Properties

Label 2325.2.a.bb.1.3
Level $2325$
Weight $2$
Character 2325.1
Self dual yes
Analytic conductor $18.565$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,1,6,7,0,1,2,-3,6,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.75968016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 9x^{3} + 14x^{2} - 6x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.667396\) of defining polynomial
Character \(\chi\) \(=\) 2325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.667396 q^{2} +1.00000 q^{3} -1.55458 q^{4} -0.667396 q^{6} +3.64222 q^{7} +2.37231 q^{8} +1.00000 q^{9} -1.15709 q^{11} -1.55458 q^{12} +5.71167 q^{13} -2.43080 q^{14} +1.52589 q^{16} -1.37855 q^{17} -0.667396 q^{18} +2.28711 q^{19} +3.64222 q^{21} +0.772236 q^{22} +5.17025 q^{23} +2.37231 q^{24} -3.81195 q^{26} +1.00000 q^{27} -5.66213 q^{28} -5.51387 q^{29} -1.00000 q^{31} -5.76300 q^{32} -1.15709 q^{33} +0.920040 q^{34} -1.55458 q^{36} +2.77224 q^{37} -1.52641 q^{38} +5.71167 q^{39} -0.122562 q^{41} -2.43080 q^{42} +1.11738 q^{43} +1.79879 q^{44} -3.45060 q^{46} -8.92527 q^{47} +1.52589 q^{48} +6.26574 q^{49} -1.37855 q^{51} -8.87926 q^{52} +3.42456 q^{53} -0.667396 q^{54} +8.64048 q^{56} +2.28711 q^{57} +3.67993 q^{58} +0.542646 q^{59} +10.4883 q^{61} +0.667396 q^{62} +3.64222 q^{63} +0.794421 q^{64} +0.772236 q^{66} -15.8274 q^{67} +2.14307 q^{68} +5.17025 q^{69} +10.7253 q^{71} +2.37231 q^{72} -8.34049 q^{73} -1.85018 q^{74} -3.55550 q^{76} -4.21437 q^{77} -3.81195 q^{78} +5.83719 q^{79} +1.00000 q^{81} +0.0817974 q^{82} +16.4935 q^{83} -5.66213 q^{84} -0.745734 q^{86} -5.51387 q^{87} -2.74498 q^{88} -8.27438 q^{89} +20.8031 q^{91} -8.03757 q^{92} -1.00000 q^{93} +5.95669 q^{94} -5.76300 q^{96} +9.97701 q^{97} -4.18173 q^{98} -1.15709 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 6 q^{3} + 7 q^{4} + q^{6} + 2 q^{7} - 3 q^{8} + 6 q^{9} + 7 q^{11} + 7 q^{12} + 4 q^{13} + 10 q^{14} + 17 q^{16} + q^{18} + 17 q^{19} + 2 q^{21} + 2 q^{22} - q^{23} - 3 q^{24} + 2 q^{26}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.667396 −0.471920 −0.235960 0.971763i \(-0.575823\pi\)
−0.235960 + 0.971763i \(0.575823\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.55458 −0.777291
\(5\) 0 0
\(6\) −0.667396 −0.272463
\(7\) 3.64222 1.37663 0.688314 0.725413i \(-0.258351\pi\)
0.688314 + 0.725413i \(0.258351\pi\)
\(8\) 2.37231 0.838740
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.15709 −0.348875 −0.174438 0.984668i \(-0.555811\pi\)
−0.174438 + 0.984668i \(0.555811\pi\)
\(12\) −1.55458 −0.448769
\(13\) 5.71167 1.58413 0.792066 0.610435i \(-0.209005\pi\)
0.792066 + 0.610435i \(0.209005\pi\)
\(14\) −2.43080 −0.649659
\(15\) 0 0
\(16\) 1.52589 0.381473
\(17\) −1.37855 −0.334348 −0.167174 0.985927i \(-0.553464\pi\)
−0.167174 + 0.985927i \(0.553464\pi\)
\(18\) −0.667396 −0.157307
\(19\) 2.28711 0.524699 0.262349 0.964973i \(-0.415503\pi\)
0.262349 + 0.964973i \(0.415503\pi\)
\(20\) 0 0
\(21\) 3.64222 0.794797
\(22\) 0.772236 0.164641
\(23\) 5.17025 1.07807 0.539035 0.842283i \(-0.318789\pi\)
0.539035 + 0.842283i \(0.318789\pi\)
\(24\) 2.37231 0.484247
\(25\) 0 0
\(26\) −3.81195 −0.747584
\(27\) 1.00000 0.192450
\(28\) −5.66213 −1.07004
\(29\) −5.51387 −1.02390 −0.511950 0.859015i \(-0.671077\pi\)
−0.511950 + 0.859015i \(0.671077\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) −5.76300 −1.01876
\(33\) −1.15709 −0.201423
\(34\) 0.920040 0.157786
\(35\) 0 0
\(36\) −1.55458 −0.259097
\(37\) 2.77224 0.455753 0.227876 0.973690i \(-0.426822\pi\)
0.227876 + 0.973690i \(0.426822\pi\)
\(38\) −1.52641 −0.247616
\(39\) 5.71167 0.914599
\(40\) 0 0
\(41\) −0.122562 −0.0191410 −0.00957048 0.999954i \(-0.503046\pi\)
−0.00957048 + 0.999954i \(0.503046\pi\)
\(42\) −2.43080 −0.375081
\(43\) 1.11738 0.170399 0.0851993 0.996364i \(-0.472847\pi\)
0.0851993 + 0.996364i \(0.472847\pi\)
\(44\) 1.79879 0.271178
\(45\) 0 0
\(46\) −3.45060 −0.508763
\(47\) −8.92527 −1.30189 −0.650943 0.759127i \(-0.725626\pi\)
−0.650943 + 0.759127i \(0.725626\pi\)
\(48\) 1.52589 0.220244
\(49\) 6.26574 0.895106
\(50\) 0 0
\(51\) −1.37855 −0.193036
\(52\) −8.87926 −1.23133
\(53\) 3.42456 0.470400 0.235200 0.971947i \(-0.424426\pi\)
0.235200 + 0.971947i \(0.424426\pi\)
\(54\) −0.667396 −0.0908211
\(55\) 0 0
\(56\) 8.64048 1.15463
\(57\) 2.28711 0.302935
\(58\) 3.67993 0.483199
\(59\) 0.542646 0.0706465 0.0353232 0.999376i \(-0.488754\pi\)
0.0353232 + 0.999376i \(0.488754\pi\)
\(60\) 0 0
\(61\) 10.4883 1.34289 0.671444 0.741056i \(-0.265675\pi\)
0.671444 + 0.741056i \(0.265675\pi\)
\(62\) 0.667396 0.0847594
\(63\) 3.64222 0.458876
\(64\) 0.794421 0.0993026
\(65\) 0 0
\(66\) 0.772236 0.0950557
\(67\) −15.8274 −1.93363 −0.966815 0.255477i \(-0.917767\pi\)
−0.966815 + 0.255477i \(0.917767\pi\)
