Properties

Label 2325.2.a.bb.1.6
Level $2325$
Weight $2$
Character 2325.1
Self dual yes
Analytic conductor $18.565$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,1,6,7,0,1,2,-3,6,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.75968016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 9x^{3} + 14x^{2} - 6x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.46251\) of defining polynomial
Character \(\chi\) \(=\) 2325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.46251 q^{2} +1.00000 q^{3} +4.06395 q^{4} +2.46251 q^{6} +3.91086 q^{7} +5.08250 q^{8} +1.00000 q^{9} +3.77308 q^{11} +4.06395 q^{12} -4.83704 q^{13} +9.63054 q^{14} +4.38781 q^{16} -5.89630 q^{17} +2.46251 q^{18} +5.60730 q^{19} +3.91086 q^{21} +9.29125 q^{22} -5.19547 q^{23} +5.08250 q^{24} -11.9112 q^{26} +1.00000 q^{27} +15.8936 q^{28} -6.33880 q^{29} -1.00000 q^{31} +0.640010 q^{32} +3.77308 q^{33} -14.5197 q^{34} +4.06395 q^{36} +11.2913 q^{37} +13.8080 q^{38} -4.83704 q^{39} +0.663143 q^{41} +9.63054 q^{42} -3.39308 q^{43} +15.3336 q^{44} -12.7939 q^{46} -1.31684 q^{47} +4.38781 q^{48} +8.29486 q^{49} -5.89630 q^{51} -19.6575 q^{52} -10.4443 q^{53} +2.46251 q^{54} +19.8770 q^{56} +5.60730 q^{57} -15.6093 q^{58} +7.58816 q^{59} -10.3208 q^{61} -2.46251 q^{62} +3.91086 q^{63} -7.19958 q^{64} +9.29125 q^{66} -10.2874 q^{67} -23.9623 q^{68} -5.19547 q^{69} -3.68083 q^{71} +5.08250 q^{72} +12.3909 q^{73} +27.8048 q^{74} +22.7878 q^{76} +14.7560 q^{77} -11.9112 q^{78} -9.23657 q^{79} +1.00000 q^{81} +1.63300 q^{82} -0.590907 q^{83} +15.8936 q^{84} -8.35548 q^{86} -6.33880 q^{87} +19.1767 q^{88} +15.8673 q^{89} -18.9170 q^{91} -21.1141 q^{92} -1.00000 q^{93} -3.24273 q^{94} +0.640010 q^{96} +3.98585 q^{97} +20.4262 q^{98} +3.77308 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 6 q^{3} + 7 q^{4} + q^{6} + 2 q^{7} - 3 q^{8} + 6 q^{9} + 7 q^{11} + 7 q^{12} + 4 q^{13} + 10 q^{14} + 17 q^{16} + q^{18} + 17 q^{19} + 2 q^{21} + 2 q^{22} - q^{23} - 3 q^{24} + 2 q^{26}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.46251 1.74126 0.870629 0.491941i \(-0.163712\pi\)
0.870629 + 0.491941i \(0.163712\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.06395 2.03198
\(5\) 0 0
\(6\) 2.46251 1.00532
\(7\) 3.91086 1.47817 0.739084 0.673613i \(-0.235259\pi\)
0.739084 + 0.673613i \(0.235259\pi\)
\(8\) 5.08250 1.79694
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.77308 1.13763 0.568814 0.822466i \(-0.307403\pi\)
0.568814 + 0.822466i \(0.307403\pi\)
\(12\) 4.06395 1.17316
\(13\) −4.83704 −1.34155 −0.670776 0.741660i \(-0.734039\pi\)
−0.670776 + 0.741660i \(0.734039\pi\)
\(14\) 9.63054 2.57387
\(15\) 0 0
\(16\) 4.38781 1.09695
\(17\) −5.89630 −1.43006 −0.715032 0.699092i \(-0.753588\pi\)
−0.715032 + 0.699092i \(0.753588\pi\)
\(18\) 2.46251 0.580419
\(19\) 5.60730 1.28640 0.643202 0.765697i \(-0.277606\pi\)
0.643202 + 0.765697i \(0.277606\pi\)
\(20\) 0 0
\(21\) 3.91086 0.853421
\(22\) 9.29125 1.98090
\(23\) −5.19547 −1.08333 −0.541665 0.840595i \(-0.682206\pi\)
−0.541665 + 0.840595i \(0.682206\pi\)
\(24\) 5.08250 1.03746
\(25\) 0 0
\(26\) −11.9112 −2.33599
\(27\) 1.00000 0.192450
\(28\) 15.8936 3.00360
\(29\) −6.33880 −1.17709 −0.588543 0.808466i \(-0.700298\pi\)
−0.588543 + 0.808466i \(0.700298\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0.640010 0.113139
\(33\) 3.77308 0.656809
\(34\) −14.5197 −2.49011
\(35\) 0 0
\(36\) 4.06395 0.677325
\(37\) 11.2913 1.85627 0.928135 0.372243i \(-0.121411\pi\)
0.928135 + 0.372243i \(0.121411\pi\)
\(38\) 13.8080 2.23996
\(39\) −4.83704 −0.774546
\(40\) 0 0
\(41\) 0.663143 0.103566 0.0517828 0.998658i \(-0.483510\pi\)
0.0517828 + 0.998658i \(0.483510\pi\)
\(42\) 9.63054 1.48602
\(43\) −3.39308 −0.517439 −0.258720 0.965952i \(-0.583301\pi\)
−0.258720 + 0.965952i \(0.583301\pi\)
\(44\) 15.3336 2.31163
\(45\) 0 0
\(46\) −12.7939 −1.88636
\(47\) −1.31684 −0.192081 −0.0960405 0.995377i \(-0.530618\pi\)
−0.0960405 + 0.995377i \(0.530618\pi\)
\(48\) 4.38781 0.633325
\(49\) 8.29486 1.18498
\(50\) 0 0
\(51\) −5.89630 −0.825648
\(52\) −19.6575 −2.72600
\(53\) −10.4443 −1.43464 −0.717320 0.696744i \(-0.754632\pi\)
−0.717320 + 0.696744i \(0.754632\pi\)
\(54\) 2.46251 0.335105
\(55\) 0 0
\(56\) 19.8770 2.65617
\(57\) 5.60730 0.742706
\(58\) −15.6093 −2.04961
\(59\) 7.58816 0.987895 0.493947 0.869492i \(-0.335554\pi\)
0.493947 + 0.869492i \(0.335554\pi\)
\(60\) 0 0
\(61\) −10.3208 −1.32145 −0.660724 0.750629i \(-0.729751\pi\)
−0.660724 + 0.750629i \(0.729751\pi\)
\(62\) −2.46251 −0.312739
\(63\) 3.91086 0.492723
\(64\) −7.19958 −0.899948
\(65\) 0 0
\(66\) 9.29125 1.14367
\(67\) −10.2874 −1.25680 −0.628400 0.777890i \(-0.716290\pi\)
−0.628400 + 0.777890i \(0.716290\pi\)
\(68\) −23.9623 −2.90586
