Properties

Label 2325.2.a.bb.1.4
Level $2325$
Weight $2$
Character 2325.1
Self dual yes
Analytic conductor $18.565$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,1,6,7,0,1,2,-3,6,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.75968016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 9x^{3} + 14x^{2} - 6x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.864597\) of defining polynomial
Character \(\chi\) \(=\) 2325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.864597 q^{2} +1.00000 q^{3} -1.25247 q^{4} +0.864597 q^{6} -4.28308 q^{7} -2.81208 q^{8} +1.00000 q^{9} +0.353929 q^{11} -1.25247 q^{12} +3.89854 q^{13} -3.70313 q^{14} +0.0736318 q^{16} -5.22766 q^{17} +0.864597 q^{18} +8.23515 q^{19} -4.28308 q^{21} +0.306006 q^{22} -1.28131 q^{23} -2.81208 q^{24} +3.37067 q^{26} +1.00000 q^{27} +5.36443 q^{28} +7.27223 q^{29} -1.00000 q^{31} +5.68782 q^{32} +0.353929 q^{33} -4.51982 q^{34} -1.25247 q^{36} +2.30601 q^{37} +7.12009 q^{38} +3.89854 q^{39} -2.68303 q^{41} -3.70313 q^{42} +6.32275 q^{43} -0.443286 q^{44} -1.10782 q^{46} +6.68146 q^{47} +0.0736318 q^{48} +11.3447 q^{49} -5.22766 q^{51} -4.88282 q^{52} -4.33661 q^{53} +0.864597 q^{54} +12.0443 q^{56} +8.23515 q^{57} +6.28755 q^{58} +1.04616 q^{59} -0.983032 q^{61} -0.864597 q^{62} -4.28308 q^{63} +4.77040 q^{64} +0.306006 q^{66} +4.92592 q^{67} +6.54751 q^{68} -1.28131 q^{69} +10.7048 q^{71} -2.81208 q^{72} +4.56262 q^{73} +1.99377 q^{74} -10.3143 q^{76} -1.51590 q^{77} +3.37067 q^{78} -8.87953 q^{79} +1.00000 q^{81} -2.31974 q^{82} +2.37726 q^{83} +5.36443 q^{84} +5.46663 q^{86} +7.27223 q^{87} -0.995275 q^{88} +0.170731 q^{89} -16.6978 q^{91} +1.60481 q^{92} -1.00000 q^{93} +5.77676 q^{94} +5.68782 q^{96} -1.01227 q^{97} +9.80862 q^{98} +0.353929 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 6 q^{3} + 7 q^{4} + q^{6} + 2 q^{7} - 3 q^{8} + 6 q^{9} + 7 q^{11} + 7 q^{12} + 4 q^{13} + 10 q^{14} + 17 q^{16} + q^{18} + 17 q^{19} + 2 q^{21} + 2 q^{22} - q^{23} - 3 q^{24} + 2 q^{26}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.864597 0.611362 0.305681 0.952134i \(-0.401116\pi\)
0.305681 + 0.952134i \(0.401116\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.25247 −0.626236
\(5\) 0 0
\(6\) 0.864597 0.352970
\(7\) −4.28308 −1.61885 −0.809425 0.587223i \(-0.800221\pi\)
−0.809425 + 0.587223i \(0.800221\pi\)
\(8\) −2.81208 −0.994219
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.353929 0.106714 0.0533568 0.998576i \(-0.483008\pi\)
0.0533568 + 0.998576i \(0.483008\pi\)
\(12\) −1.25247 −0.361558
\(13\) 3.89854 1.08126 0.540631 0.841260i \(-0.318186\pi\)
0.540631 + 0.841260i \(0.318186\pi\)
\(14\) −3.70313 −0.989704
\(15\) 0 0
\(16\) 0.0736318 0.0184079
\(17\) −5.22766 −1.26789 −0.633947 0.773376i \(-0.718566\pi\)
−0.633947 + 0.773376i \(0.718566\pi\)
\(18\) 0.864597 0.203787
\(19\) 8.23515 1.88927 0.944637 0.328118i \(-0.106414\pi\)
0.944637 + 0.328118i \(0.106414\pi\)
\(20\) 0 0
\(21\) −4.28308 −0.934644
\(22\) 0.306006 0.0652407
\(23\) −1.28131 −0.267172 −0.133586 0.991037i \(-0.542649\pi\)
−0.133586 + 0.991037i \(0.542649\pi\)
\(24\) −2.81208 −0.574013
\(25\) 0 0
\(26\) 3.37067 0.661042
\(27\) 1.00000 0.192450
\(28\) 5.36443 1.01378
\(29\) 7.27223 1.35042 0.675209 0.737626i \(-0.264053\pi\)
0.675209 + 0.737626i \(0.264053\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 5.68782 1.00547
\(33\) 0.353929 0.0616111
\(34\) −4.51982 −0.775143
\(35\) 0 0
\(36\) −1.25247 −0.208745
\(37\) 2.30601 0.379105 0.189553 0.981871i \(-0.439296\pi\)
0.189553 + 0.981871i \(0.439296\pi\)
\(38\) 7.12009 1.15503
\(39\) 3.89854 0.624267
\(40\) 0 0
\(41\) −2.68303 −0.419020 −0.209510 0.977807i \(-0.567187\pi\)
−0.209510 + 0.977807i \(0.567187\pi\)
\(42\) −3.70313 −0.571406
\(43\) 6.32275 0.964210 0.482105 0.876114i \(-0.339872\pi\)
0.482105 + 0.876114i \(0.339872\pi\)
\(44\) −0.443286 −0.0668279
\(45\) 0 0
\(46\) −1.10782 −0.163339
\(47\) 6.68146 0.974590 0.487295 0.873237i \(-0.337984\pi\)
0.487295 + 0.873237i \(0.337984\pi\)
\(48\) 0.0736318 0.0106278
\(49\) 11.3447 1.62068
\(50\) 0 0
\(51\) −5.22766 −0.732019
\(52\) −4.88282 −0.677125
\(53\) −4.33661 −0.595679 −0.297840 0.954616i \(-0.596266\pi\)
−0.297840 + 0.954616i \(0.596266\pi\)
\(54\) 0.864597 0.117657
\(55\) 0 0
\(56\) 12.0443 1.60949
\(57\) 8.23515 1.09077
\(58\) 6.28755 0.825595
\(59\) 1.04616 0.136198 0.0680991 0.997679i \(-0.478307\pi\)
0.0680991 + 0.997679i \(0.478307\pi\)
\(60\) 0 0
\(61\) −0.983032 −0.125864 −0.0629321 0.998018i \(-0.520045\pi\)
−0.0629321 + 0.998018i \(0.520045\pi\)
\(62\) −0.864597 −0.109804
\(63\) −4.28308 −0.539617
\(64\) 4.77040 0.596301
\(65\) 0 0
\(66\) 0.306006 0.0376667
\(67\) 4.92592 0.601796 0.300898 0.953656i \(-0.402714\pi\)
0.300898 + 0.953656i \(0.402714\pi\)
\(68\) 6.54751 0.794002