\(68\) 2.14307 0.259886
\(69\) 5.17025 0.622424
\(70\) 0 0
\(71\) 10.7253 1.27286 0.636428 0.771336i \(-0.280411\pi\)
0.636428 + 0.771336i \(0.280411\pi\)
\(72\) 2.37231 0.279580
\(73\) −8.34049 −0.976181 −0.488090 0.872793i \(-0.662306\pi\)
−0.488090 + 0.872793i \(0.662306\pi\)
\(74\) −1.85018 −0.215079
\(75\) 0 0
\(76\) −3.55550 −0.407844
\(77\) −4.21437 −0.480272
\(78\) −3.81195 −0.431618
\(79\) 5.83719 0.656735 0.328368 0.944550i \(-0.393502\pi\)
0.328368 + 0.944550i \(0.393502\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0.0817974 0.00903301
\(83\) 16.4935 1.81039 0.905197 0.424993i \(-0.139723\pi\)
0.905197 + 0.424993i \(0.139723\pi\)
\(84\) −5.66213 −0.617789
\(85\) 0 0
\(86\) −0.745734 −0.0804146
\(87\) −5.51387 −0.591149
\(88\) −2.74498 −0.292616
\(89\) −8.27438 −0.877083 −0.438541 0.898711i \(-0.644505\pi\)
−0.438541 + 0.898711i \(0.644505\pi\)
\(90\) 0 0
\(91\) 20.8031 2.18076
\(92\) −8.03757 −0.837975
\(93\) −1.00000 −0.103695
\(94\) 5.95669 0.614386
\(95\) 0 0
\(96\) −5.76300 −0.588184
\(97\) 9.97701 1.01301 0.506506 0.862237i \(-0.330937\pi\)
0.506506 + 0.862237i \(0.330937\pi\)
\(98\) −4.18173 −0.422418
\(99\) −1.15709 −0.116292
\(100\) 0 0
\(101\) −7.18097 −0.714533 −0.357266 0.934003i \(-0.616291\pi\)
−0.357266 + 0.934003i \(0.616291\pi\)
\(102\) 0.920040 0.0910976
\(103\) −1.70411 −0.167911 −0.0839555 0.996470i \(-0.526755\pi\)
−0.0839555 + 0.996470i \(0.526755\pi\)
\(104\) 13.5499 1.32867
\(105\) 0 0
\(106\) −2.28554 −0.221991
\(107\) −18.1570 −1.75530 −0.877652 0.479299i \(-0.840891\pi\)
−0.877652 + 0.479299i \(0.840891\pi\)
\(108\) −1.55458 −0.149590
\(109\) 6.50614 0.623176 0.311588 0.950217i \(-0.399139\pi\)
0.311588 + 0.950217i \(0.399139\pi\)
\(110\) 0 0
\(111\) 2.77224 0.263129
\(112\) 5.55763 0.525147
\(113\) 3.36042 0.316122 0.158061 0.987429i \(-0.449476\pi\)
0.158061 + 0.987429i \(0.449476\pi\)
\(114\) −1.52641 −0.142961
\(115\) 0 0
\(116\) 8.57176 0.795868
\(117\) 5.71167 0.528044
\(118\) −0.362160 −0.0333395
\(119\) −5.02099 −0.460273
\(120\) 0 0
\(121\) −9.66115 −0.878286
\(122\) −6.99984 −0.633736
\(123\) −0.122562 −0.0110510
\(124\) 1.55458 0.139606
\(125\) 0 0
\(126\) −2.43080 −0.216553
\(127\) 10.6138 0.941823 0.470911 0.882181i \(-0.343925\pi\)
0.470911 + 0.882181i \(0.343925\pi\)
\(128\) 10.9958 0.971902
\(129\) 1.11738 0.0983797
\(130\) 0 0
\(131\) 14.5080 1.26757 0.633786 0.773508i \(-0.281500\pi\)
0.633786 + 0.773508i \(0.281500\pi\)
\(132\) 1.79879 0.156565
\(133\) 8.33014 0.722315
\(134\) 10.5632 0.912519
\(135\) 0 0
\(136\) −3.27036 −0.280431
\(137\) 5.31941 0.454468 0.227234 0.973840i \(-0.427032\pi\)
0.227234 + 0.973840i \(0.427032\pi\)
\(138\) −3.45060 −0.293735
\(139\) −8.27443 −0.701828 −0.350914 0.936408i \(-0.614129\pi\)
−0.350914 + 0.936408i \(0.614129\pi\)
\(140\) 0 0
\(141\) −8.92527 −0.751644
\(142\) −7.15801 −0.600687
\(143\) −6.60891 −0.552665
\(144\) 1.52589 0.127158
\(145\) 0 0
\(146\) 5.56641 0.460679
\(147\) 6.26574 0.516789
\(148\) −4.30967 −0.354253
\(149\) 15.9731 1.30857 0.654284 0.756249i \(-0.272970\pi\)
0.654284 + 0.756249i \(0.272970\pi\)
\(150\) 0 0
\(151\) 7.39770 0.602016 0.301008 0.953622i \(-0.402677\pi\)
0.301008 + 0.953622i \(0.402677\pi\)
\(152\) 5.42574 0.440086
\(153\) −1.37855 −0.111449
\(154\) 2.81265 0.226650
\(155\) 0 0
\(156\) −8.87926 −0.710910
\(157\) 15.7243 1.25493 0.627467 0.778643i \(-0.284092\pi\)
0.627467 + 0.778643i \(0.284092\pi\)
\(158\) −3.89572 −0.309927
\(159\) 3.42456 0.271585
\(160\) 0 0
\(161\) 18.8312 1.48410
\(162\) −0.667396 −0.0524356
\(163\) −9.68816 −0.758836 −0.379418 0.925225i \(-0.623876\pi\)
−0.379418 + 0.925225i \(0.623876\pi\)
\(164\) 0.190533 0.0148781
\(165\) 0 0
\(166\) −11.0077 −0.854361
\(167\) 19.1075 1.47858 0.739292 0.673385i \(-0.235160\pi\)
0.739292 + 0.673385i \(0.235160\pi\)
\(168\) 8.64048 0.666628
\(169\) 19.6232 1.50948
\(170\) 0 0
\(171\) 2.28711 0.174900
\(172\) −1.73706 −0.132449
\(173\) −21.1286 −1.60638 −0.803189 0.595724i \(-0.796865\pi\)
−0.803189 + 0.595724i \(0.796865\pi\)
\(174\) 3.67993 0.278975
\(175\) 0 0
\(176\) −1.76559 −0.133087
\(177\) 0.542646 0.0407878
\(178\) 5.52229 0.413913
\(179\) 13.0689 0.976816 0.488408 0.872615i \(-0.337578\pi\)
0.488408 + 0.872615i \(0.337578\pi\)
\(180\) 0 0
\(181\) 9.98243 0.741988 0.370994 0.928635i \(-0.379017\pi\)
0.370994 + 0.928635i \(0.379017\pi\)
\(182\) −13.8839 −1.02915
\(183\) 10.4883 0.775316
\(184\) 12.2654 0.904221
\(185\) 0 0
\(186\) 0.667396 0.0489358
\(187\) 1.59511 0.116646
\(188\) 13.8751 1.01194
\(189\) 3.64222 0.264932
\(190\) 0 0
\(191\) −8.69024 −0.628804 −0.314402 0.949290i \(-0.601804\pi\)
−0.314402 + 0.949290i \(0.601804\pi\)
\(192\) 0.794421 0.0573324
\(193\) 18.4643 1.32909 0.664544 0.747249i \(-0.268626\pi\)
0.664544 + 0.747249i \(0.268626\pi\)