\(69\) −5.19547 −0.625461
\(70\) 0 0
\(71\) −3.68083 −0.436834 −0.218417 0.975856i \(-0.570089\pi\)
−0.218417 + 0.975856i \(0.570089\pi\)
\(72\) 5.08250 0.598979
\(73\) 12.3909 1.45025 0.725125 0.688618i \(-0.241782\pi\)
0.725125 + 0.688618i \(0.241782\pi\)
\(74\) 27.8048 3.23224
\(75\) 0 0
\(76\) 22.7878 2.61394
\(77\) 14.7560 1.68160
\(78\) −11.9112 −1.34868
\(79\) −9.23657 −1.03919 −0.519597 0.854411i \(-0.673918\pi\)
−0.519597 + 0.854411i \(0.673918\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 1.63300 0.180334
\(83\) −0.590907 −0.0648605 −0.0324302 0.999474i \(-0.510325\pi\)
−0.0324302 + 0.999474i \(0.510325\pi\)
\(84\) 15.8936 1.73413
\(85\) 0 0
\(86\) −8.35548 −0.900995
\(87\) −6.33880 −0.679590
\(88\) 19.1767 2.04424
\(89\) 15.8673 1.68193 0.840964 0.541090i \(-0.181988\pi\)
0.840964 + 0.541090i \(0.181988\pi\)
\(90\) 0 0
\(91\) −18.9170 −1.98304
\(92\) −21.1141 −2.20130
\(93\) −1.00000 −0.103695
\(94\) −3.24273 −0.334462
\(95\) 0 0
\(96\) 0.640010 0.0653207
\(97\) 3.98585 0.404701 0.202351 0.979313i \(-0.435142\pi\)
0.202351 + 0.979313i \(0.435142\pi\)
\(98\) 20.4262 2.06335
\(99\) 3.77308 0.379209
\(100\) 0 0
\(101\) −4.48372 −0.446147 −0.223073 0.974802i \(-0.571609\pi\)
−0.223073 + 0.974802i \(0.571609\pi\)
\(102\) −14.5197 −1.43766
\(103\) 14.9600 1.47405 0.737025 0.675865i \(-0.236230\pi\)
0.737025 + 0.675865i \(0.236230\pi\)
\(104\) −24.5842 −2.41068
\(105\) 0 0
\(106\) −25.7193 −2.49808
\(107\) 1.47421 0.142517 0.0712585 0.997458i \(-0.477298\pi\)
0.0712585 + 0.997458i \(0.477298\pi\)
\(108\) 4.06395 0.391054
\(109\) 12.7771 1.22382 0.611911 0.790927i \(-0.290401\pi\)
0.611911 + 0.790927i \(0.290401\pi\)
\(110\) 0 0
\(111\) 11.2913 1.07172
\(112\) 17.1601 1.62148
\(113\) −4.71980 −0.444002 −0.222001 0.975046i \(-0.571259\pi\)
−0.222001 + 0.975046i \(0.571259\pi\)
\(114\) 13.8080 1.29324
\(115\) 0 0
\(116\) −25.7606 −2.39181
\(117\) −4.83704 −0.447184
\(118\) 18.6859 1.72018
\(119\) −23.0596 −2.11387
\(120\) 0 0
\(121\) 3.23615 0.294196
\(122\) −25.4152 −2.30098
\(123\) 0.663143 0.0597936
\(124\) −4.06395 −0.364954
\(125\) 0 0
\(126\) 9.63054 0.857957
\(127\) −14.7204 −1.30622 −0.653111 0.757262i \(-0.726536\pi\)
−0.653111 + 0.757262i \(0.726536\pi\)
\(128\) −19.0091 −1.68018
\(129\) −3.39308 −0.298744
\(130\) 0 0
\(131\) 10.9970 0.960810 0.480405 0.877047i \(-0.340490\pi\)
0.480405 + 0.877047i \(0.340490\pi\)
\(132\) 15.3336 1.33462
\(133\) 21.9294 1.90152
\(134\) −25.3327 −2.18841
\(135\) 0 0
\(136\) −29.9680 −2.56973
\(137\) 3.29038 0.281116 0.140558 0.990072i \(-0.455110\pi\)
0.140558 + 0.990072i \(0.455110\pi\)
\(138\) −12.7939 −1.08909
\(139\) 11.7607 0.997527 0.498764 0.866738i \(-0.333788\pi\)
0.498764 + 0.866738i \(0.333788\pi\)
\(140\) 0 0
\(141\) −1.31684 −0.110898
\(142\) −9.06408 −0.760641
\(143\) −18.2505 −1.52619
\(144\) 4.38781 0.365651
\(145\) 0 0
\(146\) 30.5128 2.52526
\(147\) 8.29486 0.684149
\(148\) 45.8871 3.77190
\(149\) −0.0294614 −0.00241357 −0.00120679 0.999999i \(-0.500384\pi\)
−0.00120679 + 0.999999i \(0.500384\pi\)
\(150\) 0 0
\(151\) 12.0018 0.976689 0.488345 0.872651i \(-0.337601\pi\)
0.488345 + 0.872651i \(0.337601\pi\)
\(152\) 28.4991 2.31159
\(153\) −5.89630 −0.476688
\(154\) 36.3368 2.92810
\(155\) 0 0
\(156\) −19.6575 −1.57386
\(157\) 7.34191 0.585948 0.292974 0.956120i \(-0.405355\pi\)
0.292974 + 0.956120i \(0.405355\pi\)
\(158\) −22.7451 −1.80951
\(159\) −10.4443 −0.828290
\(160\) 0 0
\(161\) −20.3188 −1.60134
\(162\) 2.46251 0.193473
\(163\) −11.3447 −0.888582 −0.444291 0.895882i \(-0.646544\pi\)
−0.444291 + 0.895882i \(0.646544\pi\)
\(164\) 2.69498 0.210443
\(165\) 0 0
\(166\) −1.45511 −0.112939
\(167\) −7.42413 −0.574496 −0.287248 0.957856i \(-0.592740\pi\)
−0.287248 + 0.957856i \(0.592740\pi\)
\(168\) 19.8770 1.53354
\(169\) 10.3969 0.799762
\(170\) 0 0
\(171\) 5.60730 0.428801
\(172\) −13.7893 −1.05142
\(173\) 21.4708 1.63239 0.816196 0.577775i \(-0.196079\pi\)
0.816196 + 0.577775i \(0.196079\pi\)
\(174\) −15.6093 −1.18334
\(175\) 0 0
\(176\) 16.5556 1.24792
\(177\) 7.58816 0.570361
\(178\) 39.0733 2.92867
\(179\) 9.85343 0.736480 0.368240 0.929731i \(-0.379960\pi\)
0.368240 + 0.929731i \(0.379960\pi\)
\(180\) 0 0
\(181\) −3.95811 −0.294204 −0.147102 0.989121i \(-0.546995\pi\)
−0.147102 + 0.989121i \(0.546995\pi\)
\(182\) −46.5833 −3.45298
\(183\) −10.3208 −0.762938
\(184\) −26.4060 −1.94667
\(185\) 0 0
\(186\) −2.46251 −0.180560
\(187\) −22.2472 −1.62688
\(188\) −5.35158 −0.390304
\(189\) 3.91086 0.284474
\(190\) 0 0
\(191\) −16.6250 −1.20294 −0.601470 0.798896i \(-0.705418\pi\)
−0.601470 + 0.798896i \(0.705418\pi\)
\(192\) −7.19958 −0.519585
\(193\) 4.17565 0.300570 0.150285 0.988643i \(-0.451981\pi\)
0.150285 + 0.988643i \(0.451981\pi\)
