Properties

Label 2325.2.a.bb.1.5
Level $2325$
Weight $2$
Character 2325.1
Self dual yes
Analytic conductor $18.565$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,1,6,7,0,1,2,-3,6,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.75968016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 9x^{3} + 14x^{2} - 6x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.89294\) of defining polynomial
Character \(\chi\) \(=\) 2325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.89294 q^{2} +1.00000 q^{3} +1.58320 q^{4} +1.89294 q^{6} +1.92485 q^{7} -0.788968 q^{8} +1.00000 q^{9} -2.02355 q^{11} +1.58320 q^{12} +3.44035 q^{13} +3.64362 q^{14} -4.65987 q^{16} +7.60468 q^{17} +1.89294 q^{18} +0.268250 q^{19} +1.92485 q^{21} -3.83045 q^{22} +0.714890 q^{23} -0.788968 q^{24} +6.51235 q^{26} +1.00000 q^{27} +3.04743 q^{28} +5.15075 q^{29} -1.00000 q^{31} -7.24290 q^{32} -2.02355 q^{33} +14.3952 q^{34} +1.58320 q^{36} -1.83045 q^{37} +0.507780 q^{38} +3.44035 q^{39} +1.23099 q^{41} +3.64362 q^{42} +7.70545 q^{43} -3.20369 q^{44} +1.35324 q^{46} -3.33001 q^{47} -4.65987 q^{48} -3.29495 q^{49} +7.60468 q^{51} +5.44677 q^{52} +3.17210 q^{53} +1.89294 q^{54} -1.51865 q^{56} +0.268250 q^{57} +9.75003 q^{58} +7.01686 q^{59} -11.7477 q^{61} -1.89294 q^{62} +1.92485 q^{63} -4.39060 q^{64} -3.83045 q^{66} +11.3467 q^{67} +12.0398 q^{68} +0.714890 q^{69} -12.9906 q^{71} -0.788968 q^{72} +0.570221 q^{73} -3.46492 q^{74} +0.424695 q^{76} -3.89503 q^{77} +6.51235 q^{78} +14.9443 q^{79} +1.00000 q^{81} +2.33018 q^{82} -13.6842 q^{83} +3.04743 q^{84} +14.5859 q^{86} +5.15075 q^{87} +1.59652 q^{88} -1.63807 q^{89} +6.62215 q^{91} +1.13182 q^{92} -1.00000 q^{93} -6.30349 q^{94} -7.24290 q^{96} +3.13898 q^{97} -6.23713 q^{98} -2.02355 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 6 q^{3} + 7 q^{4} + q^{6} + 2 q^{7} - 3 q^{8} + 6 q^{9} + 7 q^{11} + 7 q^{12} + 4 q^{13} + 10 q^{14} + 17 q^{16} + q^{18} + 17 q^{19} + 2 q^{21} + 2 q^{22} - q^{23} - 3 q^{24} + 2 q^{26}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.89294 1.33851 0.669254 0.743034i \(-0.266614\pi\)
0.669254 + 0.743034i \(0.266614\pi\)
\(3\) 1.00000 0.577350
\(4\) 1.58320 0.791602
\(5\) 0 0
\(6\) 1.89294 0.772788
\(7\) 1.92485 0.727525 0.363763 0.931492i \(-0.381492\pi\)
0.363763 + 0.931492i \(0.381492\pi\)
\(8\) −0.788968 −0.278942
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.02355 −0.610123 −0.305062 0.952333i \(-0.598677\pi\)
−0.305062 + 0.952333i \(0.598677\pi\)
\(12\) 1.58320 0.457032
\(13\) 3.44035 0.954180 0.477090 0.878854i \(-0.341691\pi\)
0.477090 + 0.878854i \(0.341691\pi\)
\(14\) 3.64362 0.973798
\(15\) 0 0
\(16\) −4.65987 −1.16497
\(17\) 7.60468 1.84441 0.922203 0.386706i \(-0.126387\pi\)
0.922203 + 0.386706i \(0.126387\pi\)
\(18\) 1.89294 0.446169
\(19\) 0.268250 0.0615408 0.0307704 0.999526i \(-0.490204\pi\)
0.0307704 + 0.999526i \(0.490204\pi\)
\(20\) 0 0
\(21\) 1.92485 0.420037
\(22\) −3.83045 −0.816655
\(23\) 0.714890 0.149065 0.0745324 0.997219i \(-0.476254\pi\)
0.0745324 + 0.997219i \(0.476254\pi\)
\(24\) −0.788968 −0.161047
\(25\) 0 0
\(26\) 6.51235 1.27718
\(27\) 1.00000 0.192450
\(28\) 3.04743 0.575910
\(29\) 5.15075 0.956470 0.478235 0.878232i \(-0.341277\pi\)
0.478235 + 0.878232i \(0.341277\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) −7.24290 −1.28038
\(33\) −2.02355 −0.352255
\(34\) 14.3952 2.46875
\(35\) 0 0
\(36\) 1.58320 0.263867
\(37\) −1.83045 −0.300924 −0.150462 0.988616i \(-0.548076\pi\)
−0.150462 + 0.988616i \(0.548076\pi\)
\(38\) 0.507780 0.0823728
\(39\) 3.44035 0.550896
\(40\) 0 0
\(41\) 1.23099 0.192248 0.0961242 0.995369i \(-0.469355\pi\)
0.0961242 + 0.995369i \(0.469355\pi\)
\(42\) 3.64362 0.562222
\(43\) 7.70545 1.17507 0.587535 0.809199i \(-0.300098\pi\)
0.587535 + 0.809199i \(0.300098\pi\)
\(44\) −3.20369 −0.482975
\(45\) 0 0
\(46\) 1.35324 0.199524
\(47\) −3.33001 −0.485732 −0.242866 0.970060i \(-0.578087\pi\)
−0.242866 + 0.970060i \(0.578087\pi\)
\(48\) −4.65987 −0.672595
\(49\) −3.29495 −0.470707
\(50\) 0 0
\(51\) 7.60468 1.06487
\(52\) 5.44677 0.755331
\(53\) 3.17210 0.435721 0.217860 0.975980i \(-0.430092\pi\)
0.217860 + 0.975980i \(0.430092\pi\)
\(54\) 1.89294 0.257596
\(55\) 0 0
\(56\) −1.51865 −0.202938
\(57\) 0.268250 0.0355306
\(58\) 9.75003 1.28024
\(59\) 7.01686 0.913517 0.456759 0.889591i \(-0.349010\pi\)
0.456759 + 0.889591i \(0.349010\pi\)
\(60\) 0 0
\(61\) −11.7477 −1.50414 −0.752070 0.659083i \(-0.770945\pi\)
−0.752070 + 0.659083i \(0.770945\pi\)
\(62\) −1.89294 −0.240403
\(63\) 1.92485 0.242508
\(64\) −4.39060 −0.548825
\(65\) 0 0
\(66\) −3.83045 −0.471496
\(67\) 11.3467 1.38622 0.693109 0.720833i \(-0.256241\pi\)
0.693109 + 0.720833i \(0.256241\pi\)
\(68\) 12.0398 1.46004
\(69\) 0.714890 0.0860626