\(194\) −6.65862 −0.478061
\(195\) 0 0
\(196\) −9.74061 −0.695758
\(197\) 1.73458 0.123584 0.0617919 0.998089i \(-0.480318\pi\)
0.0617919 + 0.998089i \(0.480318\pi\)
\(198\) 0.772236 0.0548804
\(199\) 13.7835 0.977084 0.488542 0.872540i \(-0.337529\pi\)
0.488542 + 0.872540i \(0.337529\pi\)
\(200\) 0 0
\(201\) −15.8274 −1.11638
\(202\) 4.79255 0.337202
\(203\) −20.0827 −1.40953
\(204\) 2.14307 0.150045
\(205\) 0 0
\(206\) 1.13732 0.0792406
\(207\) 5.17025 0.359357
\(208\) 8.71539 0.604304
\(209\) −2.64639 −0.183054
\(210\) 0 0
\(211\) −8.73784 −0.601538 −0.300769 0.953697i \(-0.597243\pi\)
−0.300769 + 0.953697i \(0.597243\pi\)
\(212\) −5.32377 −0.365638
\(213\) 10.7253 0.734884
\(214\) 12.1179 0.828363
\(215\) 0 0
\(216\) 2.37231 0.161416
\(217\) −3.64222 −0.247250
\(218\) −4.34217 −0.294089
\(219\) −8.34049 −0.563598
\(220\) 0 0
\(221\) −7.87384 −0.529652
\(222\) −1.85018 −0.124176
\(223\) −10.4409 −0.699176 −0.349588 0.936903i \(-0.613679\pi\)
−0.349588 + 0.936903i \(0.613679\pi\)
\(224\) −20.9901 −1.40246
\(225\) 0 0
\(226\) −2.24273 −0.149184
\(227\) −25.1149 −1.66693 −0.833466 0.552571i \(-0.813647\pi\)
−0.833466 + 0.552571i \(0.813647\pi\)
\(228\) −3.55550 −0.235469
\(229\) −3.58524 −0.236919 −0.118460 0.992959i \(-0.537796\pi\)
−0.118460 + 0.992959i \(0.537796\pi\)
\(230\) 0 0
\(231\) −4.21437 −0.277285
\(232\) −13.0806 −0.858785
\(233\) −18.2989 −1.19880 −0.599401 0.800449i \(-0.704594\pi\)
−0.599401 + 0.800449i \(0.704594\pi\)
\(234\) −3.81195 −0.249195
\(235\) 0 0
\(236\) −0.843588 −0.0549129
\(237\) 5.83719 0.379166
\(238\) 3.35099 0.217212
\(239\) −9.65731 −0.624680 −0.312340 0.949970i \(-0.601113\pi\)
−0.312340 + 0.949970i \(0.601113\pi\)
\(240\) 0 0
\(241\) −5.31631 −0.342454 −0.171227 0.985232i \(-0.554773\pi\)
−0.171227 + 0.985232i \(0.554773\pi\)
\(242\) 6.44781 0.414481
\(243\) 1.00000 0.0641500
\(244\) −16.3049 −1.04381
\(245\) 0 0
\(246\) 0.0817974 0.00521521
\(247\) 13.0632 0.831192
\(248\) −2.37231 −0.150642
\(249\) 16.4935 1.04523
\(250\) 0 0
\(251\) −9.20850 −0.581235 −0.290618 0.956839i \(-0.593861\pi\)
−0.290618 + 0.956839i \(0.593861\pi\)
\(252\) −5.66213 −0.356680
\(253\) −5.98243 −0.376112
\(254\) −7.08361 −0.444465
\(255\) 0 0
\(256\) −8.92740 −0.557963
\(257\) 7.04525 0.439470 0.219735 0.975560i \(-0.429481\pi\)
0.219735 + 0.975560i \(0.429481\pi\)
\(258\) −0.745734 −0.0464274
\(259\) 10.0971 0.627402
\(260\) 0 0
\(261\) −5.51387 −0.341300
\(262\) −9.68260 −0.598193
\(263\) −4.35053 −0.268265 −0.134133 0.990963i \(-0.542825\pi\)
−0.134133 + 0.990963i \(0.542825\pi\)
\(264\) −2.74498 −0.168942
\(265\) 0 0
\(266\) −5.55951 −0.340875
\(267\) −8.27438 −0.506384
\(268\) 24.6051 1.50299
\(269\) −20.1710 −1.22985 −0.614925 0.788586i \(-0.710814\pi\)
−0.614925 + 0.788586i \(0.710814\pi\)
\(270\) 0 0
\(271\) 13.0303 0.791533 0.395767 0.918351i \(-0.370479\pi\)
0.395767 + 0.918351i \(0.370479\pi\)
\(272\) −2.10352 −0.127545
\(273\) 20.8031 1.25906
\(274\) −3.55015 −0.214473
\(275\) 0 0
\(276\) −8.03757 −0.483805
\(277\) −5.93472 −0.356583 −0.178292 0.983978i \(-0.557057\pi\)
−0.178292 + 0.983978i \(0.557057\pi\)
\(278\) 5.52232 0.331207
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) −2.56333 −0.152915 −0.0764577 0.997073i \(-0.524361\pi\)
−0.0764577 + 0.997073i \(0.524361\pi\)
\(282\) 5.95669 0.354716
\(283\) 22.5046 1.33776 0.668879 0.743371i \(-0.266774\pi\)
0.668879 + 0.743371i \(0.266774\pi\)
\(284\) −16.6733 −0.989380
\(285\) 0 0
\(286\) 4.41076 0.260814
\(287\) −0.446397 −0.0263500
\(288\) −5.76300 −0.339588
\(289\) −15.0996 −0.888211
\(290\) 0 0
\(291\) 9.97701 0.584863
\(292\) 12.9660 0.758777
\(293\) −9.86771 −0.576478 −0.288239 0.957559i \(-0.593070\pi\)
−0.288239 + 0.957559i \(0.593070\pi\)
\(294\) −4.18173 −0.243883
\(295\) 0 0
\(296\) 6.57662 0.382258
\(297\) −1.15709 −0.0671411
\(298\) −10.6604 −0.617540
\(299\) 29.5307 1.70781
\(300\) 0 0
\(301\) 4.06973 0.234576
\(302\) −4.93719 −0.284104
\(303\) −7.18097 −0.412536
\(304\) 3.48988 0.200158
\(305\) 0 0
\(306\) 0.920040 0.0525952
\(307\) 13.4887 0.769843 0.384922 0.922949i \(-0.374229\pi\)
0.384922 + 0.922949i \(0.374229\pi\)
\(308\) 6.55158 0.373311
\(309\) −1.70411 −0.0969435
\(310\) 0 0
\(311\) 8.33830 0.472822 0.236411 0.971653i \(-0.424029\pi\)
0.236411 + 0.971653i \(0.424029\pi\)
\(312\) 13.5499 0.767111
\(313\) 7.03489 0.397636 0.198818 0.980036i \(-0.436290\pi\)
0.198818 + 0.980036i \(0.436290\pi\)
\(314\) −10.4943 −0.592229
\(315\) 0 0
\(316\) −9.07439 −0.510474
\(317\) 28.9660 1.62689 0.813446 0.581640i \(-0.197589\pi\)
0.813446 + 0.581640i \(0.197589\pi\)
\(318\) −2.28554 −0.128167
\(319\) 6.38004 0.357213
\(320\) 0 0
\(321\) −18.1570 −1.01343
\(322\) −12.5678 −0.700378
\(323\) −3.15290 −0.175432
\(324\) −1.55458 −0.0863657
\(325\) 0 0