\(194\) 9.81518 0.704689
\(195\) 0 0
\(196\) 33.7099 2.40785
\(197\) 10.0370 0.715108 0.357554 0.933892i \(-0.383611\pi\)
0.357554 + 0.933892i \(0.383611\pi\)
\(198\) 9.29125 0.660301
\(199\) 11.7746 0.834679 0.417339 0.908751i \(-0.362963\pi\)
0.417339 + 0.908751i \(0.362963\pi\)
\(200\) 0 0
\(201\) −10.2874 −0.725614
\(202\) −11.0412 −0.776856
\(203\) −24.7902 −1.73993
\(204\) −23.9623 −1.67770
\(205\) 0 0
\(206\) 36.8391 2.56670
\(207\) −5.19547 −0.361110
\(208\) −21.2240 −1.47162
\(209\) 21.1568 1.46345
\(210\) 0 0
\(211\) −19.9525 −1.37359 −0.686795 0.726851i \(-0.740983\pi\)
−0.686795 + 0.726851i \(0.740983\pi\)
\(212\) −42.4453 −2.91516
\(213\) −3.68083 −0.252206
\(214\) 3.63025 0.248159
\(215\) 0 0
\(216\) 5.08250 0.345821
\(217\) −3.91086 −0.265487
\(218\) 31.4637 2.13099
\(219\) 12.3909 0.837302
\(220\) 0 0
\(221\) 28.5206 1.91851
\(222\) 27.8048 1.86614
\(223\) −17.5032 −1.17210 −0.586051 0.810274i \(-0.699318\pi\)
−0.586051 + 0.810274i \(0.699318\pi\)
\(224\) 2.50299 0.167238
\(225\) 0 0
\(226\) −11.6226 −0.773121
\(227\) 8.55366 0.567727 0.283863 0.958865i \(-0.408384\pi\)
0.283863 + 0.958865i \(0.408384\pi\)
\(228\) 22.7878 1.50916
\(229\) −18.2864 −1.20840 −0.604198 0.796834i \(-0.706507\pi\)
−0.604198 + 0.796834i \(0.706507\pi\)
\(230\) 0 0
\(231\) 14.7560 0.970874
\(232\) −32.2170 −2.11515
\(233\) −17.7085 −1.16012 −0.580061 0.814573i \(-0.696971\pi\)
−0.580061 + 0.814573i \(0.696971\pi\)
\(234\) −11.9112 −0.778662
\(235\) 0 0
\(236\) 30.8379 2.00738
\(237\) −9.23657 −0.599979
\(238\) −56.7846 −3.68080
\(239\) 1.18501 0.0766517 0.0383258 0.999265i \(-0.487798\pi\)
0.0383258 + 0.999265i \(0.487798\pi\)
\(240\) 0 0
\(241\) 18.0403 1.16208 0.581039 0.813876i \(-0.302646\pi\)
0.581039 + 0.813876i \(0.302646\pi\)
\(242\) 7.96906 0.512270
\(243\) 1.00000 0.0641500
\(244\) −41.9434 −2.68515
\(245\) 0 0
\(246\) 1.63300 0.104116
\(247\) −27.1227 −1.72578
\(248\) −5.08250 −0.322739
\(249\) −0.590907 −0.0374472
\(250\) 0 0
\(251\) −2.86868 −0.181070 −0.0905348 0.995893i \(-0.528858\pi\)
−0.0905348 + 0.995893i \(0.528858\pi\)
\(252\) 15.8936 1.00120
\(253\) −19.6029 −1.23243
\(254\) −36.2491 −2.27447
\(255\) 0 0
\(256\) −32.4108 −2.02568
\(257\) 10.5692 0.659292 0.329646 0.944105i \(-0.393071\pi\)
0.329646 + 0.944105i \(0.393071\pi\)
\(258\) −8.35548 −0.520190
\(259\) 44.1586 2.74388
\(260\) 0 0
\(261\) −6.33880 −0.392362
\(262\) 27.0802 1.67302
\(263\) −27.8993 −1.72034 −0.860171 0.510005i \(-0.829643\pi\)
−0.860171 + 0.510005i \(0.829643\pi\)
\(264\) 19.1767 1.18024
\(265\) 0 0
\(266\) 54.0014 3.31104
\(267\) 15.8673 0.971062
\(268\) −41.8073 −2.55379
\(269\) −24.3497 −1.48463 −0.742313 0.670053i \(-0.766271\pi\)
−0.742313 + 0.670053i \(0.766271\pi\)
\(270\) 0 0
\(271\) 26.2165 1.59254 0.796268 0.604943i \(-0.206804\pi\)
0.796268 + 0.604943i \(0.206804\pi\)
\(272\) −25.8718 −1.56871
\(273\) −18.9170 −1.14491
\(274\) 8.10259 0.489495
\(275\) 0 0
\(276\) −21.1141 −1.27092
\(277\) 5.34031 0.320868 0.160434 0.987047i \(-0.448711\pi\)
0.160434 + 0.987047i \(0.448711\pi\)
\(278\) 28.9608 1.73695
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 0.305796 0.0182422 0.00912112 0.999958i \(-0.497097\pi\)
0.00912112 + 0.999958i \(0.497097\pi\)
\(282\) −3.24273 −0.193102
\(283\) −17.0008 −1.01059 −0.505296 0.862946i \(-0.668617\pi\)
−0.505296 + 0.862946i \(0.668617\pi\)
\(284\) −14.9587 −0.887637
\(285\) 0 0
\(286\) −44.9421 −2.65748
\(287\) 2.59346 0.153087
\(288\) 0.640010 0.0377129
\(289\) 17.7664 1.04508
\(290\) 0 0
\(291\) 3.98585 0.233654
\(292\) 50.3562 2.94687
\(293\) −23.8670 −1.39433 −0.697164 0.716912i \(-0.745555\pi\)
−0.697164 + 0.716912i \(0.745555\pi\)
\(294\) 20.4262 1.19128
\(295\) 0 0
\(296\) 57.3878 3.33560
\(297\) 3.77308 0.218936
\(298\) −0.0725490 −0.00420265
\(299\) 25.1307 1.45334
\(300\) 0 0
\(301\) −13.2699 −0.764862
\(302\) 29.5545 1.70067
\(303\) −4.48372 −0.257583
\(304\) 24.6038 1.41112
\(305\) 0 0
\(306\) −14.5197 −0.830036
\(307\) −10.0221 −0.571992 −0.285996 0.958231i \(-0.592324\pi\)
−0.285996 + 0.958231i \(0.592324\pi\)
\(308\) 59.9677 3.41698
\(309\) 14.9600 0.851043
\(310\) 0 0
\(311\) −3.00341 −0.170307 −0.0851537 0.996368i \(-0.527138\pi\)
−0.0851537 + 0.996368i \(0.527138\pi\)
\(312\) −24.5842 −1.39181
\(313\) −10.2325 −0.578374 −0.289187 0.957273i \(-0.593385\pi\)
−0.289187 + 0.957273i \(0.593385\pi\)
\(314\) 18.0795 1.02029
\(315\) 0 0
\(316\) −37.5370 −2.11162
\(317\) −23.4147 −1.31510 −0.657550 0.753411i \(-0.728407\pi\)
−0.657550 + 0.753411i \(0.728407\pi\)
\(318\) −25.7193 −1.44227
\(319\) −23.9168 −1.33908
\(320\) 0 0
\(321\) 1.47421 0.0822823
\(322\) −50.0352 −2.78835
\(323\) −33.0624 −1.83964
\(324\) 4.06395 0.225775
\(325\) 0 0
\(326\) −27.9363 −1.54725