\(69\) −1.28131 −0.154252
\(70\) 0 0
\(71\) 10.7048 1.27042 0.635212 0.772338i \(-0.280913\pi\)
0.635212 + 0.772338i \(0.280913\pi\)
\(72\) −2.81208 −0.331406
\(73\) 4.56262 0.534015 0.267007 0.963695i \(-0.413965\pi\)
0.267007 + 0.963695i \(0.413965\pi\)
\(74\) 1.99377 0.231771
\(75\) 0 0
\(76\) −10.3143 −1.18313
\(77\) −1.51590 −0.172753
\(78\) 3.37067 0.381653
\(79\) −8.87953 −0.999025 −0.499513 0.866307i \(-0.666488\pi\)
−0.499513 + 0.866307i \(0.666488\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −2.31974 −0.256173
\(83\) 2.37726 0.260938 0.130469 0.991452i \(-0.458352\pi\)
0.130469 + 0.991452i \(0.458352\pi\)
\(84\) 5.36443 0.585308
\(85\) 0 0
\(86\) 5.46663 0.589481
\(87\) 7.27223 0.779665
\(88\) −0.995275 −0.106097
\(89\) 0.170731 0.0180974 0.00904871 0.999959i \(-0.497120\pi\)
0.00904871 + 0.999959i \(0.497120\pi\)
\(90\) 0 0
\(91\) −16.6978 −1.75040
\(92\) 1.60481 0.167313
\(93\) −1.00000 −0.103695
\(94\) 5.77676 0.595828
\(95\) 0 0
\(96\) 5.68782 0.580510
\(97\) −1.01227 −0.102780 −0.0513902 0.998679i \(-0.516365\pi\)
−0.0513902 + 0.998679i \(0.516365\pi\)
\(98\) 9.80862 0.990820
\(99\) 0.353929 0.0355712
\(100\) 0 0
\(101\) 17.9045 1.78157 0.890783 0.454428i \(-0.150156\pi\)
0.890783 + 0.454428i \(0.150156\pi\)
\(102\) −4.51982 −0.447529
\(103\) 8.49535 0.837072 0.418536 0.908200i \(-0.362543\pi\)
0.418536 + 0.908200i \(0.362543\pi\)
\(104\) −10.9630 −1.07501
\(105\) 0 0
\(106\) −3.74942 −0.364176
\(107\) −4.50652 −0.435662 −0.217831 0.975986i \(-0.569898\pi\)
−0.217831 + 0.975986i \(0.569898\pi\)
\(108\) −1.25247 −0.120519
\(109\) 14.3051 1.37018 0.685088 0.728460i \(-0.259764\pi\)
0.685088 + 0.728460i \(0.259764\pi\)
\(110\) 0 0
\(111\) 2.30601 0.218876
\(112\) −0.315370 −0.0297997
\(113\) 13.4229 1.26272 0.631360 0.775489i \(-0.282497\pi\)
0.631360 + 0.775489i \(0.282497\pi\)
\(114\) 7.12009 0.666857
\(115\) 0 0
\(116\) −9.10827 −0.845681
\(117\) 3.89854 0.360420
\(118\) 0.904506 0.0832665
\(119\) 22.3905 2.05253
\(120\) 0 0
\(121\) −10.8747 −0.988612
\(122\) −0.849926 −0.0769487
\(123\) −2.68303 −0.241921
\(124\) 1.25247 0.112475
\(125\) 0 0
\(126\) −3.70313 −0.329901
\(127\) −13.7611 −1.22110 −0.610550 0.791977i \(-0.709052\pi\)
−0.610550 + 0.791977i \(0.709052\pi\)
\(128\) −7.25116 −0.640918
\(129\) 6.32275 0.556687
\(130\) 0 0
\(131\) 6.94358 0.606663 0.303332 0.952885i \(-0.401901\pi\)
0.303332 + 0.952885i \(0.401901\pi\)
\(132\) −0.443286 −0.0385831
\(133\) −35.2718 −3.05845
\(134\) 4.25893 0.367916
\(135\) 0 0
\(136\) 14.7006 1.26057
\(137\) −7.86949 −0.672336 −0.336168 0.941802i \(-0.609131\pi\)
−0.336168 + 0.941802i \(0.609131\pi\)
\(138\) −1.10782 −0.0943037
\(139\) 7.69265 0.652482 0.326241 0.945287i \(-0.394218\pi\)
0.326241 + 0.945287i \(0.394218\pi\)
\(140\) 0 0
\(141\) 6.68146 0.562680
\(142\) 9.25532 0.776689
\(143\) 1.37981 0.115385
\(144\) 0.0736318 0.00613598
\(145\) 0 0
\(146\) 3.94483 0.326476
\(147\) 11.3447 0.935698
\(148\) −2.88821 −0.237409
\(149\) −12.6799 −1.03878 −0.519388 0.854539i \(-0.673840\pi\)
−0.519388 + 0.854539i \(0.673840\pi\)
\(150\) 0 0
\(151\) −2.94960 −0.240035 −0.120017 0.992772i \(-0.538295\pi\)
−0.120017 + 0.992772i \(0.538295\pi\)
\(152\) −23.1579 −1.87835
\(153\) −5.22766 −0.422632
\(154\) −1.31065 −0.105615
\(155\) 0 0
\(156\) −4.88282 −0.390938
\(157\) −3.49659 −0.279058 −0.139529 0.990218i \(-0.544559\pi\)
−0.139529 + 0.990218i \(0.544559\pi\)
\(158\) −7.67721 −0.610766
\(159\) −4.33661 −0.343915
\(160\) 0 0
\(161\) 5.48795 0.432511
\(162\) 0.864597 0.0679291
\(163\) −4.07999 −0.319570 −0.159785 0.987152i \(-0.551080\pi\)
−0.159785 + 0.987152i \(0.551080\pi\)
\(164\) 3.36043 0.262405
\(165\) 0 0
\(166\) 2.05537 0.159528
\(167\) −11.2784 −0.872747 −0.436373 0.899766i \(-0.643737\pi\)
−0.436373 + 0.899766i \(0.643737\pi\)
\(168\) 12.0443 0.929241
\(169\) 2.19864 0.169126
\(170\) 0 0
\(171\) 8.23515 0.629758
\(172\) −7.91906 −0.603823
\(173\) −22.4690 −1.70829 −0.854145 0.520036i \(-0.825919\pi\)
−0.854145 + 0.520036i \(0.825919\pi\)
\(174\) 6.28755 0.476658
\(175\) 0 0
\(176\) 0.0260604 0.00196438
\(177\) 1.04616 0.0786341
\(178\) 0.147613 0.0110641
\(179\) 6.71387 0.501818 0.250909 0.968011i \(-0.419271\pi\)
0.250909 + 0.968011i \(0.419271\pi\)
\(180\) 0 0
\(181\) 26.4167 1.96354 0.981769 0.190076i \(-0.0608733\pi\)
0.981769 + 0.190076i \(0.0608733\pi\)
\(182\) −14.4368 −1.07013
\(183\) −0.983032 −0.0726678
\(184\) 3.60315 0.265627
\(185\) 0 0
\(186\) −0.864597 −0.0633953
\(187\) −1.85022 −0.135302
\(188\) −8.36834 −0.610324
\(189\) −4.28308 −0.311548
\(190\) 0 0
\(191\) −19.9355 −1.44248 −0.721240 0.692685i \(-0.756427\pi\)
−0.721240 + 0.692685i \(0.756427\pi\)
\(192\) 4.77040 0.344274
\(193\) 3.98672 0.286970 0.143485 0.989652i \(-0.454169\pi\)
0.143485 + 0.989652i \(0.454169\pi\)