\(326\) 6.46584 0.358110
\(327\) 6.50614 0.359791
\(328\) −0.290756 −0.0160543
\(329\) −32.5078 −1.79221
\(330\) 0 0
\(331\) 4.97223 0.273299 0.136649 0.990619i \(-0.456367\pi\)
0.136649 + 0.990619i \(0.456367\pi\)
\(332\) −25.6405 −1.40720
\(333\) 2.77224 0.151918
\(334\) −12.7523 −0.697773
\(335\) 0 0
\(336\) 5.55763 0.303194
\(337\) 3.96964 0.216240 0.108120 0.994138i \(-0.465517\pi\)
0.108120 + 0.994138i \(0.465517\pi\)
\(338\) −13.0964 −0.712352
\(339\) 3.36042 0.182513
\(340\) 0 0
\(341\) 1.15709 0.0626599
\(342\) −1.52641 −0.0825386
\(343\) −2.67434 −0.144401
\(344\) 2.65077 0.142920
\(345\) 0 0
\(346\) 14.1011 0.758082
\(347\) −32.8011 −1.76085 −0.880427 0.474182i \(-0.842744\pi\)
−0.880427 + 0.474182i \(0.842744\pi\)
\(348\) 8.57176 0.459495
\(349\) 36.2630 1.94111 0.970557 0.240872i \(-0.0774332\pi\)
0.970557 + 0.240872i \(0.0774332\pi\)
\(350\) 0 0
\(351\) 5.71167 0.304866
\(352\) 6.66830 0.355422
\(353\) −30.9661 −1.64816 −0.824080 0.566473i \(-0.808307\pi\)
−0.824080 + 0.566473i \(0.808307\pi\)
\(354\) −0.362160 −0.0192486
\(355\) 0 0
\(356\) 12.8632 0.681749
\(357\) −5.02099 −0.265739
\(358\) −8.72213 −0.460979
\(359\) −11.6777 −0.616324 −0.308162 0.951334i \(-0.599714\pi\)
−0.308162 + 0.951334i \(0.599714\pi\)
\(360\) 0 0
\(361\) −13.7691 −0.724691
\(362\) −6.66223 −0.350159
\(363\) −9.66115 −0.507079
\(364\) −32.3402 −1.69509
\(365\) 0 0
\(366\) −6.99984 −0.365887
\(367\) 2.52502 0.131805 0.0659026 0.997826i \(-0.479007\pi\)
0.0659026 + 0.997826i \(0.479007\pi\)
\(368\) 7.88924 0.411255
\(369\) −0.122562 −0.00638032
\(370\) 0 0
\(371\) 12.4730 0.647566
\(372\) 1.55458 0.0806014
\(373\) 15.0961 0.781646 0.390823 0.920466i \(-0.372191\pi\)
0.390823 + 0.920466i \(0.372191\pi\)
\(374\) −1.06457 −0.0550475
\(375\) 0 0
\(376\) −21.1736 −1.09194
\(377\) −31.4934 −1.62199
\(378\) −2.43080 −0.125027
\(379\) −19.1633 −0.984354 −0.492177 0.870495i \(-0.663799\pi\)
−0.492177 + 0.870495i \(0.663799\pi\)
\(380\) 0 0
\(381\) 10.6138 0.543761
\(382\) 5.79983 0.296745
\(383\) −2.27917 −0.116460 −0.0582301 0.998303i \(-0.518546\pi\)
−0.0582301 + 0.998303i \(0.518546\pi\)
\(384\) 10.9958 0.561128
\(385\) 0 0
\(386\) −12.3230 −0.627223
\(387\) 1.11738 0.0567995
\(388\) −15.5101 −0.787405
\(389\) −14.5865 −0.739563 −0.369782 0.929119i \(-0.620568\pi\)
−0.369782 + 0.929119i \(0.620568\pi\)
\(390\) 0 0
\(391\) −7.12745 −0.360451
\(392\) 14.8643 0.750761
\(393\) 14.5080 0.731833
\(394\) −1.15765 −0.0583217
\(395\) 0 0
\(396\) 1.79879 0.0903926
\(397\) 33.0931 1.66089 0.830447 0.557098i \(-0.188085\pi\)
0.830447 + 0.557098i \(0.188085\pi\)
\(398\) −9.19903 −0.461106
\(399\) 8.33014 0.417029
\(400\) 0 0
\(401\) 10.6123 0.529953 0.264977 0.964255i \(-0.414636\pi\)
0.264977 + 0.964255i \(0.414636\pi\)
\(402\) 10.5632 0.526843
\(403\) −5.71167 −0.284519
\(404\) 11.1634 0.555400
\(405\) 0 0
\(406\) 13.4031 0.665185
\(407\) −3.20772 −0.159001
\(408\) −3.27036 −0.161907
\(409\) −28.1971 −1.39426 −0.697128 0.716947i \(-0.745539\pi\)
−0.697128 + 0.716947i \(0.745539\pi\)
\(410\) 0 0
\(411\) 5.31941 0.262387
\(412\) 2.64918 0.130516
\(413\) 1.97643 0.0972540
\(414\) −3.45060 −0.169588
\(415\) 0 0
\(416\) −32.9164 −1.61386
\(417\) −8.27443 −0.405201
\(418\) 1.76619 0.0863871
\(419\) 30.2128 1.47599 0.737996 0.674805i \(-0.235772\pi\)
0.737996 + 0.674805i \(0.235772\pi\)
\(420\) 0 0
\(421\) −18.4246 −0.897959 −0.448980 0.893542i \(-0.648212\pi\)
−0.448980 + 0.893542i \(0.648212\pi\)
\(422\) 5.83160 0.283878
\(423\) −8.92527 −0.433962
\(424\) 8.12414 0.394543
\(425\) 0 0
\(426\) −7.15801 −0.346807
\(427\) 38.2006 1.84866
\(428\) 28.2266 1.36438
\(429\) −6.60891 −0.319081
\(430\) 0 0
\(431\) −13.6428 −0.657152 −0.328576 0.944478i \(-0.606569\pi\)
−0.328576 + 0.944478i \(0.606569\pi\)
\(432\) 1.52589 0.0734145
\(433\) −33.6141 −1.61539 −0.807696 0.589599i \(-0.799286\pi\)
−0.807696 + 0.589599i \(0.799286\pi\)
\(434\) 2.43080 0.116682
\(435\) 0 0
\(436\) −10.1143 −0.484389
\(437\) 11.8249 0.565662
\(438\) 5.56641 0.265973
\(439\) −21.9603 −1.04811 −0.524054 0.851685i \(-0.675581\pi\)
−0.524054 + 0.851685i \(0.675581\pi\)
\(440\) 0 0
\(441\) 6.26574 0.298369
\(442\) 5.25497 0.249953
\(443\) −5.44404 −0.258654 −0.129327 0.991602i \(-0.541282\pi\)
−0.129327 + 0.991602i \(0.541282\pi\)
\(444\) −4.30967 −0.204528
\(445\) 0 0
\(446\) 6.96824 0.329956
\(447\) 15.9731 0.755502
\(448\) 2.89345 0.136703
\(449\) 36.8483 1.73898 0.869489 0.493952i \(-0.164448\pi\)
0.869489 + 0.493952i \(0.164448\pi\)
\(450\) 0 0
\(451\) 0.141815 0.00667781
\(452\) −5.22406 −0.245719
\(453\) 7.39770 0.347574
\(454\) 16.7616 0.786659
\(455\) 0 0
\(456\) 5.42574 0.254084
\(457\) −5.03603 −0.235575 −0.117788 0.993039i \(-0.537580\pi\)
−0.117788 + 0.993039i \(0.537580\pi\)
\(458\) 2.39277 0.111807
\(459\) −1.37855 −0.0643453