\(327\) 12.7771 0.706574
\(328\) 3.37043 0.186101
\(329\) −5.14999 −0.283928
\(330\) 0 0
\(331\) 20.2889 1.11518 0.557590 0.830116i \(-0.311726\pi\)
0.557590 + 0.830116i \(0.311726\pi\)
\(332\) −2.40142 −0.131795
\(333\) 11.2913 0.618757
\(334\) −18.2820 −1.00035
\(335\) 0 0
\(336\) 17.1601 0.936161
\(337\) −15.9577 −0.869274 −0.434637 0.900606i \(-0.643123\pi\)
−0.434637 + 0.900606i \(0.643123\pi\)
\(338\) 25.6025 1.39259
\(339\) −4.71980 −0.256345
\(340\) 0 0
\(341\) −3.77308 −0.204324
\(342\) 13.8080 0.746653
\(343\) 5.06402 0.273431
\(344\) −17.2453 −0.929806
\(345\) 0 0
\(346\) 52.8720 2.84242
\(347\) 6.93796 0.372449 0.186224 0.982507i \(-0.440375\pi\)
0.186224 + 0.982507i \(0.440375\pi\)
\(348\) −25.7606 −1.38091
\(349\) −9.56079 −0.511778 −0.255889 0.966706i \(-0.582368\pi\)
−0.255889 + 0.966706i \(0.582368\pi\)
\(350\) 0 0
\(351\) −4.83704 −0.258182
\(352\) 2.41481 0.128710
\(353\) 12.0956 0.643783 0.321892 0.946776i \(-0.395681\pi\)
0.321892 + 0.946776i \(0.395681\pi\)
\(354\) 18.6859 0.993146
\(355\) 0 0
\(356\) 64.4839 3.41764
\(357\) −23.0596 −1.22045
\(358\) 24.2642 1.28240
\(359\) −28.8573 −1.52303 −0.761514 0.648148i \(-0.775544\pi\)
−0.761514 + 0.648148i \(0.775544\pi\)
\(360\) 0 0
\(361\) 12.4419 0.654835
\(362\) −9.74688 −0.512284
\(363\) 3.23615 0.169854
\(364\) −76.8778 −4.02949
\(365\) 0 0
\(366\) −25.4152 −1.32847
\(367\) 23.3643 1.21961 0.609804 0.792552i \(-0.291248\pi\)
0.609804 + 0.792552i \(0.291248\pi\)
\(368\) −22.7967 −1.18836
\(369\) 0.663143 0.0345219
\(370\) 0 0
\(371\) −40.8464 −2.12064
\(372\) −4.06395 −0.210706
\(373\) −16.9679 −0.878563 −0.439281 0.898350i \(-0.644767\pi\)
−0.439281 + 0.898350i \(0.644767\pi\)
\(374\) −54.7840 −2.83282
\(375\) 0 0
\(376\) −6.69285 −0.345157
\(377\) 30.6610 1.57912
\(378\) 9.63054 0.495342
\(379\) −23.3454 −1.19917 −0.599585 0.800311i \(-0.704668\pi\)
−0.599585 + 0.800311i \(0.704668\pi\)
\(380\) 0 0
\(381\) −14.7204 −0.754147
\(382\) −40.9391 −2.09463
\(383\) −25.3541 −1.29554 −0.647768 0.761838i \(-0.724297\pi\)
−0.647768 + 0.761838i \(0.724297\pi\)
\(384\) −19.0091 −0.970052
\(385\) 0 0
\(386\) 10.2826 0.523370
\(387\) −3.39308 −0.172480
\(388\) 16.1983 0.822343
\(389\) −12.6350 −0.640622 −0.320311 0.947312i \(-0.603787\pi\)
−0.320311 + 0.947312i \(0.603787\pi\)
\(390\) 0 0
\(391\) 30.6340 1.54923
\(392\) 42.1587 2.12933
\(393\) 10.9970 0.554724
\(394\) 24.7163 1.24519
\(395\) 0 0
\(396\) 15.3336 0.770544
\(397\) 25.5883 1.28424 0.642119 0.766605i \(-0.278055\pi\)
0.642119 + 0.766605i \(0.278055\pi\)
\(398\) 28.9950 1.45339
\(399\) 21.9294 1.09784
\(400\) 0 0
\(401\) 37.1198 1.85368 0.926838 0.375461i \(-0.122516\pi\)
0.926838 + 0.375461i \(0.122516\pi\)
\(402\) −25.3327 −1.26348
\(403\) 4.83704 0.240950
\(404\) −18.2216 −0.906560
\(405\) 0 0
\(406\) −61.0460 −3.02966
\(407\) 42.6028 2.11174
\(408\) −29.9680 −1.48364
\(409\) 11.2361 0.555589 0.277794 0.960641i \(-0.410397\pi\)
0.277794 + 0.960641i \(0.410397\pi\)
\(410\) 0 0
\(411\) 3.29038 0.162302
\(412\) 60.7966 2.99524
\(413\) 29.6763 1.46027
\(414\) −12.7939 −0.628785
\(415\) 0 0
\(416\) −3.09575 −0.151782
\(417\) 11.7607 0.575923
\(418\) 52.0989 2.54824
\(419\) −26.5740 −1.29823 −0.649113 0.760692i \(-0.724860\pi\)
−0.649113 + 0.760692i \(0.724860\pi\)
\(420\) 0 0
\(421\) 21.5334 1.04948 0.524738 0.851264i \(-0.324163\pi\)
0.524738 + 0.851264i \(0.324163\pi\)
\(422\) −49.1333 −2.39177
\(423\) −1.31684 −0.0640270
\(424\) −53.0834 −2.57796
\(425\) 0 0
\(426\) −9.06408 −0.439156
\(427\) −40.3634 −1.95332
\(428\) 5.99111 0.289591
\(429\) −18.2505 −0.881144
\(430\) 0 0
\(431\) 7.20557 0.347080 0.173540 0.984827i \(-0.444479\pi\)
0.173540 + 0.984827i \(0.444479\pi\)
\(432\) 4.38781 0.211108
\(433\) −12.1236 −0.582624 −0.291312 0.956628i \(-0.594092\pi\)
−0.291312 + 0.956628i \(0.594092\pi\)
\(434\) −9.63054 −0.462281
\(435\) 0 0
\(436\) 51.9254 2.48678
\(437\) −29.1326 −1.39360
\(438\) 30.5128 1.45796
\(439\) 38.1847 1.82245 0.911227 0.411905i \(-0.135136\pi\)
0.911227 + 0.411905i \(0.135136\pi\)
\(440\) 0 0
\(441\) 8.29486 0.394993
\(442\) 70.2323 3.34061
\(443\) 24.9128 1.18364 0.591822 0.806069i \(-0.298409\pi\)
0.591822 + 0.806069i \(0.298409\pi\)
\(444\) 45.8871 2.17771
\(445\) 0 0
\(446\) −43.1018 −2.04093
\(447\) −0.0294614 −0.00139348
\(448\) −28.1566 −1.33027
\(449\) −14.0489 −0.663007 −0.331504 0.943454i \(-0.607556\pi\)
−0.331504 + 0.943454i \(0.607556\pi\)
\(450\) 0 0
\(451\) 2.50209 0.117819
\(452\) −19.1811 −0.902201
\(453\) 12.0018 0.563892
\(454\) 21.0635 0.988558
\(455\) 0 0
\(456\) 28.4991 1.33459
\(457\) 40.4110 1.89034 0.945172 0.326572i \(-0.105894\pi\)
0.945172 + 0.326572i \(0.105894\pi\)
\(458\) −45.0303 −2.10413
\(459\) −5.89630 −0.275216
\(460\) 0 0