\(194\) −0.875204 −0.0628360
\(195\) 0 0
\(196\) −14.2090 −1.01493
\(197\) −23.1920 −1.65236 −0.826179 0.563407i \(-0.809490\pi\)
−0.826179 + 0.563407i \(0.809490\pi\)
\(198\) 0.306006 0.0217469
\(199\) −12.5109 −0.886876 −0.443438 0.896305i \(-0.646241\pi\)
−0.443438 + 0.896305i \(0.646241\pi\)
\(200\) 0 0
\(201\) 4.92592 0.347447
\(202\) 15.4802 1.08918
\(203\) −31.1475 −2.18613
\(204\) 6.54751 0.458417
\(205\) 0 0
\(206\) 7.34505 0.511754
\(207\) −1.28131 −0.0890573
\(208\) 0.287057 0.0199038
\(209\) 2.91466 0.201611
\(210\) 0 0
\(211\) 23.1316 1.59245 0.796224 0.605002i \(-0.206828\pi\)
0.796224 + 0.605002i \(0.206828\pi\)
\(212\) 5.43148 0.373036
\(213\) 10.7048 0.733480
\(214\) −3.89633 −0.266347
\(215\) 0 0
\(216\) −2.81208 −0.191338
\(217\) 4.28308 0.290754
\(218\) 12.3681 0.837674
\(219\) 4.56262 0.308313
\(220\) 0 0
\(221\) −20.3803 −1.37093
\(222\) 1.99377 0.133813
\(223\) 23.6450 1.58339 0.791693 0.610920i \(-0.209200\pi\)
0.791693 + 0.610920i \(0.209200\pi\)
\(224\) −24.3613 −1.62771
\(225\) 0 0
\(226\) 11.6054 0.771980
\(227\) −26.4506 −1.75559 −0.877794 0.479039i \(-0.840985\pi\)
−0.877794 + 0.479039i \(0.840985\pi\)
\(228\) −10.3143 −0.683081
\(229\) −7.61479 −0.503199 −0.251600 0.967831i \(-0.580957\pi\)
−0.251600 + 0.967831i \(0.580957\pi\)
\(230\) 0 0
\(231\) −1.51590 −0.0997392
\(232\) −20.4501 −1.34261
\(233\) 3.13938 0.205668 0.102834 0.994699i \(-0.467209\pi\)
0.102834 + 0.994699i \(0.467209\pi\)
\(234\) 3.37067 0.220347
\(235\) 0 0
\(236\) −1.31028 −0.0852923
\(237\) −8.87953 −0.576788
\(238\) 19.3587 1.25484
\(239\) 26.0939 1.68787 0.843936 0.536444i \(-0.180233\pi\)
0.843936 + 0.536444i \(0.180233\pi\)
\(240\) 0 0
\(241\) −5.22027 −0.336267 −0.168134 0.985764i \(-0.553774\pi\)
−0.168134 + 0.985764i \(0.553774\pi\)
\(242\) −9.40226 −0.604400
\(243\) 1.00000 0.0641500
\(244\) 1.23122 0.0788208
\(245\) 0 0
\(246\) −2.31974 −0.147901
\(247\) 32.1051 2.04280
\(248\) 2.81208 0.178567
\(249\) 2.37726 0.150653
\(250\) 0 0
\(251\) 29.8930 1.88683 0.943414 0.331617i \(-0.107594\pi\)
0.943414 + 0.331617i \(0.107594\pi\)
\(252\) 5.36443 0.337928
\(253\) −0.453493 −0.0285109
\(254\) −11.8978 −0.746535
\(255\) 0 0
\(256\) −15.8101 −0.988133
\(257\) −15.6602 −0.976855 −0.488427 0.872604i \(-0.662429\pi\)
−0.488427 + 0.872604i \(0.662429\pi\)
\(258\) 5.46663 0.340337
\(259\) −9.87680 −0.613714
\(260\) 0 0
\(261\) 7.27223 0.450140
\(262\) 6.00339 0.370891
\(263\) 26.1422 1.61200 0.805998 0.591918i \(-0.201629\pi\)
0.805998 + 0.591918i \(0.201629\pi\)
\(264\) −0.995275 −0.0612550
\(265\) 0 0
\(266\) −30.4959 −1.86982
\(267\) 0.170731 0.0104486
\(268\) −6.16957 −0.376867
\(269\) −32.0456 −1.95386 −0.976928 0.213567i \(-0.931492\pi\)
−0.976928 + 0.213567i \(0.931492\pi\)
\(270\) 0 0
\(271\) −17.3240 −1.05236 −0.526179 0.850374i \(-0.676376\pi\)
−0.526179 + 0.850374i \(0.676376\pi\)
\(272\) −0.384922 −0.0233393
\(273\) −16.6978 −1.01059
\(274\) −6.80394 −0.411041
\(275\) 0 0
\(276\) 1.60481 0.0965980
\(277\) 16.6490 1.00034 0.500172 0.865926i \(-0.333270\pi\)
0.500172 + 0.865926i \(0.333270\pi\)
\(278\) 6.65104 0.398903
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 13.1488 0.784392 0.392196 0.919882i \(-0.371716\pi\)
0.392196 + 0.919882i \(0.371716\pi\)
\(282\) 5.77676 0.344001
\(283\) 25.9728 1.54392 0.771962 0.635669i \(-0.219276\pi\)
0.771962 + 0.635669i \(0.219276\pi\)
\(284\) −13.4074 −0.795586
\(285\) 0 0
\(286\) 1.19298 0.0705422
\(287\) 11.4916 0.678330
\(288\) 5.68782 0.335158
\(289\) 10.3285 0.607558
\(290\) 0 0
\(291\) −1.01227 −0.0593403
\(292\) −5.71456 −0.334419
\(293\) 27.0981 1.58309 0.791543 0.611114i \(-0.209278\pi\)
0.791543 + 0.611114i \(0.209278\pi\)
\(294\) 9.80862 0.572050
\(295\) 0 0
\(296\) −6.48467 −0.376914
\(297\) 0.353929 0.0205370
\(298\) −10.9630 −0.635068
\(299\) −4.99525 −0.288883
\(300\) 0 0
\(301\) −27.0808 −1.56091
\(302\) −2.55021 −0.146748
\(303\) 17.9045 1.02859
\(304\) 0.606369 0.0347776
\(305\) 0 0
\(306\) −4.51982 −0.258381
\(307\) −7.83898 −0.447394 −0.223697 0.974659i \(-0.571813\pi\)
−0.223697 + 0.974659i \(0.571813\pi\)
\(308\) 1.89863 0.108184
\(309\) 8.49535 0.483284
\(310\) 0 0
\(311\) 0.0311685 0.00176740 0.000883702 1.00000i \(-0.499719\pi\)
0.000883702 1.00000i \(0.499719\pi\)
\(312\) −10.9630 −0.620658
\(313\) −2.44289 −0.138080 −0.0690401 0.997614i \(-0.521994\pi\)
−0.0690401 + 0.997614i \(0.521994\pi\)
\(314\) −3.02314 −0.170606
\(315\) 0 0
\(316\) 11.1214 0.625626
\(317\) 4.03351 0.226544 0.113272 0.993564i \(-0.463867\pi\)
0.113272 + 0.993564i \(0.463867\pi\)
\(318\) −3.74942 −0.210257
\(319\) 2.57385 0.144108
\(320\) 0 0
\(321\) −4.50652 −0.251530
\(322\) 4.74487 0.264421
\(323\) −43.0506 −2.39540
\(324\) −1.25247 −0.0695818
\(325\) 0 0
\(326\) −3.52755 −0.195373
\(327\) 14.3051 0.791072