\(460\) 0 0
\(461\) −22.5649 −1.05095 −0.525476 0.850808i \(-0.676113\pi\)
−0.525476 + 0.850808i \(0.676113\pi\)
\(462\) 2.81265 0.130856
\(463\) 7.92517 0.368314 0.184157 0.982897i \(-0.441045\pi\)
0.184157 + 0.982897i \(0.441045\pi\)
\(464\) −8.41357 −0.390590
\(465\) 0 0
\(466\) 12.2126 0.565739
\(467\) −10.7488 −0.497397 −0.248698 0.968581i \(-0.580003\pi\)
−0.248698 + 0.968581i \(0.580003\pi\)
\(468\) −8.87926 −0.410444
\(469\) −57.6470 −2.66189
\(470\) 0 0
\(471\) 15.7243 0.724536
\(472\) 1.28733 0.0592540
\(473\) −1.29291 −0.0594479
\(474\) −3.89572 −0.178936
\(475\) 0 0
\(476\) 7.80554 0.357766
\(477\) 3.42456 0.156800
\(478\) 6.44525 0.294799
\(479\) −31.1215 −1.42198 −0.710989 0.703203i \(-0.751752\pi\)
−0.710989 + 0.703203i \(0.751752\pi\)
\(480\) 0 0
\(481\) 15.8341 0.721973
\(482\) 3.54809 0.161611
\(483\) 18.8312 0.856847
\(484\) 15.0190 0.682684
\(485\) 0 0
\(486\) −0.667396 −0.0302737
\(487\) 22.1648 1.00438 0.502192 0.864756i \(-0.332527\pi\)
0.502192 + 0.864756i \(0.332527\pi\)
\(488\) 24.8815 1.12633
\(489\) −9.68816 −0.438114
\(490\) 0 0
\(491\) 38.3744 1.73181 0.865905 0.500208i \(-0.166743\pi\)
0.865905 + 0.500208i \(0.166743\pi\)
\(492\) 0.190533 0.00858988
\(493\) 7.60116 0.342339
\(494\) −8.71834 −0.392256
\(495\) 0 0
\(496\) −1.52589 −0.0685146
\(497\) 39.0638 1.75225
\(498\) −11.0077 −0.493266
\(499\) −3.14013 −0.140572 −0.0702858 0.997527i \(-0.522391\pi\)
−0.0702858 + 0.997527i \(0.522391\pi\)
\(500\) 0 0
\(501\) 19.1075 0.853660
\(502\) 6.14572 0.274297
\(503\) 26.4210 1.17805 0.589027 0.808114i \(-0.299511\pi\)
0.589027 + 0.808114i \(0.299511\pi\)
\(504\) 8.64048 0.384878
\(505\) 0 0
\(506\) 3.99265 0.177495
\(507\) 19.6232 0.871496
\(508\) −16.5000 −0.732070
\(509\) −27.5147 −1.21957 −0.609785 0.792567i \(-0.708744\pi\)
−0.609785 + 0.792567i \(0.708744\pi\)
\(510\) 0 0
\(511\) −30.3779 −1.34384
\(512\) −16.0335 −0.708588
\(513\) 2.28711 0.100978
\(514\) −4.70197 −0.207395
\(515\) 0 0
\(516\) −1.73706 −0.0764697
\(517\) 10.3273 0.454196
\(518\) −6.73875 −0.296084
\(519\) −21.1286 −0.927443
\(520\) 0 0
\(521\) 30.2824 1.32670 0.663349 0.748310i \(-0.269135\pi\)
0.663349 + 0.748310i \(0.269135\pi\)
\(522\) 3.67993 0.161066
\(523\) −42.8200 −1.87239 −0.936193 0.351486i \(-0.885676\pi\)
−0.936193 + 0.351486i \(0.885676\pi\)
\(524\) −22.5539 −0.985273
\(525\) 0 0
\(526\) 2.90353 0.126600
\(527\) 1.37855 0.0600507
\(528\) −1.76559 −0.0768376
\(529\) 3.73144 0.162236
\(530\) 0 0
\(531\) 0.542646 0.0235488
\(532\) −12.9499 −0.561449
\(533\) −0.700034 −0.0303218
\(534\) 5.52229 0.238973
\(535\) 0 0
\(536\) −37.5477 −1.62181
\(537\) 13.0689 0.563965
\(538\) 13.4621 0.580391
\(539\) −7.25001 −0.312280
\(540\) 0 0
\(541\) −10.9585 −0.471142 −0.235571 0.971857i \(-0.575696\pi\)
−0.235571 + 0.971857i \(0.575696\pi\)
\(542\) −8.69636 −0.373541
\(543\) 9.98243 0.428387
\(544\) 7.94460 0.340622
\(545\) 0 0
\(546\) −13.8839 −0.594177
\(547\) 11.8536 0.506822 0.253411 0.967359i \(-0.418448\pi\)
0.253411 + 0.967359i \(0.418448\pi\)
\(548\) −8.26947 −0.353254
\(549\) 10.4883 0.447629
\(550\) 0 0
\(551\) −12.6108 −0.537239
\(552\) 12.2654 0.522052
\(553\) 21.2603 0.904080
\(554\) 3.96081 0.168279
\(555\) 0 0
\(556\) 12.8633 0.545525
\(557\) −31.2361 −1.32351 −0.661757 0.749718i \(-0.730189\pi\)
−0.661757 + 0.749718i \(0.730189\pi\)
\(558\) 0.667396 0.0282531
\(559\) 6.38210 0.269934
\(560\) 0 0
\(561\) 1.59511 0.0673455
\(562\) 1.71075 0.0721638
\(563\) −16.1583 −0.680990 −0.340495 0.940246i \(-0.610595\pi\)
−0.340495 + 0.940246i \(0.610595\pi\)
\(564\) 13.8751 0.584246
\(565\) 0 0
\(566\) −15.0195 −0.631315
\(567\) 3.64222 0.152959
\(568\) 25.4437 1.06760
\(569\) −8.39847 −0.352082 −0.176041 0.984383i \(-0.556329\pi\)
−0.176041 + 0.984383i \(0.556329\pi\)
\(570\) 0 0
\(571\) −5.39179 −0.225640 −0.112820 0.993615i \(-0.535988\pi\)
−0.112820 + 0.993615i \(0.535988\pi\)
\(572\) 10.2741 0.429582
\(573\) −8.69024 −0.363040
\(574\) 0.297924 0.0124351
\(575\) 0 0
\(576\) 0.794421 0.0331009
\(577\) −14.7206 −0.612828 −0.306414 0.951898i \(-0.599129\pi\)
−0.306414 + 0.951898i \(0.599129\pi\)
\(578\) 10.0774 0.419165
\(579\) 18.4643 0.767349
\(580\) 0 0
\(581\) 60.0728 2.49224
\(582\) −6.65862 −0.276008
\(583\) −3.96252 −0.164111
\(584\) −19.7863 −0.818761
\(585\) 0 0
\(586\) 6.58567 0.272052
\(587\) −41.7243 −1.72215 −0.861073 0.508481i \(-0.830207\pi\)
−0.861073 + 0.508481i \(0.830207\pi\)
\(588\) −9.74061 −0.401696
\(589\) −2.28711 −0.0942387
\(590\) 0 0
\(591\) 1.73458 0.0713511
\(592\) 4.23013 0.173857
\(593\) −40.4139 −1.65960 −0.829801 0.558059i \(-0.811546\pi\)
−0.829801 + 0.558059i \(0.811546\pi\)
\(594\) 0.772236 0.0316852
\(595\) 0 0
\(596\) −24.8315 −1.01714
\(597\) 13.7835 0.564120
\(598\) −19.7087 −0.805949