\(461\) 13.7596 0.640850 0.320425 0.947274i \(-0.396174\pi\)
0.320425 + 0.947274i \(0.396174\pi\)
\(462\) 36.3368 1.69054
\(463\) 23.9445 1.11280 0.556398 0.830916i \(-0.312183\pi\)
0.556398 + 0.830916i \(0.312183\pi\)
\(464\) −27.8134 −1.29121
\(465\) 0 0
\(466\) −43.6073 −2.02007
\(467\) −7.84527 −0.363036 −0.181518 0.983388i \(-0.558101\pi\)
−0.181518 + 0.983388i \(0.558101\pi\)
\(468\) −19.6575 −0.908668
\(469\) −40.2324 −1.85776
\(470\) 0 0
\(471\) 7.34191 0.338297
\(472\) 38.5669 1.77518
\(473\) −12.8024 −0.588653
\(474\) −22.7451 −1.04472
\(475\) 0 0
\(476\) −93.7133 −4.29534
\(477\) −10.4443 −0.478213
\(478\) 2.91809 0.133470
\(479\) 36.2715 1.65729 0.828644 0.559776i \(-0.189113\pi\)
0.828644 + 0.559776i \(0.189113\pi\)
\(480\) 0 0
\(481\) −54.6162 −2.49028
\(482\) 44.4244 2.02348
\(483\) −20.3188 −0.924536
\(484\) 13.1516 0.597799
\(485\) 0 0
\(486\) 2.46251 0.111702
\(487\) −5.83307 −0.264322 −0.132161 0.991228i \(-0.542192\pi\)
−0.132161 + 0.991228i \(0.542192\pi\)
\(488\) −52.4557 −2.37456
\(489\) −11.3447 −0.513023
\(490\) 0 0
\(491\) 3.76466 0.169897 0.0849484 0.996385i \(-0.472927\pi\)
0.0849484 + 0.996385i \(0.472927\pi\)
\(492\) 2.69498 0.121499
\(493\) 37.3755 1.68331
\(494\) −66.7900 −3.00502
\(495\) 0 0
\(496\) −4.38781 −0.197018
\(497\) −14.3952 −0.645714
\(498\) −1.45511 −0.0652052
\(499\) 11.2661 0.504339 0.252169 0.967683i \(-0.418856\pi\)
0.252169 + 0.967683i \(0.418856\pi\)
\(500\) 0 0
\(501\) −7.42413 −0.331686
\(502\) −7.06416 −0.315289
\(503\) 36.7533 1.63875 0.819374 0.573259i \(-0.194321\pi\)
0.819374 + 0.573259i \(0.194321\pi\)
\(504\) 19.8770 0.885391
\(505\) 0 0
\(506\) −48.2724 −2.14597
\(507\) 10.3969 0.461743
\(508\) −59.8229 −2.65421
\(509\) 36.8000 1.63113 0.815565 0.578666i \(-0.196427\pi\)
0.815565 + 0.578666i \(0.196427\pi\)
\(510\) 0 0
\(511\) 48.4593 2.14371
\(512\) −41.7939 −1.84704
\(513\) 5.60730 0.247569
\(514\) 26.0269 1.14800
\(515\) 0 0
\(516\) −13.7893 −0.607040
\(517\) −4.96855 −0.218517
\(518\) 108.741 4.77780
\(519\) 21.4708 0.942462
\(520\) 0 0
\(521\) −8.57486 −0.375672 −0.187836 0.982200i \(-0.560147\pi\)
−0.187836 + 0.982200i \(0.560147\pi\)
\(522\) −15.6093 −0.683203
\(523\) 6.23174 0.272495 0.136247 0.990675i \(-0.456496\pi\)
0.136247 + 0.990675i \(0.456496\pi\)
\(524\) 44.6912 1.95234
\(525\) 0 0
\(526\) −68.7022 −2.99556
\(527\) 5.89630 0.256847
\(528\) 16.5556 0.720488
\(529\) 3.99288 0.173603
\(530\) 0 0
\(531\) 7.58816 0.329298
\(532\) 89.1201 3.86385
\(533\) −3.20765 −0.138939
\(534\) 39.0733 1.69087
\(535\) 0 0
\(536\) −52.2855 −2.25839
\(537\) 9.85343 0.425207
\(538\) −59.9613 −2.58512
\(539\) 31.2972 1.34807
\(540\) 0 0
\(541\) 11.9562 0.514037 0.257018 0.966407i \(-0.417260\pi\)
0.257018 + 0.966407i \(0.417260\pi\)
\(542\) 64.5583 2.77302
\(543\) −3.95811 −0.169859
\(544\) −3.77369 −0.161796
\(545\) 0 0
\(546\) −46.5833 −1.99358
\(547\) 36.2669 1.55066 0.775330 0.631557i \(-0.217584\pi\)
0.775330 + 0.631557i \(0.217584\pi\)
\(548\) 13.3719 0.571221
\(549\) −10.3208 −0.440483
\(550\) 0 0
\(551\) −35.5436 −1.51421
\(552\) −26.4060 −1.12391
\(553\) −36.1230 −1.53610
\(554\) 13.1506 0.558714
\(555\) 0 0
\(556\) 47.7948 2.02695
\(557\) 36.6763 1.55403 0.777013 0.629484i \(-0.216734\pi\)
0.777013 + 0.629484i \(0.216734\pi\)
\(558\) −2.46251 −0.104246
\(559\) 16.4124 0.694172
\(560\) 0 0
\(561\) −22.2472 −0.939279
\(562\) 0.753025 0.0317644
\(563\) 11.7391 0.494742 0.247371 0.968921i \(-0.420433\pi\)
0.247371 + 0.968921i \(0.420433\pi\)
\(564\) −5.35158 −0.225342
\(565\) 0 0
\(566\) −41.8646 −1.75970
\(567\) 3.91086 0.164241
\(568\) −18.7078 −0.784963
\(569\) 0.948286 0.0397542 0.0198771 0.999802i \(-0.493673\pi\)
0.0198771 + 0.999802i \(0.493673\pi\)
\(570\) 0 0
\(571\) 41.3896 1.73210 0.866051 0.499956i \(-0.166651\pi\)
0.866051 + 0.499956i \(0.166651\pi\)
\(572\) −74.1693 −3.10117
\(573\) −16.6250 −0.694518
\(574\) 6.38643 0.266564
\(575\) 0 0
\(576\) −7.19958 −0.299983
\(577\) 11.6673 0.485716 0.242858 0.970062i \(-0.421915\pi\)
0.242858 + 0.970062i \(0.421915\pi\)
\(578\) 43.7499 1.81976
\(579\) 4.17565 0.173534
\(580\) 0 0
\(581\) −2.31096 −0.0958747
\(582\) 9.81518 0.406852
\(583\) −39.4074 −1.63209
\(584\) 62.9770 2.60601
\(585\) 0 0
\(586\) −58.7728 −2.42788
\(587\) −22.5741 −0.931735 −0.465867 0.884855i \(-0.654258\pi\)
−0.465867 + 0.884855i \(0.654258\pi\)
\(588\) 33.7099 1.39017
\(589\) −5.60730 −0.231045
\(590\) 0 0
\(591\) 10.0370 0.412868
\(592\) 49.5438 2.03624
\(593\) −1.50814 −0.0619317 −0.0309659 0.999520i \(-0.509858\pi\)
−0.0309659 + 0.999520i \(0.509858\pi\)
\(594\) 9.29125 0.381225
\(595\) 0 0
\(596\) −0.119730 −0.00490433
\(597\) 11.7746 0.481902
\(598\) 61.8845 2.53064
\(599\) 2.77147 0.113239 0.0566196 0.998396i \(-0.481968\pi\)