\(328\) 7.54490 0.416597
\(329\) −28.6172 −1.57772
\(330\) 0 0
\(331\) −11.0802 −0.609025 −0.304512 0.952508i \(-0.598493\pi\)
−0.304512 + 0.952508i \(0.598493\pi\)
\(332\) −2.97745 −0.163409
\(333\) 2.30601 0.126368
\(334\) −9.75125 −0.533565
\(335\) 0 0
\(336\) −0.315370 −0.0172049
\(337\) 10.4054 0.566817 0.283409 0.958999i \(-0.408535\pi\)
0.283409 + 0.958999i \(0.408535\pi\)
\(338\) 1.90094 0.103397
\(339\) 13.4229 0.729032
\(340\) 0 0
\(341\) −0.353929 −0.0191663
\(342\) 7.12009 0.385010
\(343\) −18.6088 −1.00478
\(344\) −17.7800 −0.958636
\(345\) 0 0
\(346\) −19.4267 −1.04438
\(347\) 23.7995 1.27762 0.638812 0.769363i \(-0.279426\pi\)
0.638812 + 0.769363i \(0.279426\pi\)
\(348\) −9.10827 −0.488254
\(349\) −26.1849 −1.40165 −0.700824 0.713335i \(-0.747184\pi\)
−0.700824 + 0.713335i \(0.747184\pi\)
\(350\) 0 0
\(351\) 3.89854 0.208089
\(352\) 2.01308 0.107298
\(353\) −14.3318 −0.762807 −0.381404 0.924409i \(-0.624559\pi\)
−0.381404 + 0.924409i \(0.624559\pi\)
\(354\) 0.904506 0.0480739
\(355\) 0 0
\(356\) −0.213836 −0.0113333
\(357\) 22.3905 1.18503
\(358\) 5.80479 0.306793
\(359\) 29.2468 1.54359 0.771793 0.635874i \(-0.219360\pi\)
0.771793 + 0.635874i \(0.219360\pi\)
\(360\) 0 0
\(361\) 48.8177 2.56935
\(362\) 22.8398 1.20043
\(363\) −10.8747 −0.570776
\(364\) 20.9135 1.09616
\(365\) 0 0
\(366\) −0.849926 −0.0444263
\(367\) 21.6111 1.12809 0.564046 0.825743i \(-0.309244\pi\)
0.564046 + 0.825743i \(0.309244\pi\)
\(368\) −0.0943452 −0.00491808
\(369\) −2.68303 −0.139673
\(370\) 0 0
\(371\) 18.5740 0.964315
\(372\) 1.25247 0.0649377
\(373\) −21.6784 −1.12247 −0.561233 0.827658i \(-0.689673\pi\)
−0.561233 + 0.827658i \(0.689673\pi\)
\(374\) −1.59970 −0.0827183
\(375\) 0 0
\(376\) −18.7888 −0.968957
\(377\) 28.3511 1.46016
\(378\) −3.70313 −0.190469
\(379\) 35.3697 1.81682 0.908408 0.418084i \(-0.137298\pi\)
0.908408 + 0.418084i \(0.137298\pi\)
\(380\) 0 0
\(381\) −13.7611 −0.705003
\(382\) −17.2361 −0.881878
\(383\) −30.1843 −1.54235 −0.771173 0.636626i \(-0.780330\pi\)
−0.771173 + 0.636626i \(0.780330\pi\)
\(384\) −7.25116 −0.370034
\(385\) 0 0
\(386\) 3.44690 0.175443
\(387\) 6.32275 0.321403
\(388\) 1.26784 0.0643648
\(389\) −8.07568 −0.409453 −0.204727 0.978819i \(-0.565630\pi\)
−0.204727 + 0.978819i \(0.565630\pi\)
\(390\) 0 0
\(391\) 6.69826 0.338746
\(392\) −31.9023 −1.61131
\(393\) 6.94358 0.350257
\(394\) −20.0517 −1.01019
\(395\) 0 0
\(396\) −0.443286 −0.0222760
\(397\) −34.0991 −1.71139 −0.855693 0.517483i \(-0.826869\pi\)
−0.855693 + 0.517483i \(0.826869\pi\)
\(398\) −10.8169 −0.542202
\(399\) −35.2718 −1.76580
\(400\) 0 0
\(401\) 35.4194 1.76876 0.884380 0.466768i \(-0.154582\pi\)
0.884380 + 0.466768i \(0.154582\pi\)
\(402\) 4.25893 0.212416
\(403\) −3.89854 −0.194200
\(404\) −22.4249 −1.11568
\(405\) 0 0
\(406\) −26.9300 −1.33652
\(407\) 0.816162 0.0404557
\(408\) 14.7006 0.727788
\(409\) −4.67021 −0.230927 −0.115463 0.993312i \(-0.536835\pi\)
−0.115463 + 0.993312i \(0.536835\pi\)
\(410\) 0 0
\(411\) −7.86949 −0.388173
\(412\) −10.6402 −0.524205
\(413\) −4.48078 −0.220485
\(414\) −1.10782 −0.0544463
\(415\) 0 0
\(416\) 22.1742 1.08718
\(417\) 7.69265 0.376711
\(418\) 2.52000 0.123257
\(419\) 11.4046 0.557150 0.278575 0.960414i \(-0.410138\pi\)
0.278575 + 0.960414i \(0.410138\pi\)
\(420\) 0 0
\(421\) 6.33585 0.308791 0.154395 0.988009i \(-0.450657\pi\)
0.154395 + 0.988009i \(0.450657\pi\)
\(422\) 19.9995 0.973563
\(423\) 6.68146 0.324863
\(424\) 12.1949 0.592236
\(425\) 0 0
\(426\) 9.25532 0.448422
\(427\) 4.21040 0.203755
\(428\) 5.64430 0.272827
\(429\) 1.37981 0.0666177
\(430\) 0 0
\(431\) −2.01105 −0.0968691 −0.0484346 0.998826i \(-0.515423\pi\)
−0.0484346 + 0.998826i \(0.515423\pi\)
\(432\) 0.0736318 0.00354261
\(433\) 37.7917 1.81615 0.908077 0.418803i \(-0.137550\pi\)
0.908077 + 0.418803i \(0.137550\pi\)
\(434\) 3.70313 0.177756
\(435\) 0 0
\(436\) −17.9167 −0.858054
\(437\) −10.5518 −0.504761
\(438\) 3.94483 0.188491
\(439\) 14.3895 0.686771 0.343386 0.939194i \(-0.388426\pi\)
0.343386 + 0.939194i \(0.388426\pi\)
\(440\) 0 0
\(441\) 11.3447 0.540225
\(442\) −17.6207 −0.838132
\(443\) −35.8785 −1.70464 −0.852320 0.523021i \(-0.824805\pi\)
−0.852320 + 0.523021i \(0.824805\pi\)
\(444\) −2.88821 −0.137068
\(445\) 0 0
\(446\) 20.4434 0.968022
\(447\) −12.6799 −0.599738
\(448\) −20.4320 −0.965321
\(449\) −35.4975 −1.67523 −0.837615 0.546261i \(-0.816051\pi\)
−0.837615 + 0.546261i \(0.816051\pi\)
\(450\) 0 0
\(451\) −0.949604 −0.0447151
\(452\) −16.8118 −0.790762
\(453\) −2.94960 −0.138584
\(454\) −22.8691 −1.07330
\(455\) 0 0
\(456\) −23.1579 −1.08447
\(457\) 33.8742 1.58457 0.792283 0.610153i \(-0.208892\pi\)
0.792283 + 0.610153i \(0.208892\pi\)
\(458\) −6.58372 −0.307637
\(459\) −5.22766 −0.244006
\(460\) 0 0