\(70\) 0 0
\(71\) −12.9906 −1.54170 −0.770851 0.637015i \(-0.780169\pi\)
−0.770851 + 0.637015i \(0.780169\pi\)
\(72\) −0.788968 −0.0929808
\(73\) 0.570221 0.0667393 0.0333696 0.999443i \(-0.489376\pi\)
0.0333696 + 0.999443i \(0.489376\pi\)
\(74\) −3.46492 −0.402789
\(75\) 0 0
\(76\) 0.424695 0.0487158
\(77\) −3.89503 −0.443880
\(78\) 6.51235 0.737379
\(79\) 14.9443 1.68136 0.840680 0.541532i \(-0.182156\pi\)
0.840680 + 0.541532i \(0.182156\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 2.33018 0.257326
\(83\) −13.6842 −1.50203 −0.751016 0.660284i \(-0.770436\pi\)
−0.751016 + 0.660284i \(0.770436\pi\)
\(84\) 3.04743 0.332502
\(85\) 0 0
\(86\) 14.5859 1.57284
\(87\) 5.15075 0.552218
\(88\) 1.59652 0.170189
\(89\) −1.63807 −0.173635 −0.0868173 0.996224i \(-0.527670\pi\)
−0.0868173 + 0.996224i \(0.527670\pi\)
\(90\) 0 0
\(91\) 6.62215 0.694190
\(92\) 1.13182 0.118000
\(93\) −1.00000 −0.103695
\(94\) −6.30349 −0.650155
\(95\) 0 0
\(96\) −7.24290 −0.739226
\(97\) 3.13898 0.318715 0.159358 0.987221i \(-0.449058\pi\)
0.159358 + 0.987221i \(0.449058\pi\)
\(98\) −6.23713 −0.630045
\(99\) −2.02355 −0.203374
\(100\) 0 0
\(101\) −6.23176 −0.620083 −0.310042 0.950723i \(-0.600343\pi\)
−0.310042 + 0.950723i \(0.600343\pi\)
\(102\) 14.3952 1.42533
\(103\) 6.31720 0.622452 0.311226 0.950336i \(-0.399260\pi\)
0.311226 + 0.950336i \(0.399260\pi\)
\(104\) −2.71432 −0.266161
\(105\) 0 0
\(106\) 6.00457 0.583216
\(107\) −4.93261 −0.476854 −0.238427 0.971160i \(-0.576632\pi\)
−0.238427 + 0.971160i \(0.576632\pi\)
\(108\) 1.58320 0.152344
\(109\) −7.92525 −0.759102 −0.379551 0.925171i \(-0.623921\pi\)
−0.379551 + 0.925171i \(0.623921\pi\)
\(110\) 0 0
\(111\) −1.83045 −0.173739
\(112\) −8.96956 −0.847544
\(113\) −18.7260 −1.76159 −0.880795 0.473498i \(-0.842991\pi\)
−0.880795 + 0.473498i \(0.842991\pi\)
\(114\) 0.507780 0.0475580
\(115\) 0 0
\(116\) 8.15468 0.757143
\(117\) 3.44035 0.318060
\(118\) 13.2825 1.22275
\(119\) 14.6379 1.34185
\(120\) 0 0
\(121\) −6.90524 −0.627749
\(122\) −22.2377 −2.01330
\(123\) 1.23099 0.110995
\(124\) −1.58320 −0.142176
\(125\) 0 0
\(126\) 3.64362 0.324599
\(127\) −0.243804 −0.0216341 −0.0108171 0.999941i \(-0.503443\pi\)
−0.0108171 + 0.999941i \(0.503443\pi\)
\(128\) 6.17469 0.545770
\(129\) 7.70545 0.678427
\(130\) 0 0
\(131\) 4.67138 0.408140 0.204070 0.978956i \(-0.434583\pi\)
0.204070 + 0.978956i \(0.434583\pi\)
\(132\) −3.20369 −0.278846
\(133\) 0.516342 0.0447725
\(134\) 21.4785 1.85546
\(135\) 0 0
\(136\) −5.99985 −0.514483
\(137\) −12.0181 −1.02677 −0.513386 0.858158i \(-0.671609\pi\)
−0.513386 + 0.858158i \(0.671609\pi\)
\(138\) 1.35324 0.115195
\(139\) 9.49065 0.804987 0.402493 0.915423i \(-0.368144\pi\)
0.402493 + 0.915423i \(0.368144\pi\)
\(140\) 0 0
\(141\) −3.33001 −0.280437
\(142\) −24.5904 −2.06358
\(143\) −6.96171 −0.582168
\(144\) −4.65987 −0.388323
\(145\) 0 0
\(146\) 1.07939 0.0893310
\(147\) −3.29495 −0.271763
\(148\) −2.89797 −0.238212
\(149\) 3.42903 0.280917 0.140458 0.990087i \(-0.455142\pi\)
0.140458 + 0.990087i \(0.455142\pi\)
\(150\) 0 0
\(151\) −11.5823 −0.942557 −0.471278 0.881984i \(-0.656207\pi\)
−0.471278 + 0.881984i \(0.656207\pi\)
\(152\) −0.211641 −0.0171663
\(153\) 7.60468 0.614802
\(154\) −7.37304 −0.594137
\(155\) 0 0
\(156\) 5.44677 0.436091
\(157\) −21.2401 −1.69514 −0.847571 0.530682i \(-0.821936\pi\)
−0.847571 + 0.530682i \(0.821936\pi\)
\(158\) 28.2885 2.25051
\(159\) 3.17210 0.251564
\(160\) 0 0
\(161\) 1.37606 0.108448
\(162\) 1.89294 0.148723
\(163\) 3.57277 0.279841 0.139920 0.990163i \(-0.455315\pi\)
0.139920 + 0.990163i \(0.455315\pi\)
\(164\) 1.94891 0.152184
\(165\) 0 0
\(166\) −25.9032 −2.01048
\(167\) −11.6839 −0.904126 −0.452063 0.891986i \(-0.649312\pi\)
−0.452063 + 0.891986i \(0.649312\pi\)
\(168\) −1.51865 −0.117166
\(169\) −1.16402 −0.0895397
\(170\) 0 0
\(171\) 0.268250 0.0205136
\(172\) 12.1993 0.930188
\(173\) −17.9661 −1.36594 −0.682968 0.730448i \(-0.739311\pi\)
−0.682968 + 0.730448i \(0.739311\pi\)
\(174\) 9.75003 0.739148
\(175\) 0 0
\(176\) 9.42949 0.710774
\(177\) 7.01686 0.527420
\(178\) −3.10075 −0.232411
\(179\) −16.8563 −1.25990 −0.629948 0.776637i \(-0.716924\pi\)
−0.629948 + 0.776637i \(0.716924\pi\)
\(180\) 0 0
\(181\) −11.9617 −0.889108 −0.444554 0.895752i \(-0.646638\pi\)
−0.444554 + 0.895752i \(0.646638\pi\)
\(182\) 12.5353 0.929179
\(183\) −11.7477 −0.868416
\(184\) −0.564025 −0.0415805
\(185\) 0 0
\(186\) −1.89294 −0.138797
\(187\) −15.3885 −1.12532
\(188\) −5.27208 −0.384506
\(189\) 1.92485 0.140012
\(190\) 0 0
\(191\) 21.3972 1.54825 0.774125 0.633032i \(-0.218190\pi\)
0.774125 + 0.633032i \(0.218190\pi\)
\(192\) −4.39060 −0.316864
\(193\) 12.4902 0.899064 0.449532 0.893264i \(-0.351591\pi\)
0.449532 + 0.893264i \(0.351591\pi\)