0.0566196 + 0.998396i \(0.481968\pi\)
\(600\) 0 0
\(601\) −18.0452 −0.736078 −0.368039 0.929810i \(-0.619971\pi\)
−0.368039 + 0.929810i \(0.619971\pi\)
\(602\) −32.6772 −1.33182
\(603\) −10.2874 −0.418933
\(604\) 48.7746 1.98461
\(605\) 0 0
\(606\) −11.0412 −0.448518
\(607\) −11.3139 −0.459219 −0.229609 0.973283i \(-0.573745\pi\)
−0.229609 + 0.973283i \(0.573745\pi\)
\(608\) 3.58873 0.145542
\(609\) −24.7902 −1.00455
\(610\) 0 0
\(611\) 6.36961 0.257687
\(612\) −23.9623 −0.968619
\(613\) 1.32044 0.0533319 0.0266659 0.999644i \(-0.491511\pi\)
0.0266659 + 0.999644i \(0.491511\pi\)
\(614\) −24.6795 −0.995985
\(615\) 0 0
\(616\) 74.9975 3.02174
\(617\) −31.4084 −1.26446 −0.632228 0.774783i \(-0.717859\pi\)
−0.632228 + 0.774783i \(0.717859\pi\)
\(618\) 36.8391 1.48189
\(619\) −24.2173 −0.973377 −0.486689 0.873576i \(-0.661795\pi\)
−0.486689 + 0.873576i \(0.661795\pi\)
\(620\) 0 0
\(621\) −5.19547 −0.208487
\(622\) −7.39591 −0.296549
\(623\) 62.0548 2.48617
\(624\) −21.2240 −0.849639
\(625\) 0 0
\(626\) −25.1976 −1.00710
\(627\) 21.1568 0.844922
\(628\) 29.8372 1.19063
\(629\) −66.5766 −2.65458
\(630\) 0 0
\(631\) −16.7012 −0.664863 −0.332432 0.943127i \(-0.607869\pi\)
−0.332432 + 0.943127i \(0.607869\pi\)
\(632\) −46.9449 −1.86737
\(633\) −19.9525 −0.793042
\(634\) −57.6589 −2.28993
\(635\) 0 0
\(636\) −42.4453 −1.68307
\(637\) −40.1225 −1.58971
\(638\) −58.8954 −2.33169
\(639\) −3.68083 −0.145611
\(640\) 0 0
\(641\) 45.6730 1.80398 0.901988 0.431762i \(-0.142108\pi\)
0.901988 + 0.431762i \(0.142108\pi\)
\(642\) 3.63025 0.143275
\(643\) 36.4701 1.43824 0.719120 0.694886i \(-0.244545\pi\)
0.719120 + 0.694886i \(0.244545\pi\)
\(644\) −82.5745 −3.25389
\(645\) 0 0
\(646\) −81.4164 −3.20329
\(647\) −3.16329 −0.124362 −0.0621808 0.998065i \(-0.519806\pi\)
−0.0621808 + 0.998065i \(0.519806\pi\)
\(648\) 5.08250 0.199660
\(649\) 28.6308 1.12386
\(650\) 0 0
\(651\) −3.91086 −0.153279
\(652\) −46.1042 −1.80558
\(653\) −34.2753 −1.34130 −0.670648 0.741776i \(-0.733984\pi\)
−0.670648 + 0.741776i \(0.733984\pi\)
\(654\) 31.4637 1.23033
\(655\) 0 0
\(656\) 2.90974 0.113606
\(657\) 12.3909 0.483416
\(658\) −12.6819 −0.494392
\(659\) 22.2146 0.865357 0.432679 0.901548i \(-0.357568\pi\)
0.432679 + 0.901548i \(0.357568\pi\)
\(660\) 0 0
\(661\) −22.4547 −0.873387 −0.436693 0.899610i \(-0.643851\pi\)
−0.436693 + 0.899610i \(0.643851\pi\)
\(662\) 49.9617 1.94182
\(663\) 28.5206 1.10765
\(664\) −3.00329 −0.116550
\(665\) 0 0
\(666\) 27.8048 1.07741
\(667\) 32.9330 1.27517
\(668\) −30.1713 −1.16736
\(669\) −17.5032 −0.676713
\(670\) 0 0
\(671\) −38.9414 −1.50332
\(672\) 2.50299 0.0965550
\(673\) −9.90870 −0.381952 −0.190976 0.981595i \(-0.561165\pi\)
−0.190976 + 0.981595i \(0.561165\pi\)
\(674\) −39.2961 −1.51363
\(675\) 0 0
\(676\) 42.2526 1.62510
\(677\) −16.1570 −0.620963 −0.310482 0.950579i \(-0.600490\pi\)
−0.310482 + 0.950579i \(0.600490\pi\)
\(678\) −11.6226 −0.446362
\(679\) 15.5881 0.598216
\(680\) 0 0
\(681\) 8.55366 0.327777
\(682\) −9.29125 −0.355780
\(683\) −14.6765 −0.561583 −0.280791 0.959769i \(-0.590597\pi\)
−0.280791 + 0.959769i \(0.590597\pi\)
\(684\) 22.7878 0.871314
\(685\) 0 0
\(686\) 12.4702 0.476114
\(687\) −18.2864 −0.697668
\(688\) −14.8882 −0.567606
\(689\) 50.5196 1.92465
\(690\) 0 0
\(691\) −4.78243 −0.181932 −0.0909662 0.995854i \(-0.528996\pi\)
−0.0909662 + 0.995854i \(0.528996\pi\)
\(692\) 87.2562 3.31698
\(693\) 14.7560 0.560535
\(694\) 17.0848 0.648529
\(695\) 0 0
\(696\) −32.2170 −1.22118
\(697\) −3.91009 −0.148105
\(698\) −23.5435 −0.891136
\(699\) −17.7085 −0.669796
\(700\) 0 0
\(701\) 14.9186 0.563467 0.281734 0.959493i \(-0.409091\pi\)
0.281734 + 0.959493i \(0.409091\pi\)
\(702\) −11.9112 −0.449561
\(703\) 63.3135 2.38791
\(704\) −27.1646 −1.02381
\(705\) 0 0
\(706\) 29.7855 1.12099
\(707\) −17.5352 −0.659480
\(708\) 30.8379 1.15896
\(709\) 31.0264 1.16522 0.582611 0.812751i \(-0.302031\pi\)
0.582611 + 0.812751i \(0.302031\pi\)
\(710\) 0 0
\(711\) −9.23657 −0.346398
\(712\) 80.6455 3.02232
\(713\) 5.19547 0.194572
\(714\) −56.7846 −2.12511
\(715\) 0 0
\(716\) 40.0439 1.49651
\(717\) 1.18501 0.0442549
\(718\) −71.0613 −2.65198
\(719\) 22.5881 0.842394 0.421197 0.906969i \(-0.361610\pi\)
0.421197 + 0.906969i \(0.361610\pi\)
\(720\) 0 0
\(721\) 58.5064 2.17889
\(722\) 30.6382 1.14024
\(723\) 18.0403 0.670926
\(724\) −16.0856 −0.597815
\(725\) 0 0
\(726\) 7.96906 0.295759
\(727\) −30.6620 −1.13719 −0.568596 0.822617i \(-0.692513\pi\)
−0.568596 + 0.822617i \(0.692513\pi\)
\(728\) −96.1457 −3.56340
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 20.0066 0.739971
\(732\) −41.9434 −1.55027
\(733\) −17.6648 −0.652463 −0.326232 0.945290i \(-0.605779\pi\)
−0.326232 + 0.945290i \(0.605779\pi\)