\(461\) −19.2748 −0.897717 −0.448859 0.893603i \(-0.648169\pi\)
−0.448859 + 0.893603i \(0.648169\pi\)
\(462\) −1.31065 −0.0609768
\(463\) 1.98874 0.0924244 0.0462122 0.998932i \(-0.485285\pi\)
0.0462122 + 0.998932i \(0.485285\pi\)
\(464\) 0.535467 0.0248584
\(465\) 0 0
\(466\) 2.71430 0.125737
\(467\) 3.18274 0.147279 0.0736397 0.997285i \(-0.476539\pi\)
0.0736397 + 0.997285i \(0.476539\pi\)
\(468\) −4.88282 −0.225708
\(469\) −21.0981 −0.974218
\(470\) 0 0
\(471\) −3.49659 −0.161114
\(472\) −2.94188 −0.135411
\(473\) 2.23780 0.102894
\(474\) −7.67721 −0.352626
\(475\) 0 0
\(476\) −28.0435 −1.28537
\(477\) −4.33661 −0.198560
\(478\) 22.5607 1.03190
\(479\) 9.28348 0.424173 0.212086 0.977251i \(-0.431974\pi\)
0.212086 + 0.977251i \(0.431974\pi\)
\(480\) 0 0
\(481\) 8.99006 0.409912
\(482\) −4.51343 −0.205581
\(483\) 5.48795 0.249710
\(484\) 13.6203 0.619105
\(485\) 0 0
\(486\) 0.864597 0.0392189
\(487\) −8.58292 −0.388929 −0.194465 0.980910i \(-0.562297\pi\)
−0.194465 + 0.980910i \(0.562297\pi\)
\(488\) 2.76436 0.125137
\(489\) −4.07999 −0.184504
\(490\) 0 0
\(491\) −34.6474 −1.56362 −0.781808 0.623519i \(-0.785702\pi\)
−0.781808 + 0.623519i \(0.785702\pi\)
\(492\) 3.36043 0.151500
\(493\) −38.0168 −1.71219
\(494\) 27.7580 1.24889
\(495\) 0 0
\(496\) −0.0736318 −0.00330616
\(497\) −45.8494 −2.05663
\(498\) 2.05537 0.0921033
\(499\) −11.2295 −0.502703 −0.251352 0.967896i \(-0.580875\pi\)
−0.251352 + 0.967896i \(0.580875\pi\)
\(500\) 0 0
\(501\) −11.2784 −0.503881
\(502\) 25.8454 1.15354
\(503\) −12.4460 −0.554941 −0.277470 0.960734i \(-0.589496\pi\)
−0.277470 + 0.960734i \(0.589496\pi\)
\(504\) 12.0443 0.536497
\(505\) 0 0
\(506\) −0.392089 −0.0174305
\(507\) 2.19864 0.0976451
\(508\) 17.2354 0.764697
\(509\) −26.3376 −1.16740 −0.583698 0.811971i \(-0.698395\pi\)
−0.583698 + 0.811971i \(0.698395\pi\)
\(510\) 0 0
\(511\) −19.5421 −0.864490
\(512\) 0.832921 0.0368102
\(513\) 8.23515 0.363591
\(514\) −13.5397 −0.597212
\(515\) 0 0
\(516\) −7.91906 −0.348617
\(517\) 2.36476 0.104002
\(518\) −8.53945 −0.375202
\(519\) −22.4690 −0.986281
\(520\) 0 0
\(521\) −8.41110 −0.368497 −0.184248 0.982880i \(-0.558985\pi\)
−0.184248 + 0.982880i \(0.558985\pi\)
\(522\) 6.28755 0.275198
\(523\) 8.89885 0.389120 0.194560 0.980891i \(-0.437672\pi\)
0.194560 + 0.980891i \(0.437672\pi\)
\(524\) −8.69664 −0.379914
\(525\) 0 0
\(526\) 22.6025 0.985514
\(527\) 5.22766 0.227721
\(528\) 0.0260604 0.00113413
\(529\) −21.3582 −0.928619
\(530\) 0 0
\(531\) 1.04616 0.0453994
\(532\) 44.1769 1.91531
\(533\) −10.4599 −0.453070
\(534\) 0.147613 0.00638785
\(535\) 0 0
\(536\) −13.8521 −0.598318
\(537\) 6.71387 0.289725
\(538\) −27.7066 −1.19451
\(539\) 4.01523 0.172948
\(540\) 0 0
\(541\) −27.0487 −1.16291 −0.581457 0.813577i \(-0.697517\pi\)
−0.581457 + 0.813577i \(0.697517\pi\)
\(542\) −14.9783 −0.643372
\(543\) 26.4167 1.13365
\(544\) −29.7340 −1.27483
\(545\) 0 0
\(546\) −14.4368 −0.617839
\(547\) 20.4371 0.873829 0.436914 0.899503i \(-0.356071\pi\)
0.436914 + 0.899503i \(0.356071\pi\)
\(548\) 9.85632 0.421041
\(549\) −0.983032 −0.0419548
\(550\) 0 0
\(551\) 59.8879 2.55131
\(552\) 3.60315 0.153360
\(553\) 38.0317 1.61727
\(554\) 14.3947 0.611573
\(555\) 0 0
\(556\) −9.63484 −0.408608
\(557\) 33.5070 1.41974 0.709869 0.704333i \(-0.248754\pi\)
0.709869 + 0.704333i \(0.248754\pi\)
\(558\) −0.864597 −0.0366013
\(559\) 24.6495 1.04256
\(560\) 0 0
\(561\) −1.85022 −0.0781164
\(562\) 11.3684 0.479547
\(563\) −1.03505 −0.0436223 −0.0218112 0.999762i \(-0.506943\pi\)
−0.0218112 + 0.999762i \(0.506943\pi\)
\(564\) −8.36834 −0.352371
\(565\) 0 0
\(566\) 22.4560 0.943897
\(567\) −4.28308 −0.179872
\(568\) −30.1027 −1.26308
\(569\) 2.63277 0.110371 0.0551857 0.998476i \(-0.482425\pi\)
0.0551857 + 0.998476i \(0.482425\pi\)
\(570\) 0 0
\(571\) 26.6263 1.11428 0.557138 0.830420i \(-0.311899\pi\)
0.557138 + 0.830420i \(0.311899\pi\)
\(572\) −1.72817 −0.0722584
\(573\) −19.9355 −0.832816
\(574\) 9.93564 0.414705
\(575\) 0 0
\(576\) 4.77040 0.198767
\(577\) 20.4641 0.851933 0.425967 0.904739i \(-0.359934\pi\)
0.425967 + 0.904739i \(0.359934\pi\)
\(578\) 8.92997 0.371438
\(579\) 3.98672 0.165682
\(580\) 0 0
\(581\) −10.1820 −0.422420
\(582\) −0.875204 −0.0362784
\(583\) −1.53485 −0.0635670
\(584\) −12.8304 −0.530928
\(585\) 0 0
\(586\) 23.4289 0.967839
\(587\) 21.2696 0.877888 0.438944 0.898514i \(-0.355353\pi\)
0.438944 + 0.898514i \(0.355353\pi\)
\(588\) −14.2090 −0.585968
\(589\) −8.23515 −0.339324
\(590\) 0 0
\(591\) −23.1920 −0.953990
\(592\) 0.169795 0.00697854
\(593\) −39.3701 −1.61674 −0.808369 0.588676i \(-0.799649\pi\)
−0.808369 + 0.588676i \(0.799649\pi\)
\(594\) 0.306006 0.0125556
\(595\) 0 0
\(596\) 15.8812 0.650519
\(597\) −12.5109 −0.512038
\(598\) −4.31887 −0.176612
\(599\) 28.4292 1.16158 0.580792 0.814052i \(-0.302743\pi\)