\(194\) 5.94189 0.426603
\(195\) 0 0
\(196\) −5.21658 −0.372613
\(197\) 9.61876 0.685309 0.342654 0.939462i \(-0.388674\pi\)
0.342654 + 0.939462i \(0.388674\pi\)
\(198\) −3.83045 −0.272218
\(199\) 16.8385 1.19365 0.596825 0.802371i \(-0.296429\pi\)
0.596825 + 0.802371i \(0.296429\pi\)
\(200\) 0 0
\(201\) 11.3467 0.800333
\(202\) −11.7963 −0.829986
\(203\) 9.91442 0.695856
\(204\) 12.0398 0.842952
\(205\) 0 0
\(206\) 11.9581 0.833157
\(207\) 0.714890 0.0496883
\(208\) −16.0316 −1.11159
\(209\) −0.542818 −0.0375475
\(210\) 0 0
\(211\) 21.1340 1.45492 0.727461 0.686149i \(-0.240700\pi\)
0.727461 + 0.686149i \(0.240700\pi\)
\(212\) 5.02207 0.344918
\(213\) −12.9906 −0.890102
\(214\) −9.33711 −0.638272
\(215\) 0 0
\(216\) −0.788968 −0.0536825
\(217\) −1.92485 −0.130667
\(218\) −15.0020 −1.01606
\(219\) 0.570221 0.0385320
\(220\) 0 0
\(221\) 26.1627 1.75990
\(222\) −3.46492 −0.232550
\(223\) 4.35225 0.291448 0.145724 0.989325i \(-0.453449\pi\)
0.145724 + 0.989325i \(0.453449\pi\)
\(224\) −13.9415 −0.931506
\(225\) 0 0
\(226\) −35.4470 −2.35790
\(227\) −9.03171 −0.599456 −0.299728 0.954025i \(-0.596896\pi\)
−0.299728 + 0.954025i \(0.596896\pi\)
\(228\) 0.424695 0.0281261
\(229\) 9.22207 0.609412 0.304706 0.952447i \(-0.401442\pi\)
0.304706 + 0.952447i \(0.401442\pi\)
\(230\) 0 0
\(231\) −3.89503 −0.256274
\(232\) −4.06378 −0.266800
\(233\) −21.1143 −1.38324 −0.691622 0.722260i \(-0.743104\pi\)
−0.691622 + 0.722260i \(0.743104\pi\)
\(234\) 6.51235 0.425726
\(235\) 0 0
\(236\) 11.1091 0.723142
\(237\) 14.9443 0.970734
\(238\) 27.7086 1.79608
\(239\) 3.91589 0.253298 0.126649 0.991948i \(-0.459578\pi\)
0.126649 + 0.991948i \(0.459578\pi\)
\(240\) 0 0
\(241\) −10.4970 −0.676172 −0.338086 0.941115i \(-0.609779\pi\)
−0.338086 + 0.941115i \(0.609779\pi\)
\(242\) −13.0712 −0.840247
\(243\) 1.00000 0.0641500
\(244\) −18.5990 −1.19068
\(245\) 0 0
\(246\) 2.33018 0.148567
\(247\) 0.922874 0.0587210
\(248\) 0.788968 0.0500995
\(249\) −13.6842 −0.867198
\(250\) 0 0
\(251\) −1.90584 −0.120296 −0.0601478 0.998189i \(-0.519157\pi\)
−0.0601478 + 0.998189i \(0.519157\pi\)
\(252\) 3.04743 0.191970
\(253\) −1.44662 −0.0909479
\(254\) −0.461506 −0.0289575
\(255\) 0 0
\(256\) 20.4695 1.27934
\(257\) 12.7714 0.796659 0.398329 0.917242i \(-0.369590\pi\)
0.398329 + 0.917242i \(0.369590\pi\)
\(258\) 14.5859 0.908080
\(259\) −3.52334 −0.218930
\(260\) 0 0
\(261\) 5.15075 0.318823
\(262\) 8.84262 0.546299
\(263\) −10.0322 −0.618613 −0.309307 0.950962i \(-0.600097\pi\)
−0.309307 + 0.950962i \(0.600097\pi\)
\(264\) 1.59652 0.0982588
\(265\) 0 0
\(266\) 0.977401 0.0599283
\(267\) −1.63807 −0.100248
\(268\) 17.9641 1.09733
\(269\) −17.1185 −1.04373 −0.521867 0.853027i \(-0.674764\pi\)
−0.521867 + 0.853027i \(0.674764\pi\)
\(270\) 0 0
\(271\) 7.56317 0.459430 0.229715 0.973258i \(-0.426221\pi\)
0.229715 + 0.973258i \(0.426221\pi\)
\(272\) −35.4369 −2.14867
\(273\) 6.62215 0.400791
\(274\) −22.7494 −1.37434
\(275\) 0 0
\(276\) 1.13182 0.0681273
\(277\) −10.6842 −0.641951 −0.320975 0.947088i \(-0.604011\pi\)
−0.320975 + 0.947088i \(0.604011\pi\)
\(278\) 17.9652 1.07748
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 15.7539 0.939799 0.469900 0.882720i \(-0.344290\pi\)
0.469900 + 0.882720i \(0.344290\pi\)
\(282\) −6.30349 −0.375367
\(283\) −26.5692 −1.57938 −0.789688 0.613509i \(-0.789757\pi\)
−0.789688 + 0.613509i \(0.789757\pi\)
\(284\) −20.5668 −1.22041
\(285\) 0 0
\(286\) −13.1781 −0.779236
\(287\) 2.36947 0.139865
\(288\) −7.24290 −0.426792
\(289\) 40.8312 2.40183
\(290\) 0 0
\(291\) 3.13898 0.184010
\(292\) 0.902776 0.0528310
\(293\) −23.7515 −1.38758 −0.693789 0.720179i \(-0.744060\pi\)
−0.693789 + 0.720179i \(0.744060\pi\)
\(294\) −6.23713 −0.363757
\(295\) 0 0
\(296\) 1.44417 0.0839405
\(297\) −2.02355 −0.117418
\(298\) 6.49093 0.376009
\(299\) 2.45947 0.142235
\(300\) 0 0
\(301\) 14.8318 0.854893
\(302\) −21.9246 −1.26162
\(303\) −6.23176 −0.358005
\(304\) −1.25001 −0.0716931
\(305\) 0 0
\(306\) 14.3952 0.822917
\(307\) 17.9239 1.02297 0.511485 0.859292i \(-0.329095\pi\)
0.511485 + 0.859292i \(0.329095\pi\)
\(308\) −6.16663 −0.351376
\(309\) 6.31720 0.359373
\(310\) 0 0
\(311\) 7.10858 0.403091 0.201545 0.979479i \(-0.435404\pi\)
0.201545 + 0.979479i \(0.435404\pi\)
\(312\) −2.71432 −0.153668
\(313\) −20.9587 −1.18466 −0.592328 0.805697i \(-0.701791\pi\)
−0.592328 + 0.805697i \(0.701791\pi\)
\(314\) −40.2061 −2.26896
\(315\) 0 0
\(316\) 23.6598 1.33097
\(317\) 19.9348 1.11965 0.559824 0.828612i \(-0.310869\pi\)
0.559824 + 0.828612i \(0.310869\pi\)
\(318\) 6.00457 0.336720
\(319\) −10.4228 −0.583565
\(320\) 0 0
\(321\) −4.93261 −0.275312
\(322\) 2.60478 0.145159
\(323\) 2.03996 0.113506
\(324\) 1.58320 0.0879558
\(325\) 0 0
\(326\) 6.76302 0.374569
\(327\) −7.92525 −0.438268