\(734\) 57.5349 2.12365
\(735\) 0 0
\(736\) −3.32515 −0.122567
\(737\) −38.8150 −1.42977
\(738\) 1.63300 0.0601114
\(739\) 34.0146 1.25125 0.625623 0.780126i \(-0.284845\pi\)
0.625623 + 0.780126i \(0.284845\pi\)
\(740\) 0 0
\(741\) −27.1227 −0.996378
\(742\) −100.585 −3.69258
\(743\) 1.10230 0.0404394 0.0202197 0.999796i \(-0.493563\pi\)
0.0202197 + 0.999796i \(0.493563\pi\)
\(744\) −5.08250 −0.186334
\(745\) 0 0
\(746\) −41.7835 −1.52980
\(747\) −0.590907 −0.0216202
\(748\) −90.4117 −3.30578
\(749\) 5.76543 0.210664
\(750\) 0 0
\(751\) 29.9534 1.09302 0.546508 0.837454i \(-0.315957\pi\)
0.546508 + 0.837454i \(0.315957\pi\)
\(752\) −5.77804 −0.210704
\(753\) −2.86868 −0.104541
\(754\) 75.5030 2.74966
\(755\) 0 0
\(756\) 15.8936 0.578043
\(757\) 20.3970 0.741340 0.370670 0.928765i \(-0.379128\pi\)
0.370670 + 0.928765i \(0.379128\pi\)
\(758\) −57.4882 −2.08806
\(759\) −19.6029 −0.711541
\(760\) 0 0
\(761\) −42.3063 −1.53360 −0.766802 0.641884i \(-0.778153\pi\)
−0.766802 + 0.641884i \(0.778153\pi\)
\(762\) −36.2491 −1.31316
\(763\) 49.9694 1.80901
\(764\) −67.5630 −2.44435
\(765\) 0 0
\(766\) −62.4348 −2.25586
\(767\) −36.7042 −1.32531
\(768\) −32.4108 −1.16953
\(769\) −2.54358 −0.0917239 −0.0458620 0.998948i \(-0.514603\pi\)
−0.0458620 + 0.998948i \(0.514603\pi\)
\(770\) 0 0
\(771\) 10.5692 0.380642
\(772\) 16.9697 0.610751
\(773\) −43.4158 −1.56156 −0.780778 0.624808i \(-0.785177\pi\)
−0.780778 + 0.624808i \(0.785177\pi\)
\(774\) −8.35548 −0.300332
\(775\) 0 0
\(776\) 20.2581 0.727222
\(777\) 44.1586 1.58418
\(778\) −31.1139 −1.11549
\(779\) 3.71845 0.133227
\(780\) 0 0
\(781\) −13.8881 −0.496955
\(782\) 75.4366 2.69761
\(783\) −6.33880 −0.226530
\(784\) 36.3962 1.29987
\(785\) 0 0
\(786\) 27.0802 0.965917
\(787\) −11.5860 −0.412997 −0.206498 0.978447i \(-0.566207\pi\)
−0.206498 + 0.978447i \(0.566207\pi\)
\(788\) 40.7900 1.45308
\(789\) −27.8993 −0.993240
\(790\) 0 0
\(791\) −18.4585 −0.656309
\(792\) 19.1767 0.681415
\(793\) 49.9223 1.77279
\(794\) 63.0114 2.23619
\(795\) 0 0
\(796\) 47.8514 1.69605
\(797\) 37.0975 1.31406 0.657030 0.753864i \(-0.271812\pi\)
0.657030 + 0.753864i \(0.271812\pi\)
\(798\) 54.0014 1.91163
\(799\) 7.76449 0.274688
\(800\) 0 0
\(801\) 15.8673 0.560643
\(802\) 91.4079 3.22773
\(803\) 46.7520 1.64984
\(804\) −41.8073 −1.47443
\(805\) 0 0
\(806\) 11.9112 0.419556
\(807\) −24.3497 −0.857149
\(808\) −22.7885 −0.801697
\(809\) −22.2275 −0.781479 −0.390739 0.920501i \(-0.627781\pi\)
−0.390739 + 0.920501i \(0.627781\pi\)
\(810\) 0 0
\(811\) 4.80625 0.168770 0.0843852 0.996433i \(-0.473107\pi\)
0.0843852 + 0.996433i \(0.473107\pi\)
\(812\) −100.746 −3.53550
\(813\) 26.2165 0.919452
\(814\) 104.910 3.67709
\(815\) 0 0
\(816\) −25.8718 −0.905696
\(817\) −19.0260 −0.665636
\(818\) 27.6690 0.967423
\(819\) −18.9170 −0.661013
\(820\) 0 0
\(821\) 54.7778 1.91176 0.955880 0.293758i \(-0.0949058\pi\)
0.955880 + 0.293758i \(0.0949058\pi\)
\(822\) 8.10259 0.282610
\(823\) 40.1760 1.40045 0.700224 0.713924i \(-0.253084\pi\)
0.700224 + 0.713924i \(0.253084\pi\)
\(824\) 76.0341 2.64877
\(825\) 0 0
\(826\) 73.0781 2.54271
\(827\) −1.84956 −0.0643154 −0.0321577 0.999483i \(-0.510238\pi\)
−0.0321577 + 0.999483i \(0.510238\pi\)
\(828\) −21.1141 −0.733767
\(829\) 12.8593 0.446622 0.223311 0.974747i \(-0.428313\pi\)
0.223311 + 0.974747i \(0.428313\pi\)
\(830\) 0 0
\(831\) 5.34031 0.185253
\(832\) 34.8246 1.20733
\(833\) −48.9090 −1.69460
\(834\) 28.9608 1.00283
\(835\) 0 0
\(836\) 85.9803 2.97369
\(837\) −1.00000 −0.0345651
\(838\) −65.4388 −2.26054
\(839\) −49.4500 −1.70720 −0.853601 0.520927i \(-0.825586\pi\)
−0.853601 + 0.520927i \(0.825586\pi\)
\(840\) 0 0
\(841\) 11.1803 0.385529
\(842\) 53.0263 1.82741
\(843\) 0.305796 0.0105322
\(844\) −81.0862 −2.79110
\(845\) 0 0
\(846\) −3.24273 −0.111487
\(847\) 12.6562 0.434871
\(848\) −45.8278 −1.57373
\(849\) −17.0008 −0.583465
\(850\) 0 0
\(851\) −58.6633 −2.01095
\(852\) −14.9587 −0.512477
\(853\) 17.9548 0.614762 0.307381 0.951587i \(-0.400547\pi\)
0.307381 + 0.951587i \(0.400547\pi\)
\(854\) −99.3953 −3.40124
\(855\) 0 0
\(856\) 7.49267 0.256094
\(857\) 28.9951 0.990452 0.495226 0.868764i \(-0.335085\pi\)
0.495226 + 0.868764i \(0.335085\pi\)
\(858\) −44.9421 −1.53430
\(859\) −39.3399 −1.34226 −0.671130 0.741339i \(-0.734191\pi\)
−0.671130 + 0.741339i \(0.734191\pi\)
\(860\) 0 0
\(861\) 2.59346 0.0883850
\(862\) 17.7438 0.604356
\(863\) 25.2944 0.861032 0.430516 0.902583i \(-0.358332\pi\)
0.430516 + 0.902583i \(0.358332\pi\)
\(864\) 0.640010 0.0217736
\(865\) 0 0
\(866\) −29.8545 −1.01450
\(867\) 17.7664 0.603378
\(868\) −15.8936 −0.539463
\(869\) −34.8503 −1.18222
\(870\) 0 0
\(871\) 49.7603 1.68606
\(872\) 64.9395 2.19913
\(873\) 3.98585 0.134900
