25070
\(909\) 8.29529 0.275137
\(910\) 0 0
\(911\) 21.1052 0.699248 0.349624 0.936890i \(-0.386309\pi\)
0.349624 + 0.936890i \(0.386309\pi\)
\(912\) 0 0
\(913\) 21.0321 0.696062
\(914\) 1.74821 0.0578256
\(915\) 0 0
\(916\) 46.4572 1.53499
\(917\) −9.00492 −0.297369
\(918\) −0.709636 −0.0234215
\(919\) 16.4415 0.542357 0.271178 0.962529i \(-0.412587\pi\)
0.271178 + 0.962529i \(0.412587\pi\)
\(920\) 0 0
\(921\) 10.9240 0.359957
\(922\) 0.914111 0.0301046
\(923\) −33.5451 −1.10415
\(924\) −2.62222 −0.0862646
\(925\) 0 0
\(926\) −0.501770 −0.0164892
\(927\) −2.98418 −0.0980133
\(928\) 14.0538 0.461338
\(929\) 6.26470 0.205538 0.102769 0.994705i \(-0.467230\pi\)
0.102769 + 0.994705i \(0.467230\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 5.97280 0.195646
\(933\) −5.10324 −0.167073
\(934\) −3.60439 −0.117939
\(935\) 0 0
\(936\) −4.54125 −0.148435
\(937\) −37.1437 −1.21343 −0.606715 0.794919i \(-0.707513\pi\)
−0.606715 + 0.794919i \(0.707513\pi\)
\(938\) 1.16686 0.0380992
\(939\) −22.1082 −0.721473
\(940\) 0 0
\(941\) 39.1318 1.27566 0.637830 0.770177i \(-0.279832\pi\)
0.637830 + 0.770177i \(0.279832\pi\)
\(942\) 1.06959 0.0348492
\(943\) −8.00000 −0.260516
\(944\) −22.1126 −0.719704
\(945\) 0 0
\(946\) 0.653858 0.0212588
\(947\) 53.0968 1.72541 0.862707 0.505704i \(-0.168767\pi\)
0.862707 + 0.505704i \(0.168767\pi\)
\(948\) −15.9541 −0.518164
\(949\) −33.3733 −1.08334
\(950\) 0 0
\(951\) −1.06515 −0.0345397
\(952\) 1.90813 0.0618430
\(953\) 6.57628 0.213027 0.106513 0.994311i \(-0.466031\pi\)
0.106513 + 0.994311i \(0.466031\pi\)
\(954\) 0.668149 0.0216321
\(955\) 0 0
\(956\) −12.9719 −0.419541
\(957\) 8.04149 0.259944
\(958\) −8.08943 −0.261358
\(959\) −7.67307 −0.247776
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 10.2276 0.329750
\(963\) −1.52543 −0.0491562
\(964\) −32.5303 −1.04773
\(965\) 0 0
\(966\) 0.622216 0.0200195
\(967\) −54.2449 −1.74440 −0.872199 0.489151i \(-0.837307\pi\)
−0.872199 + 0.489151i \(0.837307\pi\)
\(968\) −8.50024 −0.273208
\(969\) 0 0
\(970\) 0 0
\(971\) −42.8879 −1.37634 −0.688169 0.725551i \(-0.741585\pi\)
−0.688169 + 0.725551i \(0.741585\pi\)
\(972\) 1.90321 0.0610456
\(973\) −7.05086 −0.226040
\(974\) 12.7239 0.407701
\(975\) 0 0
\(976\) −17.3176 −0.554322
\(977\) −11.6316 −0.372127 −0.186064 0.982538i \(-0.559573\pi\)
−0.186064 + 0.982538i \(0.559573\pi\)
\(978\) 3.29682 0.105421
\(979\) 27.0005 0.862939
\(980\) 0 0
\(981\) 3.76049 0.120063
\(982\) −5.19405 −0.165749
\(983\) 30.3595 0.968318 0.484159 0.874980i \(-0.339126\pi\)
0.484159 + 0.874980i \(0.339126\pi\)
\(984\) −3.34614 −0.106671
\(985\) 0 0
\(986\) −2.85326 −0.0908664
\(987\) −3.24443 −0.103271
\(988\) 0 0
\(989\) 3.05086 0.0970115
\(990\) 0 0
\(991\) 42.5589 1.35193 0.675964 0.736934i \(-0.263727\pi\)
0.675964 + 0.736934i \(0.263727\pi\)
\(992\) −3.49532 −0.110976
\(993\) 24.9447 0.791596
\(994\) 1.92242 0.0609756
\(995\) 0 0
\(996\) 20.0143 0.634177
\(997\) 33.5339 1.06203 0.531014 0.847363i \(-0.321811\pi\)
0.531014 + 0.847363i \(0.321811\pi\)
\(998\) 8.20342 0.259675
\(999\) −8.79060 −0.278122
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.a.q.1.2 3
3.2 odd 2 6975.2.a.be.1.2 3
5.2 odd 4 2325.2.c.o.1024.3 6
5.3 odd 4 2325.2.c.o.1024.4 6
5.4 even 2 465.2.a.f.1.2 3
15.14 odd 2 1395.2.a.i.1.2 3
20.19 odd 2 7440.2.a.bp.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.f.1.2 3 5.4 even 2
1395.2.a.i.1.2 3 15.14 odd 2
2325.2.a.q.1.2 3 1.1 even 1 trivial
2325.2.c.o.1024.3 6 5.2 odd 4
2325.2.c.o.1024.4 6 5.3 odd 4
6975.2.a.be.1.2 3 3.2 odd 2
7440.2.a.bp.1.2 3 20.19 odd 2