\(328\) −0.971212 −0.0536262
\(329\) −6.40977 −0.353382
\(330\) 0 0
\(331\) 18.4902 1.01631 0.508156 0.861265i \(-0.330327\pi\)
0.508156 + 0.861265i \(0.330327\pi\)
\(332\) −21.6648 −1.18901
\(333\) −1.83045 −0.100308
\(334\) −22.1168 −1.21018
\(335\) 0 0
\(336\) −8.96956 −0.489330
\(337\) 1.36343 0.0742706 0.0371353 0.999310i \(-0.488177\pi\)
0.0371353 + 0.999310i \(0.488177\pi\)
\(338\) −2.20341 −0.119850
\(339\) −18.7260 −1.01705
\(340\) 0 0
\(341\) 2.02355 0.109581
\(342\) 0.507780 0.0274576
\(343\) −19.8162 −1.06998
\(344\) −6.07936 −0.327777
\(345\) 0 0
\(346\) −34.0086 −1.82831
\(347\) 2.76556 0.148463 0.0742315 0.997241i \(-0.476350\pi\)
0.0742315 + 0.997241i \(0.476350\pi\)
\(348\) 8.15468 0.437137
\(349\) 6.25030 0.334571 0.167285 0.985909i \(-0.446500\pi\)
0.167285 + 0.985909i \(0.446500\pi\)
\(350\) 0 0
\(351\) 3.44035 0.183632
\(352\) 14.6564 0.781187
\(353\) 7.55977 0.402366 0.201183 0.979554i \(-0.435521\pi\)
0.201183 + 0.979554i \(0.435521\pi\)
\(354\) 13.2825 0.705955
\(355\) 0 0
\(356\) −2.59339 −0.137449
\(357\) 14.6379 0.774719
\(358\) −31.9078 −1.68638
\(359\) 3.44843 0.182001 0.0910005 0.995851i \(-0.470994\pi\)
0.0910005 + 0.995851i \(0.470994\pi\)
\(360\) 0 0
\(361\) −18.9280 −0.996213
\(362\) −22.6428 −1.19008
\(363\) −6.90524 −0.362431
\(364\) 10.4842 0.549522
\(365\) 0 0
\(366\) −22.2377 −1.16238
\(367\) −27.2017 −1.41992 −0.709959 0.704243i \(-0.751287\pi\)
−0.709959 + 0.704243i \(0.751287\pi\)
\(368\) −3.33129 −0.173656
\(369\) 1.23099 0.0640828
\(370\) 0 0
\(371\) 6.10581 0.316998
\(372\) −1.58320 −0.0820853
\(373\) −1.93173 −0.100021 −0.0500105 0.998749i \(-0.515925\pi\)
−0.0500105 + 0.998749i \(0.515925\pi\)
\(374\) −29.1294 −1.50624
\(375\) 0 0
\(376\) 2.62727 0.135491
\(377\) 17.7204 0.912645
\(378\) 3.64362 0.187407
\(379\) −5.60497 −0.287908 −0.143954 0.989584i \(-0.545982\pi\)
−0.143954 + 0.989584i \(0.545982\pi\)
\(380\) 0 0
\(381\) −0.243804 −0.0124905
\(382\) 40.5036 2.07234
\(383\) −22.8601 −1.16810 −0.584049 0.811718i \(-0.698532\pi\)
−0.584049 + 0.811718i \(0.698532\pi\)
\(384\) 6.17469 0.315101
\(385\) 0 0
\(386\) 23.6431 1.20340
\(387\) 7.70545 0.391690
\(388\) 4.96965 0.252296
\(389\) −37.4724 −1.89993 −0.949964 0.312359i \(-0.898881\pi\)
−0.949964 + 0.312359i \(0.898881\pi\)
\(390\) 0 0
\(391\) 5.43651 0.274936
\(392\) 2.59961 0.131300
\(393\) 4.67138 0.235640
\(394\) 18.2077 0.917290
\(395\) 0 0
\(396\) −3.20369 −0.160992
\(397\) 12.6683 0.635804 0.317902 0.948124i \(-0.397022\pi\)
0.317902 + 0.948124i \(0.397022\pi\)
\(398\) 31.8742 1.59771
\(399\) 0.516342 0.0258494
\(400\) 0 0
\(401\) −37.0834 −1.85186 −0.925929 0.377698i \(-0.876716\pi\)
−0.925929 + 0.377698i \(0.876716\pi\)
\(402\) 21.4785 1.07125
\(403\) −3.44035 −0.171376
\(404\) −9.86614 −0.490859
\(405\) 0 0
\(406\) 18.7674 0.931408
\(407\) 3.70401 0.183601
\(408\) −5.99985 −0.297037
\(409\) −17.2497 −0.852941 −0.426470 0.904502i \(-0.640243\pi\)
−0.426470 + 0.904502i \(0.640243\pi\)
\(410\) 0 0
\(411\) −12.0181 −0.592807
\(412\) 10.0014 0.492734
\(413\) 13.5064 0.664607
\(414\) 1.35324 0.0665081
\(415\) 0 0
\(416\) −24.9181 −1.22171
\(417\) 9.49065 0.464759
\(418\) −1.02752 −0.0502576
\(419\) 1.26861 0.0619757 0.0309879 0.999520i \(-0.490135\pi\)
0.0309879 + 0.999520i \(0.490135\pi\)
\(420\) 0 0
\(421\) 29.5671 1.44101 0.720506 0.693449i \(-0.243910\pi\)
0.720506 + 0.693449i \(0.243910\pi\)
\(422\) 40.0052 1.94742
\(423\) −3.33001 −0.161911
\(424\) −2.50268 −0.121541
\(425\) 0 0
\(426\) −24.5904 −1.19141
\(427\) −22.6126 −1.09430
\(428\) −7.80933 −0.377478
\(429\) −6.96171 −0.336115
\(430\) 0 0
\(431\) −23.3588 −1.12515 −0.562577 0.826745i \(-0.690190\pi\)
−0.562577 + 0.826745i \(0.690190\pi\)
\(432\) −4.65987 −0.224198
\(433\) 15.2684 0.733751 0.366875 0.930270i \(-0.380428\pi\)
0.366875 + 0.930270i \(0.380428\pi\)
\(434\) −3.64362 −0.174899
\(435\) 0 0
\(436\) −12.5473 −0.600906
\(437\) 0.191769 0.00917357
\(438\) 1.07939 0.0515753
\(439\) 13.8738 0.662161 0.331081 0.943602i \(-0.392587\pi\)
0.331081 + 0.943602i \(0.392587\pi\)
\(440\) 0 0
\(441\) −3.29495 −0.156902
\(442\) 49.5244 2.35563
\(443\) 9.26968 0.440416 0.220208 0.975453i \(-0.429326\pi\)
0.220208 + 0.975453i \(0.429326\pi\)
\(444\) −2.89797 −0.137532
\(445\) 0 0
\(446\) 8.23852 0.390105
\(447\) 3.42903 0.162187
\(448\) −8.45124 −0.399284
\(449\) 14.3026 0.674982 0.337491 0.941329i \(-0.390422\pi\)
0.337491 + 0.941329i \(0.390422\pi\)
\(450\) 0 0
\(451\) −2.49097 −0.117295
\(452\) −29.6470 −1.39448
\(453\) −11.5823 −0.544185
\(454\) −17.0964 −0.802376
\(455\) 0 0
\(456\) −0.211641 −0.00991099
\(457\) 36.9120 1.72667 0.863334 0.504633i \(-0.168372\pi\)
0.863334 + 0.504633i \(0.168372\pi\)
\(458\) 17.4568 0.815702
\(459\) 7.60468 0.354956
\(460\) 0 0