\(874\) −71.7392 −2.42662
\(875\) 0 0
\(876\) 50.3562 1.70138
\(877\) 45.7315 1.54424 0.772121 0.635476i \(-0.219196\pi\)
0.772121 + 0.635476i \(0.219196\pi\)
\(878\) 94.0301 3.17336
\(879\) −23.8670 −0.805016
\(880\) 0 0
\(881\) −7.69529 −0.259261 −0.129630 0.991562i \(-0.541379\pi\)
−0.129630 + 0.991562i \(0.541379\pi\)
\(882\) 20.4262 0.687785
\(883\) −5.44217 −0.183144 −0.0915719 0.995798i \(-0.529189\pi\)
−0.0915719 + 0.995798i \(0.529189\pi\)
\(884\) 115.906 3.89836
\(885\) 0 0
\(886\) 61.3481 2.06103
\(887\) 45.0909 1.51400 0.757002 0.653412i \(-0.226663\pi\)
0.757002 + 0.653412i \(0.226663\pi\)
\(888\) 57.3878 1.92581
\(889\) −57.5694 −1.93081
\(890\) 0 0
\(891\) 3.77308 0.126403
\(892\) −71.1322 −2.38168
\(893\) −7.38393 −0.247094
\(894\) −0.0725490 −0.00242640
\(895\) 0 0
\(896\) −74.3419 −2.48359
\(897\) 25.1307 0.839088
\(898\) −34.5955 −1.15447
\(899\) 6.33880 0.211411
\(900\) 0 0
\(901\) 61.5830 2.05163
\(902\) 6.16143 0.205153
\(903\) −13.2699 −0.441593
\(904\) −23.9884 −0.797843
\(905\) 0 0
\(906\) 29.5545 0.981881
\(907\) 25.3635 0.842180 0.421090 0.907019i \(-0.361648\pi\)
0.421090 + 0.907019i \(0.361648\pi\)
\(908\) 34.7617 1.15361
\(909\) −4.48372 −0.148716
\(910\) 0 0
\(911\) −2.49514 −0.0826676 −0.0413338 0.999145i \(-0.513161\pi\)
−0.0413338 + 0.999145i \(0.513161\pi\)
\(912\) 24.6038 0.814712
\(913\) −2.22954 −0.0737871
\(914\) 99.5124 3.29158
\(915\) 0 0
\(916\) −74.3149 −2.45543
\(917\) 43.0077 1.42024
\(918\) −14.5197 −0.479222
\(919\) 17.7435 0.585306 0.292653 0.956219i \(-0.405462\pi\)
0.292653 + 0.956219i \(0.405462\pi\)
\(920\) 0 0
\(921\) −10.0221 −0.330240
\(922\) 33.8832 1.11588
\(923\) 17.8043 0.586036
\(924\) 59.9677 1.97279
\(925\) 0 0
\(926\) 58.9636 1.93766
\(927\) 14.9600 0.491350
\(928\) −4.05689 −0.133174
\(929\) 28.5183 0.935654 0.467827 0.883820i \(-0.345037\pi\)
0.467827 + 0.883820i \(0.345037\pi\)
\(930\) 0 0
\(931\) 46.5118 1.52436
\(932\) −71.9665 −2.35734
\(933\) −3.00341 −0.0983271
\(934\) −19.3191 −0.632139
\(935\) 0 0
\(936\) −24.5842 −0.803561
\(937\) −7.18881 −0.234848 −0.117424 0.993082i \(-0.537464\pi\)
−0.117424 + 0.993082i \(0.537464\pi\)
\(938\) −99.0728 −3.23484
\(939\) −10.2325 −0.333924
\(940\) 0 0
\(941\) −4.41233 −0.143838 −0.0719189 0.997410i \(-0.522912\pi\)
−0.0719189 + 0.997410i \(0.522912\pi\)
\(942\) 18.0795 0.589063
\(943\) −3.44534 −0.112196
\(944\) 33.2954 1.08367
\(945\) 0 0
\(946\) −31.5259 −1.02500
\(947\) −46.3158 −1.50506 −0.752530 0.658558i \(-0.771167\pi\)
−0.752530 + 0.658558i \(0.771167\pi\)
\(948\) −37.5370 −1.21914
\(949\) −59.9354 −1.94558
\(950\) 0 0
\(951\) −23.4147 −0.759274
\(952\) −117.201 −3.79850
\(953\) −56.1358 −1.81842 −0.909209 0.416341i \(-0.863312\pi\)
−0.909209 + 0.416341i \(0.863312\pi\)
\(954\) −25.7193 −0.832693
\(955\) 0 0
\(956\) 4.81581 0.155754
\(957\) −23.9168 −0.773120
\(958\) 89.3189 2.88576
\(959\) 12.8682 0.415537
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −134.493 −4.33622
\(963\) 1.47421 0.0475057
\(964\) 73.3149 2.36132
\(965\) 0 0
\(966\) −50.0352 −1.60985
\(967\) −21.4773 −0.690664 −0.345332 0.938481i \(-0.612234\pi\)
−0.345332 + 0.938481i \(0.612234\pi\)
\(968\) 16.4478 0.528651
\(969\) −33.0624 −1.06212
\(970\) 0 0
\(971\) 23.1016 0.741366 0.370683 0.928759i \(-0.379124\pi\)
0.370683 + 0.928759i \(0.379124\pi\)
\(972\) 4.06395 0.130351
\(973\) 45.9944 1.47451
\(974\) −14.3640 −0.460252
\(975\) 0 0
\(976\) −45.2859 −1.44957
\(977\) 14.3103 0.457827 0.228913 0.973447i \(-0.426483\pi\)
0.228913 + 0.973447i \(0.426483\pi\)
\(978\) −27.9363 −0.893305
\(979\) 59.8686 1.91341
\(980\) 0 0
\(981\) 12.7771 0.407941
\(982\) 9.27052 0.295834
\(983\) −32.1775 −1.02630 −0.513152 0.858298i \(-0.671522\pi\)
−0.513152 + 0.858298i \(0.671522\pi\)
\(984\) 3.37043 0.107445
\(985\) 0 0
\(986\) 92.0374 2.93107
\(987\) −5.14999 −0.163926
\(988\) −110.226 −3.50674
\(989\) 17.6286 0.560557
\(990\) 0 0
\(991\) −50.8207 −1.61437 −0.807186 0.590298i \(-0.799010\pi\)
−0.807186 + 0.590298i \(0.799010\pi\)
\(992\) −0.640010 −0.0203203
\(993\) 20.2889 0.643850
\(994\) −35.4484 −1.12435
\(995\) 0 0
\(996\) −2.40142 −0.0760919
\(997\) −39.1814 −1.24089 −0.620444 0.784251i \(-0.713048\pi\)
−0.620444 + 0.784251i \(0.713048\pi\)
\(998\) 27.7428 0.878183
\(999\) 11.2913 0.357239
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.a.bb.1.6 yes 6
3.2 odd 2 6975.2.a.ca.1.1 6
5.2 odd 4 2325.2.c.r.1024.11 12
5.3 odd 4 2325.2.c.r.1024.2 12
5.4 even 2 2325.2.a.y.1.1 6
15.14 odd 2 6975.2.a.cc.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2325.2.a.y.1.1 6 5.4 even 2
2325.2.a.bb.1.6 yes 6 1.1 even 1 trivial
2325.2.c.r.1024.2 12 5.3 odd 4
2325.2.c.r.1024.11 12 5.2 odd 4
6975.2.a.ca.1.1 6 3.2 odd 2
6975.2.a.cc.1.6 6 15.14 odd 2