0.580792 + 0.814052i \(0.302743\pi\)
\(600\) 0 0
\(601\) 20.6046 0.840480 0.420240 0.907413i \(-0.361946\pi\)
0.420240 + 0.907413i \(0.361946\pi\)
\(602\) −23.4140 −0.954282
\(603\) 4.92592 0.200599
\(604\) 3.69429 0.150318
\(605\) 0 0
\(606\) 15.4802 0.628840
\(607\) −18.8232 −0.764010 −0.382005 0.924160i \(-0.624766\pi\)
−0.382005 + 0.924160i \(0.624766\pi\)
\(608\) 46.8400 1.89961
\(609\) −31.1475 −1.26216
\(610\) 0 0
\(611\) 26.0479 1.05379
\(612\) 6.54751 0.264667
\(613\) −18.0049 −0.727213 −0.363606 0.931553i \(-0.618455\pi\)
−0.363606 + 0.931553i \(0.618455\pi\)
\(614\) −6.77755 −0.273520
\(615\) 0 0
\(616\) 4.26284 0.171755
\(617\) 26.2389 1.05634 0.528169 0.849139i \(-0.322879\pi\)
0.528169 + 0.849139i \(0.322879\pi\)
\(618\) 7.34505 0.295461
\(619\) 30.1624 1.21233 0.606166 0.795339i \(-0.292707\pi\)
0.606166 + 0.795339i \(0.292707\pi\)
\(620\) 0 0
\(621\) −1.28131 −0.0514172
\(622\) 0.0269482 0.00108052
\(623\) −0.731253 −0.0292970
\(624\) 0.287057 0.0114915
\(625\) 0 0
\(626\) −2.11211 −0.0844170
\(627\) 2.91466 0.116400
\(628\) 4.37938 0.174756
\(629\) −12.0550 −0.480665
\(630\) 0 0
\(631\) 30.7023 1.22224 0.611121 0.791538i \(-0.290719\pi\)
0.611121 + 0.791538i \(0.290719\pi\)
\(632\) 24.9699 0.993250
\(633\) 23.1316 0.919400
\(634\) 3.48736 0.138501
\(635\) 0 0
\(636\) 5.43148 0.215372
\(637\) 44.2279 1.75237
\(638\) 2.22534 0.0881022
\(639\) 10.7048 0.423475
\(640\) 0 0
\(641\) 4.11497 0.162531 0.0812657 0.996692i \(-0.474104\pi\)
0.0812657 + 0.996692i \(0.474104\pi\)
\(642\) −3.89633 −0.153776
\(643\) −24.2235 −0.955281 −0.477641 0.878555i \(-0.658508\pi\)
−0.477641 + 0.878555i \(0.658508\pi\)
\(644\) −6.87351 −0.270854
\(645\) 0 0
\(646\) −37.2214 −1.46446
\(647\) 32.4635 1.27627 0.638136 0.769924i \(-0.279706\pi\)
0.638136 + 0.769924i \(0.279706\pi\)
\(648\) −2.81208 −0.110469
\(649\) 0.370266 0.0145342
\(650\) 0 0
\(651\) 4.28308 0.167867
\(652\) 5.11008 0.200126
\(653\) −17.3165 −0.677648 −0.338824 0.940850i \(-0.610029\pi\)
−0.338824 + 0.940850i \(0.610029\pi\)
\(654\) 12.3681 0.483631
\(655\) 0 0
\(656\) −0.197557 −0.00771329
\(657\) 4.56262 0.178005
\(658\) −24.7423 −0.964556
\(659\) 10.3947 0.404922 0.202461 0.979290i \(-0.435106\pi\)
0.202461 + 0.979290i \(0.435106\pi\)
\(660\) 0 0
\(661\) 35.1133 1.36575 0.682874 0.730536i \(-0.260730\pi\)
0.682874 + 0.730536i \(0.260730\pi\)
\(662\) −9.57994 −0.372335
\(663\) −20.3803 −0.791504
\(664\) −6.68503 −0.259430
\(665\) 0 0
\(666\) 1.99377 0.0772568
\(667\) −9.31799 −0.360794
\(668\) 14.1259 0.546546
\(669\) 23.6450 0.914168
\(670\) 0 0
\(671\) −0.347923 −0.0134314
\(672\) −24.3613 −0.939759
\(673\) 16.3883 0.631724 0.315862 0.948805i \(-0.397706\pi\)
0.315862 + 0.948805i \(0.397706\pi\)
\(674\) 8.99646 0.346531
\(675\) 0 0
\(676\) −2.75374 −0.105913
\(677\) −11.3973 −0.438036 −0.219018 0.975721i \(-0.570285\pi\)
−0.219018 + 0.975721i \(0.570285\pi\)
\(678\) 11.6054 0.445703
\(679\) 4.33562 0.166386
\(680\) 0 0
\(681\) −26.4506 −1.01359
\(682\) −0.306006 −0.0117176
\(683\) −33.7148 −1.29006 −0.645031 0.764157i \(-0.723155\pi\)
−0.645031 + 0.764157i \(0.723155\pi\)
\(684\) −10.3143 −0.394377
\(685\) 0 0
\(686\) −16.0891 −0.614286
\(687\) −7.61479 −0.290522
\(688\) 0.465555 0.0177491
\(689\) −16.9065 −0.644085
\(690\) 0 0
\(691\) −26.4611 −1.00663 −0.503313 0.864104i \(-0.667886\pi\)
−0.503313 + 0.864104i \(0.667886\pi\)
\(692\) 28.1418 1.06979
\(693\) −1.51590 −0.0575844
\(694\) 20.5770 0.781091
\(695\) 0 0
\(696\) −20.4501 −0.775158
\(697\) 14.0260 0.531273
\(698\) −22.6394 −0.856914
\(699\) 3.13938 0.118742
\(700\) 0 0
\(701\) −48.7391 −1.84085 −0.920425 0.390919i \(-0.872157\pi\)
−0.920425 + 0.390919i \(0.872157\pi\)
\(702\) 3.37067 0.127218
\(703\) 18.9903 0.716233
\(704\) 1.68838 0.0636334
\(705\) 0 0
\(706\) −12.3913 −0.466352
\(707\) −76.6864 −2.88409
\(708\) −1.31028 −0.0492435
\(709\) 13.1850 0.495172 0.247586 0.968866i \(-0.420363\pi\)
0.247586 + 0.968866i \(0.420363\pi\)
\(710\) 0 0
\(711\) −8.87953 −0.333008
\(712\) −0.480108 −0.0179928
\(713\) 1.28131 0.0479855
\(714\) 19.3587 0.724483
\(715\) 0 0
\(716\) −8.40893 −0.314257
\(717\) 26.0939 0.974493
\(718\) 25.2867 0.943690
\(719\) −12.3742 −0.461481 −0.230740 0.973015i \(-0.574115\pi\)
−0.230740 + 0.973015i \(0.574115\pi\)
\(720\) 0 0
\(721\) −36.3862 −1.35509
\(722\) 42.2077 1.57081
\(723\) −5.22027 −0.194144
\(724\) −33.0862 −1.22964
\(725\) 0 0
\(726\) −9.40226 −0.348951
\(727\) −18.0273 −0.668597 −0.334299 0.942467i \(-0.608499\pi\)
−0.334299 + 0.942467i \(0.608499\pi\)
\(728\) 46.9554 1.74028
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −33.0532 −1.22252
\(732\) 1.23122 0.0455072
\(733\) 16.6357 0.614453 0.307226 0.951636i \(-0.400599\pi\)
0.307226 + 0.951636i \(0.400599\pi\)
\(734\) 18.6849 0.689673