\(461\) 39.0841 1.82033 0.910164 0.414249i \(-0.135956\pi\)
0.910164 + 0.414249i \(0.135956\pi\)
\(462\) −7.37304 −0.343025
\(463\) −0.798135 −0.0370925 −0.0185462 0.999828i \(-0.505904\pi\)
−0.0185462 + 0.999828i \(0.505904\pi\)
\(464\) −24.0018 −1.11426
\(465\) 0 0
\(466\) −39.9680 −1.85148
\(467\) 1.71542 0.0793801 0.0396901 0.999212i \(-0.487363\pi\)
0.0396901 + 0.999212i \(0.487363\pi\)
\(468\) 5.44677 0.251777
\(469\) 21.8407 1.00851
\(470\) 0 0
\(471\) −21.2401 −0.978691
\(472\) −5.53608 −0.254819
\(473\) −15.5924 −0.716938
\(474\) 28.2885 1.29933
\(475\) 0 0
\(476\) 23.1747 1.06221
\(477\) 3.17210 0.145240
\(478\) 7.41253 0.339041
\(479\) 19.9250 0.910395 0.455198 0.890390i \(-0.349569\pi\)
0.455198 + 0.890390i \(0.349569\pi\)
\(480\) 0 0
\(481\) −6.29738 −0.287136
\(482\) −19.8702 −0.905061
\(483\) 1.37606 0.0626127
\(484\) −10.9324 −0.496928
\(485\) 0 0
\(486\) 1.89294 0.0858653
\(487\) 19.9890 0.905787 0.452893 0.891565i \(-0.350392\pi\)
0.452893 + 0.891565i \(0.350392\pi\)
\(488\) 9.26857 0.419569
\(489\) 3.57277 0.161566
\(490\) 0 0
\(491\) −30.9805 −1.39813 −0.699065 0.715058i \(-0.746400\pi\)
−0.699065 + 0.715058i \(0.746400\pi\)
\(492\) 1.94891 0.0878635
\(493\) 39.1698 1.76412
\(494\) 1.74694 0.0785985
\(495\) 0 0
\(496\) 4.65987 0.209234
\(497\) −25.0050 −1.12163
\(498\) −25.9032 −1.16075
\(499\) −6.32240 −0.283029 −0.141515 0.989936i \(-0.545197\pi\)
−0.141515 + 0.989936i \(0.545197\pi\)
\(500\) 0 0
\(501\) −11.6839 −0.521997
\(502\) −3.60763 −0.161017
\(503\) −12.6172 −0.562571 −0.281286 0.959624i \(-0.590761\pi\)
−0.281286 + 0.959624i \(0.590761\pi\)
\(504\) −1.51865 −0.0676459
\(505\) 0 0
\(506\) −2.73835 −0.121734
\(507\) −1.16402 −0.0516958
\(508\) −0.385992 −0.0171256
\(509\) −11.5920 −0.513805 −0.256902 0.966437i \(-0.582702\pi\)
−0.256902 + 0.966437i \(0.582702\pi\)
\(510\) 0 0
\(511\) 1.09759 0.0485545
\(512\) 26.3980 1.16664
\(513\) 0.268250 0.0118435
\(514\) 24.1754 1.06633
\(515\) 0 0
\(516\) 12.1993 0.537044
\(517\) 6.73844 0.296356
\(518\) −6.66946 −0.293039
\(519\) −17.9661 −0.788623
\(520\) 0 0
\(521\) 14.3456 0.628491 0.314246 0.949342i \(-0.398248\pi\)
0.314246 + 0.949342i \(0.398248\pi\)
\(522\) 9.75003 0.426747
\(523\) −23.3611 −1.02151 −0.510755 0.859727i \(-0.670634\pi\)
−0.510755 + 0.859727i \(0.670634\pi\)
\(524\) 7.39575 0.323085
\(525\) 0 0
\(526\) −18.9903 −0.828018
\(527\) −7.60468 −0.331265
\(528\) 9.42949 0.410366
\(529\) −22.4889 −0.977780
\(530\) 0 0
\(531\) 7.01686 0.304506
\(532\) 0.817474 0.0354420
\(533\) 4.23503 0.183440
\(534\) −3.10075 −0.134183
\(535\) 0 0
\(536\) −8.95217 −0.386675
\(537\) −16.8563 −0.727401
\(538\) −32.4043 −1.39705
\(539\) 6.66750 0.287189
\(540\) 0 0
\(541\) 17.2433 0.741349 0.370674 0.928763i \(-0.379127\pi\)
0.370674 + 0.928763i \(0.379127\pi\)
\(542\) 14.3166 0.614950
\(543\) −11.9617 −0.513327
\(544\) −55.0800 −2.36153
\(545\) 0 0
\(546\) 12.5353 0.536462
\(547\) −11.7986 −0.504472 −0.252236 0.967666i \(-0.581166\pi\)
−0.252236 + 0.967666i \(0.581166\pi\)
\(548\) −19.0270 −0.812795
\(549\) −11.7477 −0.501380
\(550\) 0 0
\(551\) 1.38169 0.0588619
\(552\) −0.564025 −0.0240065
\(553\) 28.7655 1.22323
\(554\) −20.2245 −0.859256
\(555\) 0 0
\(556\) 15.0256 0.637229
\(557\) 4.77368 0.202267 0.101134 0.994873i \(-0.467753\pi\)
0.101134 + 0.994873i \(0.467753\pi\)
\(558\) −1.89294 −0.0801343
\(559\) 26.5094 1.12123
\(560\) 0 0
\(561\) −15.3885 −0.649701
\(562\) 29.8211 1.25793
\(563\) 15.2955 0.644629 0.322314 0.946633i \(-0.395539\pi\)
0.322314 + 0.946633i \(0.395539\pi\)
\(564\) −5.27208 −0.221995
\(565\) 0 0
\(566\) −50.2938 −2.11401
\(567\) 1.92485 0.0808361
\(568\) 10.2492 0.430046
\(569\) 1.55943 0.0653747 0.0326873 0.999466i \(-0.489593\pi\)
0.0326873 + 0.999466i \(0.489593\pi\)
\(570\) 0 0
\(571\) 36.3781 1.52238 0.761189 0.648531i \(-0.224616\pi\)
0.761189 + 0.648531i \(0.224616\pi\)
\(572\) −11.0218 −0.460845
\(573\) 21.3972 0.893883
\(574\) 4.48526 0.187211
\(575\) 0 0
\(576\) −4.39060 −0.182942
\(577\) −13.6972 −0.570221 −0.285110 0.958495i \(-0.592030\pi\)
−0.285110 + 0.958495i \(0.592030\pi\)
\(578\) 77.2908 3.21487
\(579\) 12.4902 0.519075
\(580\) 0 0
\(581\) −26.3400 −1.09277
\(582\) 5.94189 0.246299
\(583\) −6.41890 −0.265844
\(584\) −0.449886 −0.0186164
\(585\) 0 0
\(586\) −44.9601 −1.85728
\(587\) −11.2055 −0.462499 −0.231250 0.972894i \(-0.574281\pi\)
−0.231250 + 0.972894i \(0.574281\pi\)
\(588\) −5.21658 −0.215128
\(589\) −0.268250 −0.0110531
\(590\) 0 0
\(591\) 9.61876 0.395663
\(592\) 8.52966 0.350567
\(593\) −1.57118 −0.0645205 −0.0322602 0.999480i \(-0.510271\pi\)
−0.0322602 + 0.999480i \(0.510271\pi\)
\(594\) −3.83045 −0.157165
\(595\) 0 0
\(596\) 5.42885 0.222374
\(597\) 16.8385 0.689154
\(598\) 4.65561 0.190382
\(599\) 26.6448 1.08868 0.544338 0.838866i \(-0.316781\pi\)