\(599\) 38.8888 1.58895 0.794477 0.607294i \(-0.207745\pi\)
0.794477 + 0.607294i \(0.207745\pi\)
\(600\) 0 0
\(601\) 13.9675 0.569747 0.284873 0.958565i \(-0.408048\pi\)
0.284873 + 0.958565i \(0.408048\pi\)
\(602\) −2.71612 −0.110701
\(603\) −15.8274 −0.644543
\(604\) −11.5003 −0.467942
\(605\) 0 0
\(606\) 4.79255 0.194684
\(607\) −40.8060 −1.65626 −0.828132 0.560534i \(-0.810596\pi\)
−0.828132 + 0.560534i \(0.810596\pi\)
\(608\) −13.1806 −0.534544
\(609\) −20.0827 −0.813792
\(610\) 0 0
\(611\) −50.9782 −2.06236
\(612\) 2.14307 0.0866286
\(613\) −26.4962 −1.07017 −0.535086 0.844798i \(-0.679721\pi\)
−0.535086 + 0.844798i \(0.679721\pi\)
\(614\) −9.00233 −0.363304
\(615\) 0 0
\(616\) −9.99780 −0.402823
\(617\) 28.7271 1.15651 0.578255 0.815856i \(-0.303734\pi\)
0.578255 + 0.815856i \(0.303734\pi\)
\(618\) 1.13732 0.0457496
\(619\) −44.0519 −1.77060 −0.885299 0.465023i \(-0.846046\pi\)
−0.885299 + 0.465023i \(0.846046\pi\)
\(620\) 0 0
\(621\) 5.17025 0.207475
\(622\) −5.56495 −0.223134
\(623\) −30.1371 −1.20742
\(624\) 8.71539 0.348895
\(625\) 0 0
\(626\) −4.69506 −0.187652
\(627\) −2.64639 −0.105687
\(628\) −24.4447 −0.975449
\(629\) −3.82167 −0.152380
\(630\) 0 0
\(631\) −0.777435 −0.0309492 −0.0154746 0.999880i \(-0.504926\pi\)
−0.0154746 + 0.999880i \(0.504926\pi\)
\(632\) 13.8476 0.550830
\(633\) −8.73784 −0.347298
\(634\) −19.3318 −0.767764
\(635\) 0 0
\(636\) −5.32377 −0.211101
\(637\) 35.7878 1.41797
\(638\) −4.25801 −0.168576
\(639\) 10.7253 0.424286
\(640\) 0 0
\(641\) 12.6585 0.499981 0.249991 0.968248i \(-0.419572\pi\)
0.249991 + 0.968248i \(0.419572\pi\)
\(642\) 12.1179 0.478256
\(643\) −46.7414 −1.84330 −0.921651 0.388021i \(-0.873159\pi\)
−0.921651 + 0.388021i \(0.873159\pi\)
\(644\) −29.2746 −1.15358
\(645\) 0 0
\(646\) 2.10423 0.0827899
\(647\) −19.0171 −0.747639 −0.373820 0.927501i \(-0.621952\pi\)
−0.373820 + 0.927501i \(0.621952\pi\)
\(648\) 2.37231 0.0931933
\(649\) −0.627890 −0.0246468
\(650\) 0 0
\(651\) −3.64222 −0.142750
\(652\) 15.0611 0.589836
\(653\) 23.6344 0.924885 0.462442 0.886649i \(-0.346973\pi\)
0.462442 + 0.886649i \(0.346973\pi\)
\(654\) −4.34217 −0.169792
\(655\) 0 0
\(656\) −0.187016 −0.00730176
\(657\) −8.34049 −0.325394
\(658\) 21.6956 0.845781
\(659\) 0.736021 0.0286713 0.0143356 0.999897i \(-0.495437\pi\)
0.0143356 + 0.999897i \(0.495437\pi\)
\(660\) 0 0
\(661\) 23.1277 0.899561 0.449781 0.893139i \(-0.351502\pi\)
0.449781 + 0.893139i \(0.351502\pi\)
\(662\) −3.31845 −0.128975
\(663\) −7.87384 −0.305794
\(664\) 39.1277 1.51845
\(665\) 0 0
\(666\) −1.85018 −0.0716930
\(667\) −28.5081 −1.10384
\(668\) −29.7042 −1.14929
\(669\) −10.4409 −0.403670
\(670\) 0 0
\(671\) −12.1359 −0.468500
\(672\) −20.9901 −0.809711
\(673\) −32.9126 −1.26869 −0.634344 0.773051i \(-0.718730\pi\)
−0.634344 + 0.773051i \(0.718730\pi\)
\(674\) −2.64932 −0.102048
\(675\) 0 0
\(676\) −30.5059 −1.17330
\(677\) 4.83090 0.185667 0.0928333 0.995682i \(-0.470408\pi\)
0.0928333 + 0.995682i \(0.470408\pi\)
\(678\) −2.24273 −0.0861317
\(679\) 36.3384 1.39454
\(680\) 0 0
\(681\) −25.1149 −0.962403
\(682\) −0.772236 −0.0295705
\(683\) −36.8203 −1.40889 −0.704444 0.709759i \(-0.748804\pi\)
−0.704444 + 0.709759i \(0.748804\pi\)
\(684\) −3.55550 −0.135948
\(685\) 0 0
\(686\) 1.78484 0.0681456
\(687\) −3.58524 −0.136785
\(688\) 1.70500 0.0650025
\(689\) 19.5600 0.745176
\(690\) 0 0
\(691\) 25.2787 0.961646 0.480823 0.876818i \(-0.340338\pi\)
0.480823 + 0.876818i \(0.340338\pi\)
\(692\) 32.8462 1.24862
\(693\) −4.21437 −0.160091
\(694\) 21.8913 0.830983
\(695\) 0 0
\(696\) −13.0806 −0.495820
\(697\) 0.168958 0.00639975
\(698\) −24.2018 −0.916051
\(699\) −18.2989 −0.692128
\(700\) 0 0
\(701\) 50.8414 1.92025 0.960127 0.279565i \(-0.0901901\pi\)
0.960127 + 0.279565i \(0.0901901\pi\)
\(702\) −3.81195 −0.143873
\(703\) 6.34041 0.239133
\(704\) −0.919215 −0.0346442
\(705\) 0 0
\(706\) 20.6667 0.777800
\(707\) −26.1546 −0.983646
\(708\) −0.843588 −0.0317040
\(709\) −37.1976 −1.39698 −0.698492 0.715618i \(-0.746145\pi\)
−0.698492 + 0.715618i \(0.746145\pi\)
\(710\) 0 0
\(711\) 5.83719 0.218912
\(712\) −19.6294 −0.735644
\(713\) −5.17025 −0.193627
\(714\) 3.35099 0.125407
\(715\) 0 0
\(716\) −20.3167 −0.759270
\(717\) −9.65731 −0.360659
\(718\) 7.79364 0.290856
\(719\) 35.3863 1.31969 0.659843 0.751403i \(-0.270623\pi\)
0.659843 + 0.751403i \(0.270623\pi\)
\(720\) 0 0
\(721\) −6.20674 −0.231151
\(722\) 9.18946 0.341996
\(723\) −5.31631 −0.197716
\(724\) −15.5185 −0.576741
\(725\) 0 0
\(726\) 6.44781 0.239301
\(727\) −40.7826 −1.51254 −0.756272 0.654257i \(-0.772981\pi\)
−0.756272 + 0.654257i \(0.772981\pi\)
\(728\) 49.3516 1.82909
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −1.54036 −0.0569724
\(732\) −16.3049 −0.602647
\(733\) 26.8011 0.989922 0.494961 0.868915i \(-0.335182\pi\)