\(735\) 0 0
\(736\) −7.28786 −0.268634
\(737\) 1.74342 0.0642198
\(738\) −2.31974 −0.0853909
\(739\) −3.71551 −0.136677 −0.0683385 0.997662i \(-0.521770\pi\)
−0.0683385 + 0.997662i \(0.521770\pi\)
\(740\) 0 0
\(741\) 32.1051 1.17941
\(742\) 16.0590 0.589546
\(743\) 18.8360 0.691028 0.345514 0.938414i \(-0.387705\pi\)
0.345514 + 0.938414i \(0.387705\pi\)
\(744\) 2.81208 0.103096
\(745\) 0 0
\(746\) −18.7431 −0.686233
\(747\) 2.37726 0.0869793
\(748\) 2.31735 0.0847308
\(749\) 19.3018 0.705272
\(750\) 0 0
\(751\) −12.6253 −0.460703 −0.230351 0.973108i \(-0.573988\pi\)
−0.230351 + 0.973108i \(0.573988\pi\)
\(752\) 0.491967 0.0179402
\(753\) 29.8930 1.08936
\(754\) 24.5123 0.892684
\(755\) 0 0
\(756\) 5.36443 0.195103
\(757\) −52.2392 −1.89866 −0.949332 0.314274i \(-0.898239\pi\)
−0.949332 + 0.314274i \(0.898239\pi\)
\(758\) 30.5805 1.11073
\(759\) −0.453493 −0.0164608
\(760\) 0 0
\(761\) 1.78070 0.0645502 0.0322751 0.999479i \(-0.489725\pi\)
0.0322751 + 0.999479i \(0.489725\pi\)
\(762\) −11.8978 −0.431012
\(763\) −61.2697 −2.21811
\(764\) 24.9686 0.903333
\(765\) 0 0
\(766\) −26.0972 −0.942932
\(767\) 4.07850 0.147266
\(768\) −15.8101 −0.570499
\(769\) 32.5936 1.17536 0.587678 0.809095i \(-0.300042\pi\)
0.587678 + 0.809095i \(0.300042\pi\)
\(770\) 0 0
\(771\) −15.6602 −0.563987
\(772\) −4.99325 −0.179711
\(773\) −23.1130 −0.831317 −0.415659 0.909521i \(-0.636449\pi\)
−0.415659 + 0.909521i \(0.636449\pi\)
\(774\) 5.46663 0.196494
\(775\) 0 0
\(776\) 2.84658 0.102186
\(777\) −9.87680 −0.354328
\(778\) −6.98220 −0.250324
\(779\) −22.0952 −0.791643
\(780\) 0 0
\(781\) 3.78873 0.135572
\(782\) 5.79130 0.207096
\(783\) 7.27223 0.259888
\(784\) 0.835333 0.0298333
\(785\) 0 0
\(786\) 6.00339 0.214134
\(787\) −29.9984 −1.06933 −0.534664 0.845065i \(-0.679562\pi\)
−0.534664 + 0.845065i \(0.679562\pi\)
\(788\) 29.0473 1.03477
\(789\) 26.1422 0.930687
\(790\) 0 0
\(791\) −57.4913 −2.04416
\(792\) −0.995275 −0.0353656
\(793\) −3.83239 −0.136092
\(794\) −29.4820 −1.04628
\(795\) 0 0
\(796\) 15.6696 0.555394
\(797\) 18.4489 0.653493 0.326747 0.945112i \(-0.394048\pi\)
0.326747 + 0.945112i \(0.394048\pi\)
\(798\) −30.4959 −1.07954
\(799\) −34.9284 −1.23568
\(800\) 0 0
\(801\) 0.170731 0.00603247
\(802\) 30.6235 1.08135
\(803\) 1.61484 0.0569866
\(804\) −6.16957 −0.217584
\(805\) 0 0
\(806\) −3.37067 −0.118727
\(807\) −32.0456 −1.12806
\(808\) −50.3489 −1.77127
\(809\) −38.1306 −1.34060 −0.670301 0.742089i \(-0.733835\pi\)
−0.670301 + 0.742089i \(0.733835\pi\)
\(810\) 0 0
\(811\) −3.36292 −0.118088 −0.0590440 0.998255i \(-0.518805\pi\)
−0.0590440 + 0.998255i \(0.518805\pi\)
\(812\) 39.0114 1.36903
\(813\) −17.3240 −0.607579
\(814\) 0.705651 0.0247331
\(815\) 0 0
\(816\) −0.384922 −0.0134750
\(817\) 52.0688 1.82166
\(818\) −4.03785 −0.141180
\(819\) −16.6978 −0.583467
\(820\) 0 0
\(821\) −6.17661 −0.215565 −0.107783 0.994174i \(-0.534375\pi\)
−0.107783 + 0.994174i \(0.534375\pi\)
\(822\) −6.80394 −0.237315
\(823\) −7.45159 −0.259746 −0.129873 0.991531i \(-0.541457\pi\)
−0.129873 + 0.991531i \(0.541457\pi\)
\(824\) −23.8896 −0.832233
\(825\) 0 0
\(826\) −3.87407 −0.134796
\(827\) −0.0604717 −0.00210281 −0.00105140 0.999999i \(-0.500335\pi\)
−0.00105140 + 0.999999i \(0.500335\pi\)
\(828\) 1.60481 0.0557709
\(829\) 13.5457 0.470463 0.235231 0.971939i \(-0.424415\pi\)
0.235231 + 0.971939i \(0.424415\pi\)
\(830\) 0 0
\(831\) 16.6490 0.577549
\(832\) 18.5976 0.644757
\(833\) −59.3065 −2.05485
\(834\) 6.65104 0.230307
\(835\) 0 0
\(836\) −3.65053 −0.126256
\(837\) −1.00000 −0.0345651
\(838\) 9.86036 0.340621
\(839\) −16.1362 −0.557085 −0.278542 0.960424i \(-0.589851\pi\)
−0.278542 + 0.960424i \(0.589851\pi\)
\(840\) 0 0
\(841\) 23.8853 0.823631
\(842\) 5.47796 0.188783
\(843\) 13.1488 0.452869
\(844\) −28.9718 −0.997249
\(845\) 0 0
\(846\) 5.77676 0.198609
\(847\) 46.5773 1.60042
\(848\) −0.319312 −0.0109652
\(849\) 25.9728 0.891385
\(850\) 0 0
\(851\) −2.95471 −0.101286
\(852\) −13.4074 −0.459332
\(853\) 3.88888 0.133153 0.0665763 0.997781i \(-0.478792\pi\)
0.0665763 + 0.997781i \(0.478792\pi\)
\(854\) 3.64030 0.124568
\(855\) 0 0
\(856\) 12.6727 0.433144
\(857\) −30.7605 −1.05076 −0.525379 0.850869i \(-0.676076\pi\)
−0.525379 + 0.850869i \(0.676076\pi\)
\(858\) 1.19298 0.0407276
\(859\) 18.8972 0.644765 0.322382 0.946610i \(-0.395516\pi\)
0.322382 + 0.946610i \(0.395516\pi\)
\(860\) 0 0
\(861\) 11.4916 0.391634
\(862\) −1.73875 −0.0592221
\(863\) 46.3032 1.57618 0.788089 0.615561i \(-0.211071\pi\)
0.788089 + 0.615561i \(0.211071\pi\)
\(864\) 5.68782 0.193503
\(865\) 0 0
\(866\) 32.6746 1.11033
\(867\) 10.3285 0.350774
\(868\) −5.36443 −0.182081
\(869\) −3.14272 −0.106610
\(870\) 0 0
\(871\) 19.2039 0.650699
\(872\) −40.2269 −1.36226
\(873\) −1.01227 −0.0342601