0.544338 + 0.838866i \(0.316781\pi\)
\(600\) 0 0
\(601\) −4.91310 −0.200410 −0.100205 0.994967i \(-0.531950\pi\)
−0.100205 + 0.994967i \(0.531950\pi\)
\(602\) 28.0757 1.14428
\(603\) 11.3467 0.462073
\(604\) −18.3372 −0.746130
\(605\) 0 0
\(606\) −11.7963 −0.479193
\(607\) 14.0184 0.568987 0.284494 0.958678i \(-0.408175\pi\)
0.284494 + 0.958678i \(0.408175\pi\)
\(608\) −1.94291 −0.0787954
\(609\) 9.91442 0.401753
\(610\) 0 0
\(611\) −11.4564 −0.463476
\(612\) 12.0398 0.486678
\(613\) 20.2034 0.816008 0.408004 0.912980i \(-0.366225\pi\)
0.408004 + 0.912980i \(0.366225\pi\)
\(614\) 33.9288 1.36925
\(615\) 0 0
\(616\) 3.07306 0.123817
\(617\) 46.1203 1.85673 0.928367 0.371665i \(-0.121213\pi\)
0.928367 + 0.371665i \(0.121213\pi\)
\(618\) 11.9581 0.481023
\(619\) 34.5262 1.38772 0.693862 0.720108i \(-0.255908\pi\)
0.693862 + 0.720108i \(0.255908\pi\)
\(620\) 0 0
\(621\) 0.714890 0.0286875
\(622\) 13.4561 0.539540
\(623\) −3.15303 −0.126323
\(624\) −16.0316 −0.641777
\(625\) 0 0
\(626\) −39.6735 −1.58567
\(627\) −0.542818 −0.0216781
\(628\) −33.6273 −1.34188
\(629\) −13.9200 −0.555026
\(630\) 0 0
\(631\) −37.0446 −1.47472 −0.737360 0.675500i \(-0.763928\pi\)
−0.737360 + 0.675500i \(0.763928\pi\)
\(632\) −11.7905 −0.469003
\(633\) 21.1340 0.840000
\(634\) 37.7352 1.49866
\(635\) 0 0
\(636\) 5.02207 0.199138
\(637\) −11.3358 −0.449140
\(638\) −19.7297 −0.781106
\(639\) −12.9906 −0.513901
\(640\) 0 0
\(641\) −29.8914 −1.18064 −0.590320 0.807169i \(-0.700998\pi\)
−0.590320 + 0.807169i \(0.700998\pi\)
\(642\) −9.33711 −0.368506
\(643\) 36.1477 1.42553 0.712763 0.701405i \(-0.247443\pi\)
0.712763 + 0.701405i \(0.247443\pi\)
\(644\) 2.17858 0.0858479
\(645\) 0 0
\(646\) 3.86151 0.151929
\(647\) −25.0553 −0.985025 −0.492512 0.870305i \(-0.663921\pi\)
−0.492512 + 0.870305i \(0.663921\pi\)
\(648\) −0.788968 −0.0309936
\(649\) −14.1990 −0.557358
\(650\) 0 0
\(651\) −1.92485 −0.0754408
\(652\) 5.65642 0.221522
\(653\) −32.1230 −1.25707 −0.628536 0.777780i \(-0.716346\pi\)
−0.628536 + 0.777780i \(0.716346\pi\)
\(654\) −15.0020 −0.586624
\(655\) 0 0
\(656\) −5.73626 −0.223963
\(657\) 0.570221 0.0222464
\(658\) −12.1333 −0.473004
\(659\) 12.5550 0.489073 0.244536 0.969640i \(-0.421364\pi\)
0.244536 + 0.969640i \(0.421364\pi\)
\(660\) 0 0
\(661\) 20.5455 0.799127 0.399563 0.916706i \(-0.369162\pi\)
0.399563 + 0.916706i \(0.369162\pi\)
\(662\) 35.0007 1.36034
\(663\) 26.1627 1.01608
\(664\) 10.7964 0.418980
\(665\) 0 0
\(666\) −3.46492 −0.134263
\(667\) 3.68222 0.142576
\(668\) −18.4980 −0.715708
\(669\) 4.35225 0.168268
\(670\) 0 0
\(671\) 23.7721 0.917711
\(672\) −13.9415 −0.537805
\(673\) −17.5886 −0.677992 −0.338996 0.940788i \(-0.610087\pi\)
−0.338996 + 0.940788i \(0.610087\pi\)
\(674\) 2.58088 0.0994118
\(675\) 0 0
\(676\) −1.84287 −0.0708798
\(677\) 30.8887 1.18715 0.593574 0.804779i \(-0.297716\pi\)
0.593574 + 0.804779i \(0.297716\pi\)
\(678\) −35.4470 −1.36133
\(679\) 6.04207 0.231873
\(680\) 0 0
\(681\) −9.03171 −0.346096
\(682\) 3.83045 0.146675
\(683\) 7.11535 0.272261 0.136131 0.990691i \(-0.456533\pi\)
0.136131 + 0.990691i \(0.456533\pi\)
\(684\) 0.424695 0.0162386
\(685\) 0 0
\(686\) −37.5109 −1.43217
\(687\) 9.22207 0.351844
\(688\) −35.9064 −1.36892
\(689\) 10.9131 0.415756
\(690\) 0 0
\(691\) 6.59785 0.250994 0.125497 0.992094i \(-0.459947\pi\)
0.125497 + 0.992094i \(0.459947\pi\)
\(692\) −28.4440 −1.08128
\(693\) −3.89503 −0.147960
\(694\) 5.23502 0.198719
\(695\) 0 0
\(696\) −4.06378 −0.154037
\(697\) 9.36129 0.354584
\(698\) 11.8314 0.447826
\(699\) −21.1143 −0.798616
\(700\) 0 0
\(701\) −40.7475 −1.53901 −0.769505 0.638640i \(-0.779497\pi\)
−0.769505 + 0.638640i \(0.779497\pi\)
\(702\) 6.51235 0.245793
\(703\) −0.491018 −0.0185191
\(704\) 8.88459 0.334851
\(705\) 0 0
\(706\) 14.3101 0.538570
\(707\) −11.9952 −0.451126
\(708\) 11.1091 0.417506
\(709\) −5.18210 −0.194618 −0.0973089 0.995254i \(-0.531023\pi\)
−0.0973089 + 0.995254i \(0.531023\pi\)
\(710\) 0 0
\(711\) 14.9443 0.560453
\(712\) 1.29238 0.0484340
\(713\) −0.714890 −0.0267728
\(714\) 27.7086 1.03697
\(715\) 0 0
\(716\) −26.6869 −0.997336
\(717\) 3.91589 0.146242
\(718\) 6.52765 0.243610
\(719\) −49.7640 −1.85588 −0.927942 0.372724i \(-0.878424\pi\)
−0.927942 + 0.372724i \(0.878424\pi\)
\(720\) 0 0
\(721\) 12.1597 0.452850
\(722\) −35.8296 −1.33344
\(723\) −10.4970 −0.390388
\(724\) −18.9378 −0.703819
\(725\) 0 0
\(726\) −13.0712 −0.485117
\(727\) 27.4425 1.01779 0.508893 0.860830i \(-0.330055\pi\)
0.508893 + 0.860830i \(0.330055\pi\)
\(728\) −5.22467 −0.193639
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 58.5975 2.16731
\(732\) −18.5990 −0.687440
\(733\) −37.7306 −1.39361 −0.696806 0.717260i \(-0.745396\pi\)
−0.696806 + 0.717260i \(0.745396\pi\)