0.494961 + 0.868915i \(0.335182\pi\)
\(734\) −1.68519 −0.0622015
\(735\) 0 0
\(736\) −29.7961 −1.09830
\(737\) 18.3138 0.674596
\(738\) 0.0817974 0.00301100
\(739\) −8.28484 −0.304763 −0.152381 0.988322i \(-0.548694\pi\)
−0.152381 + 0.988322i \(0.548694\pi\)
\(740\) 0 0
\(741\) 13.0632 0.479889
\(742\) −8.32443 −0.305599
\(743\) −24.8614 −0.912077 −0.456039 0.889960i \(-0.650732\pi\)
−0.456039 + 0.889960i \(0.650732\pi\)
\(744\) −2.37231 −0.0869733
\(745\) 0 0
\(746\) −10.0751 −0.368874
\(747\) 16.4935 0.603464
\(748\) −2.47973 −0.0906677
\(749\) −66.1317 −2.41640
\(750\) 0 0
\(751\) 17.0776 0.623172 0.311586 0.950218i \(-0.399140\pi\)
0.311586 + 0.950218i \(0.399140\pi\)
\(752\) −13.6190 −0.496634
\(753\) −9.20850 −0.335576
\(754\) 21.0186 0.765451
\(755\) 0 0
\(756\) −5.66213 −0.205930
\(757\) −22.6984 −0.824988 −0.412494 0.910960i \(-0.635342\pi\)
−0.412494 + 0.910960i \(0.635342\pi\)
\(758\) 12.7895 0.464536
\(759\) −5.98243 −0.217149
\(760\) 0 0
\(761\) 4.34342 0.157449 0.0787244 0.996896i \(-0.474915\pi\)
0.0787244 + 0.996896i \(0.474915\pi\)
\(762\) −7.08361 −0.256612
\(763\) 23.6968 0.857881
\(764\) 13.5097 0.488764
\(765\) 0 0
\(766\) 1.52111 0.0549599
\(767\) 3.09942 0.111913
\(768\) −8.92740 −0.322140
\(769\) 2.57132 0.0927242 0.0463621 0.998925i \(-0.485237\pi\)
0.0463621 + 0.998925i \(0.485237\pi\)
\(770\) 0 0
\(771\) 7.04525 0.253728
\(772\) −28.7042 −1.03309
\(773\) 12.4442 0.447588 0.223794 0.974636i \(-0.428156\pi\)
0.223794 + 0.974636i \(0.428156\pi\)
\(774\) −0.745734 −0.0268049
\(775\) 0 0
\(776\) 23.6686 0.849653
\(777\) 10.0971 0.362231
\(778\) 9.73495 0.349015
\(779\) −0.280313 −0.0100432
\(780\) 0 0
\(781\) −12.4101 −0.444068
\(782\) 4.75683 0.170104
\(783\) −5.51387 −0.197050
\(784\) 9.56084 0.341459
\(785\) 0 0
\(786\) −9.68260 −0.345367
\(787\) 37.3565 1.33161 0.665807 0.746124i \(-0.268087\pi\)
0.665807 + 0.746124i \(0.268087\pi\)
\(788\) −2.69655 −0.0960606
\(789\) −4.35053 −0.154883
\(790\) 0 0
\(791\) 12.2394 0.435183
\(792\) −2.74498 −0.0975385
\(793\) 59.9056 2.12731
\(794\) −22.0862 −0.783809
\(795\) 0 0
\(796\) −21.4275 −0.759479
\(797\) −42.1378 −1.49260 −0.746299 0.665611i \(-0.768171\pi\)
−0.746299 + 0.665611i \(0.768171\pi\)
\(798\) −5.55951 −0.196804
\(799\) 12.3040 0.435283
\(800\) 0 0
\(801\) −8.27438 −0.292361
\(802\) −7.08261 −0.250096
\(803\) 9.65069 0.340565
\(804\) 24.6051 0.867754
\(805\) 0 0
\(806\) 3.81195 0.134270
\(807\) −20.1710 −0.710054
\(808\) −17.0355 −0.599307
\(809\) 2.15676 0.0758277 0.0379138 0.999281i \(-0.487929\pi\)
0.0379138 + 0.999281i \(0.487929\pi\)
\(810\) 0 0
\(811\) 12.8658 0.451780 0.225890 0.974153i \(-0.427471\pi\)
0.225890 + 0.974153i \(0.427471\pi\)
\(812\) 31.2202 1.09561
\(813\) 13.0303 0.456992
\(814\) 2.14082 0.0750358
\(815\) 0 0
\(816\) −2.10352 −0.0736380
\(817\) 2.55557 0.0894079
\(818\) 18.8186 0.657977
\(819\) 20.8031 0.726921
\(820\) 0 0
\(821\) 13.9740 0.487696 0.243848 0.969813i \(-0.421590\pi\)
0.243848 + 0.969813i \(0.421590\pi\)
\(822\) −3.55015 −0.123826
\(823\) 45.9522 1.60179 0.800897 0.598802i \(-0.204357\pi\)
0.800897 + 0.598802i \(0.204357\pi\)
\(824\) −4.04269 −0.140834
\(825\) 0 0
\(826\) −1.31906 −0.0458961
\(827\) 6.37379 0.221638 0.110819 0.993841i \(-0.464653\pi\)
0.110819 + 0.993841i \(0.464653\pi\)
\(828\) −8.03757 −0.279325
\(829\) −21.0176 −0.729970 −0.364985 0.931013i \(-0.618926\pi\)
−0.364985 + 0.931013i \(0.618926\pi\)
\(830\) 0 0
\(831\) −5.93472 −0.205873
\(832\) 4.53747 0.157308
\(833\) −8.63765 −0.299277
\(834\) 5.52232 0.191222
\(835\) 0 0
\(836\) 4.11403 0.142287
\(837\) −1.00000 −0.0345651
\(838\) −20.1639 −0.696551
\(839\) 20.6247 0.712045 0.356022 0.934477i \(-0.384133\pi\)
0.356022 + 0.934477i \(0.384133\pi\)
\(840\) 0 0
\(841\) 1.40275 0.0483708
\(842\) 12.2965 0.423765
\(843\) −2.56333 −0.0882857
\(844\) 13.5837 0.467570
\(845\) 0 0
\(846\) 5.95669 0.204795
\(847\) −35.1880 −1.20907
\(848\) 5.22551 0.179445
\(849\) 22.5046 0.772355
\(850\) 0 0
\(851\) 14.3331 0.491334
\(852\) −16.6733 −0.571219
\(853\) 6.65175 0.227752 0.113876 0.993495i \(-0.463673\pi\)
0.113876 + 0.993495i \(0.463673\pi\)
\(854\) −25.4949 −0.872418
\(855\) 0 0
\(856\) −43.0741 −1.47224
\(857\) −26.3351 −0.899590 −0.449795 0.893132i \(-0.648503\pi\)
−0.449795 + 0.893132i \(0.648503\pi\)
\(858\) 4.41076 0.150581
\(859\) 26.8919 0.917541 0.458770 0.888555i \(-0.348290\pi\)
0.458770 + 0.888555i \(0.348290\pi\)
\(860\) 0 0
\(861\) −0.446397 −0.0152132
\(862\) 9.10517 0.310123
\(863\) −5.04588 −0.171764 −0.0858818 0.996305i \(-0.527371\pi\)
−0.0858818 + 0.996305i \(0.527371\pi\)
\(864\) −5.76300 −0.196061
\(865\) 0 0
\(866\) 22.4339 0.762336
\(867\) −15.0996 −0.512809
\(868\) 5.66213 0.192185
\(869\) −6.75414 −0.229119
\(870\) 0 0