\(874\) −9.12304 −0.308592
\(875\) 0 0
\(876\) −5.71456 −0.193077
\(877\) 14.7762 0.498957 0.249479 0.968380i \(-0.419741\pi\)
0.249479 + 0.968380i \(0.419741\pi\)
\(878\) 12.4411 0.419866
\(879\) 27.0981 0.913995
\(880\) 0 0
\(881\) −2.84895 −0.0959835 −0.0479917 0.998848i \(-0.515282\pi\)
−0.0479917 + 0.998848i \(0.515282\pi\)
\(882\) 9.80862 0.330273
\(883\) 15.8536 0.533516 0.266758 0.963764i \(-0.414048\pi\)
0.266758 + 0.963764i \(0.414048\pi\)
\(884\) 25.5257 0.858523
\(885\) 0 0
\(886\) −31.0205 −1.04215
\(887\) 5.21365 0.175057 0.0875286 0.996162i \(-0.472103\pi\)
0.0875286 + 0.996162i \(0.472103\pi\)
\(888\) −6.48467 −0.217611
\(889\) 58.9399 1.97678
\(890\) 0 0
\(891\) 0.353929 0.0118571
\(892\) −29.6147 −0.991573
\(893\) 55.0228 1.84127
\(894\) −10.9630 −0.366657
\(895\) 0 0
\(896\) 31.0572 1.03755
\(897\) −4.99525 −0.166786
\(898\) −30.6910 −1.02417
\(899\) −7.27223 −0.242542
\(900\) 0 0
\(901\) 22.6703 0.755258
\(902\) −0.821024 −0.0273371
\(903\) −27.0808 −0.901192
\(904\) −37.7463 −1.25542
\(905\) 0 0
\(906\) −2.55021 −0.0847251
\(907\) −13.8569 −0.460111 −0.230055 0.973178i \(-0.573891\pi\)
−0.230055 + 0.973178i \(0.573891\pi\)
\(908\) 33.1286 1.09941
\(909\) 17.9045 0.593856
\(910\) 0 0
\(911\) −5.44928 −0.180543 −0.0902713 0.995917i \(-0.528773\pi\)
−0.0902713 + 0.995917i \(0.528773\pi\)
\(912\) 0.606369 0.0200789
\(913\) 0.841380 0.0278456
\(914\) 29.2875 0.968744
\(915\) 0 0
\(916\) 9.53731 0.315122
\(917\) −29.7399 −0.982097
\(918\) −4.51982 −0.149176
\(919\) −36.4516 −1.20243 −0.601214 0.799088i \(-0.705316\pi\)
−0.601214 + 0.799088i \(0.705316\pi\)
\(920\) 0 0
\(921\) −7.83898 −0.258303
\(922\) −16.6649 −0.548830
\(923\) 41.7331 1.37366
\(924\) 1.89863 0.0624603
\(925\) 0 0
\(926\) 1.71945 0.0565048
\(927\) 8.49535 0.279024
\(928\) 41.3631 1.35781
\(929\) −7.33460 −0.240641 −0.120320 0.992735i \(-0.538392\pi\)
−0.120320 + 0.992735i \(0.538392\pi\)
\(930\) 0 0
\(931\) 93.4256 3.06190
\(932\) −3.93199 −0.128797
\(933\) 0.0311685 0.00102041
\(934\) 2.75178 0.0900411
\(935\) 0 0
\(936\) −10.9630 −0.358337
\(937\) −49.1036 −1.60415 −0.802073 0.597227i \(-0.796269\pi\)
−0.802073 + 0.597227i \(0.796269\pi\)
\(938\) −18.2413 −0.595600
\(939\) −2.44289 −0.0797206
\(940\) 0 0
\(941\) −20.2169 −0.659053 −0.329527 0.944146i \(-0.606889\pi\)
−0.329527 + 0.944146i \(0.606889\pi\)
\(942\) −3.02314 −0.0984993
\(943\) 3.43780 0.111950
\(944\) 0.0770305 0.00250713
\(945\) 0 0
\(946\) 1.93480 0.0629057
\(947\) −30.1596 −0.980055 −0.490028 0.871707i \(-0.663013\pi\)
−0.490028 + 0.871707i \(0.663013\pi\)
\(948\) 11.1214 0.361205
\(949\) 17.7876 0.577409
\(950\) 0 0
\(951\) 4.03351 0.130795
\(952\) −62.9638 −2.04067
\(953\) 14.6953 0.476026 0.238013 0.971262i \(-0.423504\pi\)
0.238013 + 0.971262i \(0.423504\pi\)
\(954\) −3.74942 −0.121392
\(955\) 0 0
\(956\) −32.6818 −1.05701
\(957\) 2.57385 0.0832008
\(958\) 8.02646 0.259323
\(959\) 33.7056 1.08841
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 7.77278 0.250604
\(963\) −4.50652 −0.145221
\(964\) 6.53825 0.210583
\(965\) 0 0
\(966\) 4.74487 0.152664
\(967\) −50.8330 −1.63468 −0.817340 0.576155i \(-0.804552\pi\)
−0.817340 + 0.576155i \(0.804552\pi\)
\(968\) 30.5806 0.982897
\(969\) −43.0506 −1.38298
\(970\) 0 0
\(971\) 36.0990 1.15847 0.579236 0.815160i \(-0.303351\pi\)
0.579236 + 0.815160i \(0.303351\pi\)
\(972\) −1.25247 −0.0401731
\(973\) −32.9482 −1.05627
\(974\) −7.42077 −0.237777
\(975\) 0 0
\(976\) −0.0723824 −0.00231690
\(977\) −8.14233 −0.260496 −0.130248 0.991481i \(-0.541577\pi\)
−0.130248 + 0.991481i \(0.541577\pi\)
\(978\) −3.52755 −0.112799
\(979\) 0.0604265 0.00193124
\(980\) 0 0
\(981\) 14.3051 0.456726
\(982\) −29.9561 −0.955936
\(983\) −31.3377 −0.999517 −0.499759 0.866165i \(-0.666578\pi\)
−0.499759 + 0.866165i \(0.666578\pi\)
\(984\) 7.54490 0.240523
\(985\) 0 0
\(986\) −32.8692 −1.04677
\(987\) −28.6172 −0.910895
\(988\) −40.2107 −1.27927
\(989\) −8.10140 −0.257610
\(990\) 0 0
\(991\) −56.4797 −1.79414 −0.897068 0.441893i \(-0.854307\pi\)
−0.897068 + 0.441893i \(0.854307\pi\)
\(992\) −5.68782 −0.180588
\(993\) −11.0802 −0.351621
\(994\) −39.6412 −1.25734
\(995\) 0 0
\(996\) −2.97745 −0.0943441
\(997\) 47.4373 1.50236 0.751178 0.660100i \(-0.229486\pi\)
0.751178 + 0.660100i \(0.229486\pi\)
\(998\) −9.70903 −0.307334
\(999\) 2.30601 0.0729588
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.a.bb.1.4 yes 6
3.2 odd 2 6975.2.a.ca.1.3 6
5.2 odd 4 2325.2.c.r.1024.9 12
5.3 odd 4 2325.2.c.r.1024.4 12
5.4 even 2 2325.2.a.y.1.3 6
15.14 odd 2 6975.2.a.cc.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2325.2.a.y.1.3 6 5.4 even 2
2325.2.a.bb.1.4 yes 6 1.1 even 1 trivial
2325.2.c.r.1024.4 12 5.3 odd 4
2325.2.c.r.1024.9 12 5.2 odd 4
6975.2.a.ca.1.3 6 3.2 odd 2
6975.2.a.cc.1.4 6 15.14 odd 2