\(734\) −51.4911 −1.90057
\(735\) 0 0
\(736\) −5.17788 −0.190859
\(737\) −22.9606 −0.845764
\(738\) 2.33018 0.0857753
\(739\) 15.6884 0.577107 0.288554 0.957464i \(-0.406826\pi\)
0.288554 + 0.957464i \(0.406826\pi\)
\(740\) 0 0
\(741\) 0.922874 0.0339026
\(742\) 11.5579 0.424304
\(743\) −1.93922 −0.0711432 −0.0355716 0.999367i \(-0.511325\pi\)
−0.0355716 + 0.999367i \(0.511325\pi\)
\(744\) 0.788968 0.0289250
\(745\) 0 0
\(746\) −3.65663 −0.133879
\(747\) −13.6842 −0.500677
\(748\) −24.3631 −0.890802
\(749\) −9.49454 −0.346923
\(750\) 0 0
\(751\) 21.5760 0.787321 0.393660 0.919256i \(-0.371209\pi\)
0.393660 + 0.919256i \(0.371209\pi\)
\(752\) 15.5174 0.565862
\(753\) −1.90584 −0.0694527
\(754\) 33.5435 1.22158
\(755\) 0 0
\(756\) 3.04743 0.110834
\(757\) 48.5442 1.76437 0.882184 0.470905i \(-0.156072\pi\)
0.882184 + 0.470905i \(0.156072\pi\)
\(758\) −10.6098 −0.385367
\(759\) −1.44662 −0.0525088
\(760\) 0 0
\(761\) 34.3418 1.24489 0.622445 0.782664i \(-0.286140\pi\)
0.622445 + 0.782664i \(0.286140\pi\)
\(762\) −0.461506 −0.0167186
\(763\) −15.2549 −0.552266
\(764\) 33.8762 1.22560
\(765\) 0 0
\(766\) −43.2727 −1.56351
\(767\) 24.1404 0.871660
\(768\) 20.4695 0.738629
\(769\) −36.7179 −1.32408 −0.662041 0.749468i \(-0.730310\pi\)
−0.662041 + 0.749468i \(0.730310\pi\)
\(770\) 0 0
\(771\) 12.7714 0.459951
\(772\) 19.7745 0.711701
\(773\) 37.7497 1.35776 0.678880 0.734249i \(-0.262466\pi\)
0.678880 + 0.734249i \(0.262466\pi\)
\(774\) 14.5859 0.524280
\(775\) 0 0
\(776\) −2.47656 −0.0889032
\(777\) −3.52334 −0.126399
\(778\) −70.9329 −2.54307
\(779\) 0.330213 0.0118311
\(780\) 0 0
\(781\) 26.2872 0.940629
\(782\) 10.2910 0.368004
\(783\) 5.15075 0.184073
\(784\) 15.3541 0.548359
\(785\) 0 0
\(786\) 8.84262 0.315406
\(787\) −41.6668 −1.48526 −0.742630 0.669702i \(-0.766422\pi\)
−0.742630 + 0.669702i \(0.766422\pi\)
\(788\) 15.2285 0.542492
\(789\) −10.0322 −0.357156
\(790\) 0 0
\(791\) −36.0447 −1.28160
\(792\) 1.59652 0.0567298
\(793\) −40.4162 −1.43522
\(794\) 23.9803 0.851028
\(795\) 0 0
\(796\) 26.6588 0.944896
\(797\) 22.4918 0.796702 0.398351 0.917233i \(-0.369583\pi\)
0.398351 + 0.917233i \(0.369583\pi\)
\(798\) 0.977401 0.0345996
\(799\) −25.3237 −0.895887
\(800\) 0 0
\(801\) −1.63807 −0.0578782
\(802\) −70.1965 −2.47873
\(803\) −1.15387 −0.0407192
\(804\) 17.9641 0.633545
\(805\) 0 0
\(806\) −6.51235 −0.229388
\(807\) −17.1185 −0.602601
\(808\) 4.91666 0.172967
\(809\) −50.8508 −1.78782 −0.893909 0.448249i \(-0.852048\pi\)
−0.893909 + 0.448249i \(0.852048\pi\)
\(810\) 0 0
\(811\) 47.5404 1.66937 0.834685 0.550727i \(-0.185649\pi\)
0.834685 + 0.550727i \(0.185649\pi\)
\(812\) 15.6965 0.550841
\(813\) 7.56317 0.265252
\(814\) 7.01144 0.245751
\(815\) 0 0
\(816\) −35.4369 −1.24054
\(817\) 2.06699 0.0723148
\(818\) −32.6525 −1.14167
\(819\) 6.62215 0.231397
\(820\) 0 0
\(821\) 34.3319 1.19819 0.599096 0.800677i \(-0.295527\pi\)
0.599096 + 0.800677i \(0.295527\pi\)
\(822\) −22.7494 −0.793477
\(823\) 20.3428 0.709105 0.354552 0.935036i \(-0.384633\pi\)
0.354552 + 0.935036i \(0.384633\pi\)
\(824\) −4.98407 −0.173628
\(825\) 0 0
\(826\) 25.5668 0.889581
\(827\) −36.0102 −1.25220 −0.626099 0.779744i \(-0.715349\pi\)
−0.626099 + 0.779744i \(0.715349\pi\)
\(828\) 1.13182 0.0393333
\(829\) 0.457819 0.0159007 0.00795036 0.999968i \(-0.497469\pi\)
0.00795036 + 0.999968i \(0.497469\pi\)
\(830\) 0 0
\(831\) −10.6842 −0.370631
\(832\) −15.1052 −0.523678
\(833\) −25.0571 −0.868175
\(834\) 17.9652 0.622084
\(835\) 0 0
\(836\) −0.859391 −0.0297227
\(837\) −1.00000 −0.0345651
\(838\) 2.40140 0.0829549
\(839\) 50.5045 1.74361 0.871804 0.489855i \(-0.162950\pi\)
0.871804 + 0.489855i \(0.162950\pi\)
\(840\) 0 0
\(841\) −2.46979 −0.0851653
\(842\) 55.9686 1.92880
\(843\) 15.7539 0.542593
\(844\) 33.4594 1.15172
\(845\) 0 0
\(846\) −6.30349 −0.216718
\(847\) −13.2916 −0.456704
\(848\) −14.7816 −0.507601
\(849\) −26.5692 −0.911853
\(850\) 0 0
\(851\) −1.30857 −0.0448572
\(852\) −20.5668 −0.704607
\(853\) 29.3700 1.00561 0.502804 0.864400i \(-0.332302\pi\)
0.502804 + 0.864400i \(0.332302\pi\)
\(854\) −42.8042 −1.46473
\(855\) 0 0
\(856\) 3.89167 0.133015
\(857\) −27.5152 −0.939901 −0.469950 0.882693i \(-0.655728\pi\)
−0.469950 + 0.882693i \(0.655728\pi\)
\(858\) −13.1781 −0.449892
\(859\) 6.12446 0.208964 0.104482 0.994527i \(-0.466682\pi\)
0.104482 + 0.994527i \(0.466682\pi\)
\(860\) 0 0
\(861\) 2.36947 0.0807514
\(862\) −44.2167 −1.50603
\(863\) −24.0692 −0.819324 −0.409662 0.912237i \(-0.634353\pi\)
−0.409662 + 0.912237i \(0.634353\pi\)
\(864\) −7.24290 −0.246409
\(865\) 0 0
\(866\) 28.9020 0.982131
\(867\) 40.8312 1.38670
\(868\) −3.04743 −0.103437
\(869\) −30.2405 −1.02584
\(870\) 0 0
\(871\) 39.0365 1.32270
\(872\) 6.25277 0.211746
\(873\) 3.13898 0.106238
\(874\) 0.363007 0.0122789
\(875\) 0 0
\(876\) 0.902776 0.0305020
\(877\) −28.2686 −0.954562 −0.477281 0.878751i \(-0.658378\pi\)
−0.477281 + 0.878751i \(0.658378\pi\)
\(878\) 26.2622 0.886308
\(879\) −23.7515 −0.801118
\(880\) 0 0
\(881\) 32.7825 1.10447 0.552235 0.833688i \(-0.313775\pi\)
0.552235 + 0.833688i \(0.313775\pi\)
\(882\) −6.23713 −0.210015
\(883\) 7.87793 0.265114 0.132557 0.991175i \(-0.457681\pi\)
0.132557 + 0.991175i \(0.457681\pi\)
\(884\) 41.4209 1.39314
\(885\) 0 0
\(886\) 17.5469 0.589499
\(887\) 3.02131 0.101446 0.0507228 0.998713i \(-0.483847\pi\)
0.0507228 + 0.998713i \(0.483847\pi\)
\(888\) 1.44417 0.0484631
\(889\) −0.469287 −0.0157394
\(890\) 0 0
\(891\) −2.02355 −0.0677915
\(892\) 6.89049 0.230711
\(893\) −0.893275 −0.0298923
\(894\) 6.49093 0.217089
\(895\) 0 0
\(896\) 11.8853 0.397062
\(897\) 2.45947 0.0821192
\(898\) 27.0739 0.903469
\(899\) −5.15075 −0.171787
\(900\) 0 0
\(901\) 24.1228 0.803646
\(902\) −4.71524 −0.157000
\(903\) 14.8318 0.493573
\(904\) 14.7742 0.491382
\(905\) 0 0
\(906\) −21.9246 −0.728396
\(907\) 48.0192 1.59445 0.797226 0.603681i \(-0.206300\pi\)
0.797226 + 0.603681i \(0.206300\pi\)
\(908\) −14.2990 −0.474530
\(909\) −6.23176 −0.206694
\(910\) 0 0
\(911\) −35.5860 −1.17902 −0.589509 0.807762i \(-0.700679\pi\)
−0.589509 + 0.807762i \(0.700679\pi\)
\(912\) −1.25001 −0.0413920
\(913\) 27.6906 0.916424
\(914\) 69.8719 2.31116
\(915\) 0 0
\(916\) 14.6004 0.482411
\(917\) 8.99171 0.296932
\(918\) 14.3952 0.475111
\(919\) 32.6713 1.07773 0.538864 0.842393i \(-0.318854\pi\)
0.538864 + 0.842393i \(0.318854\pi\)
\(920\) 0 0
\(921\) 17.9239 0.590613
\(922\) 73.9836 2.43652
\(923\) −44.6922 −1.47106
\(924\) −6.16663 −0.202867
\(925\) 0 0
\(926\) −1.51082 −0.0496485
\(927\) 6.31720 0.207484
\(928\) −37.3064 −1.22464
\(929\) 58.8643 1.93128 0.965638 0.259891i \(-0.0836868\pi\)
0.965638 + 0.259891i \(0.0836868\pi\)
\(930\) 0 0
\(931\) −0.883871 −0.0289677
\(932\) −33.4282 −1.09498
\(933\) 7.10858 0.232725
\(934\) 3.24718 0.106251
\(935\) 0 0
\(936\) −2.71432 −0.0887205
\(937\) 28.5511 0.932724 0.466362 0.884594i \(-0.345564\pi\)
0.466362 + 0.884594i \(0.345564\pi\)
\(938\) 41.3430 1.34990
\(939\) −20.9587 −0.683961
\(940\) 0 0
\(941\) −23.6080 −0.769597 −0.384799 0.923001i \(-0.625729\pi\)
−0.384799 + 0.923001i \(0.625729\pi\)
\(942\) −40.2061 −1.30998
\(943\) 0.880022 0.0286575
\(944\) −32.6977 −1.06422
\(945\) 0 0
\(946\) −29.5154 −0.959627
\(947\) −22.2266 −0.722268 −0.361134 0.932514i \(-0.617610\pi\)
−0.361134 + 0.932514i \(0.617610\pi\)
\(948\) 23.6598 0.768435
\(949\) 1.96176 0.0636813
\(950\) 0 0
\(951\) 19.9348 0.646429
\(952\) −11.5488 −0.374299
\(953\) −46.5383 −1.50752 −0.753762 0.657148i \(-0.771763\pi\)
−0.753762 + 0.657148i \(0.771763\pi\)
\(954\) 6.00457 0.194405
\(955\) 0 0
\(956\) 6.19966 0.200511
\(957\) −10.4228 −0.336921
\(958\) 37.7167 1.21857
\(959\) −23.1330 −0.747003
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −11.9205 −0.384333
\(963\) −4.93261 −0.158951
\(964\) −16.6189 −0.535259
\(965\) 0 0
\(966\) 2.60478 0.0838076
\(967\) 41.0489 1.32004 0.660021 0.751247i \(-0.270547\pi\)
0.660021 + 0.751247i \(0.270547\pi\)
\(968\) 5.44802 0.175106
\(969\) 2.03996 0.0655329
\(970\) 0 0
\(971\) −28.9627 −0.929457 −0.464729 0.885453i \(-0.653848\pi\)
−0.464729 + 0.885453i \(0.653848\pi\)
\(972\) 1.58320 0.0507813
\(973\) 18.2681 0.585648
\(974\) 37.8378 1.21240
\(975\) 0 0
\(976\) 54.7429 1.75228
\(977\) −24.3217 −0.778119 −0.389060 0.921213i \(-0.627200\pi\)
−0.389060 + 0.921213i \(0.627200\pi\)
\(978\) 6.76302 0.216257
\(979\) 3.31471 0.105938
\(980\) 0 0
\(981\) −7.92525 −0.253034
\(982\) −58.6441 −1.87141
\(983\) 51.7467 1.65046 0.825232 0.564794i \(-0.191044\pi\)
0.825232 + 0.564794i \(0.191044\pi\)
\(984\) −0.971212 −0.0309611
\(985\) 0 0
\(986\) 74.1459 2.36129
\(987\) −6.40977 −0.204025
\(988\) 1.46110 0.0464837
\(989\) 5.50855 0.175162
\(990\) 0 0
\(991\) −50.5874 −1.60696 −0.803482 0.595330i \(-0.797021\pi\)
−0.803482 + 0.595330i \(0.797021\pi\)
\(992\) 7.24290 0.229962
\(993\) 18.4902 0.586768
\(994\) −47.3328 −1.50131
\(995\) 0 0
\(996\) −21.6648 −0.686476
\(997\) 55.5169 1.75824 0.879118 0.476604i \(-0.158132\pi\)
0.879118 + 0.476604i \(0.158132\pi\)
\(998\) −11.9679 −0.378837
\(999\) −1.83045 −0.0579129
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.a.bb.1.5 yes 6
3.2 odd 2 6975.2.a.ca.1.2 6
5.2 odd 4 2325.2.c.r.1024.10 12
5.3 odd 4 2325.2.c.r.1024.3 12
5.4 even 2 2325.2.a.y.1.2 6
15.14 odd 2 6975.2.a.cc.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2325.2.a.y.1.2 6 5.4 even 2
2325.2.a.bb.1.5 yes 6 1.1 even 1 trivial
2325.2.c.r.1024.3 12 5.3 odd 4
2325.2.c.r.1024.10 12 5.2 odd 4
6975.2.a.ca.1.2 6 3.2 odd 2
6975.2.a.cc.1.5 6 15.14 odd 2