\(871\) −90.4012 −3.06313
\(872\) 15.4346 0.522682
\(873\) 9.97701 0.337671
\(874\) −7.89190 −0.266947
\(875\) 0 0
\(876\) 12.9660 0.438080
\(877\) 1.50014 0.0506560 0.0253280 0.999679i \(-0.491937\pi\)
0.0253280 + 0.999679i \(0.491937\pi\)
\(878\) 14.6562 0.494623
\(879\) −9.86771 −0.332830
\(880\) 0 0
\(881\) −52.2328 −1.75977 −0.879884 0.475188i \(-0.842380\pi\)
−0.879884 + 0.475188i \(0.842380\pi\)
\(882\) −4.18173 −0.140806
\(883\) 39.4859 1.32881 0.664403 0.747375i \(-0.268686\pi\)
0.664403 + 0.747375i \(0.268686\pi\)
\(884\) 12.2405 0.411694
\(885\) 0 0
\(886\) 3.63333 0.122064
\(887\) 48.5387 1.62977 0.814885 0.579623i \(-0.196800\pi\)
0.814885 + 0.579623i \(0.196800\pi\)
\(888\) 6.57662 0.220697
\(889\) 38.6578 1.29654
\(890\) 0 0
\(891\) −1.15709 −0.0387639
\(892\) 16.2313 0.543464
\(893\) −20.4131 −0.683097
\(894\) −10.6604 −0.356537
\(895\) 0 0
\(896\) 40.0491 1.33795
\(897\) 29.5307 0.986003
\(898\) −24.5924 −0.820659
\(899\) 5.51387 0.183898
\(900\) 0 0
\(901\) −4.72094 −0.157277
\(902\) −0.0946468 −0.00315139
\(903\) 4.06973 0.135432
\(904\) 7.97198 0.265144
\(905\) 0 0
\(906\) −4.93719 −0.164027
\(907\) −47.3682 −1.57284 −0.786418 0.617694i \(-0.788067\pi\)
−0.786418 + 0.617694i \(0.788067\pi\)
\(908\) 39.0431 1.29569
\(909\) −7.18097 −0.238178
\(910\) 0 0
\(911\) −28.7118 −0.951264 −0.475632 0.879644i \(-0.657781\pi\)
−0.475632 + 0.879644i \(0.657781\pi\)
\(912\) 3.48988 0.115562
\(913\) −19.0844 −0.631602
\(914\) 3.36102 0.111173
\(915\) 0 0
\(916\) 5.57355 0.184155
\(917\) 52.8414 1.74498
\(918\) 0.920040 0.0303659
\(919\) −3.19601 −0.105427 −0.0527133 0.998610i \(-0.516787\pi\)
−0.0527133 + 0.998610i \(0.516787\pi\)
\(920\) 0 0
\(921\) 13.4887 0.444469
\(922\) 15.0597 0.495966
\(923\) 61.2593 2.01637
\(924\) 6.55158 0.215531
\(925\) 0 0
\(926\) −5.28923 −0.173815
\(927\) −1.70411 −0.0559703
\(928\) 31.7764 1.04311
\(929\) 2.28411 0.0749392 0.0374696 0.999298i \(-0.488070\pi\)
0.0374696 + 0.999298i \(0.488070\pi\)
\(930\) 0 0
\(931\) 14.3304 0.469661
\(932\) 28.4472 0.931818
\(933\) 8.33830 0.272984
\(934\) 7.17373 0.234732
\(935\) 0 0
\(936\) 13.5499 0.442892
\(937\) −9.90513 −0.323587 −0.161793 0.986825i \(-0.551728\pi\)
−0.161793 + 0.986825i \(0.551728\pi\)
\(938\) 38.4734 1.25620
\(939\) 7.03489 0.229575
\(940\) 0 0
\(941\) −8.74045 −0.284930 −0.142465 0.989800i \(-0.545503\pi\)
−0.142465 + 0.989800i \(0.545503\pi\)
\(942\) −10.4943 −0.341923
\(943\) −0.633676 −0.0206353
\(944\) 0.828019 0.0269497
\(945\) 0 0
\(946\) 0.862880 0.0280547
\(947\) 55.8934 1.81629 0.908146 0.418654i \(-0.137498\pi\)
0.908146 + 0.418654i \(0.137498\pi\)
\(948\) −9.07439 −0.294723
\(949\) −47.6381 −1.54640
\(950\) 0 0
\(951\) 28.9660 0.939287
\(952\) −11.9114 −0.386049
\(953\) −36.3033 −1.17598 −0.587989 0.808869i \(-0.700080\pi\)
−0.587989 + 0.808869i \(0.700080\pi\)
\(954\) −2.28554 −0.0739971
\(955\) 0 0
\(956\) 15.0131 0.485558
\(957\) 6.38004 0.206237
\(958\) 20.7704 0.671060
\(959\) 19.3744 0.625634
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −10.5676 −0.340714
\(963\) −18.1570 −0.585101
\(964\) 8.26465 0.266186
\(965\) 0 0
\(966\) −12.5678 −0.404363
\(967\) −25.7135 −0.826890 −0.413445 0.910529i \(-0.635675\pi\)
−0.413445 + 0.910529i \(0.635675\pi\)
\(968\) −22.9193 −0.736653
\(969\) −3.15290 −0.101286
\(970\) 0 0
\(971\) 33.1226 1.06296 0.531478 0.847072i \(-0.321637\pi\)
0.531478 + 0.847072i \(0.321637\pi\)
\(972\) −1.55458 −0.0498633
\(973\) −30.1373 −0.966156
\(974\) −14.7927 −0.473989
\(975\) 0 0
\(976\) 16.0040 0.512275
\(977\) −22.6735 −0.725388 −0.362694 0.931908i \(-0.618143\pi\)
−0.362694 + 0.931908i \(0.618143\pi\)
\(978\) 6.46584 0.206755
\(979\) 9.57419 0.305992
\(980\) 0 0
\(981\) 6.50614 0.207725
\(982\) −25.6109 −0.817276
\(983\) 9.35725 0.298450 0.149225 0.988803i \(-0.452322\pi\)
0.149225 + 0.988803i \(0.452322\pi\)
\(984\) −0.290756 −0.00926895
\(985\) 0 0
\(986\) −5.07298 −0.161557
\(987\) −32.5078 −1.03473
\(988\) −20.3078 −0.646079
\(989\) 5.77712 0.183702
\(990\) 0 0
\(991\) 12.9858 0.412506 0.206253 0.978499i \(-0.433873\pi\)
0.206253 + 0.978499i \(0.433873\pi\)
\(992\) 5.76300 0.182976
\(993\) 4.97223 0.157789
\(994\) −26.0710 −0.826922
\(995\) 0 0
\(996\) −25.6405 −0.812449
\(997\) 3.74266 0.118531 0.0592656 0.998242i \(-0.481124\pi\)
0.0592656 + 0.998242i \(0.481124\pi\)
\(998\) 2.09571 0.0663385
\(999\) 2.77224 0.0877097
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.a.bb.1.3 yes 6
3.2 odd 2 6975.2.a.ca.1.4 6
5.2 odd 4 2325.2.c.r.1024.6 12
5.3 odd 4 2325.2.c.r.1024.7 12
5.4 even 2 2325.2.a.y.1.4 6
15.14 odd 2 6975.2.a.cc.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2325.2.a.y.1.4 6 5.4 even 2
2325.2.a.bb.1.3 yes 6 1.1 even 1 trivial
2325.2.c.r.1024.6 12 5.2 odd 4
2325.2.c.r.1024.7 12 5.3 odd 4
6975.2.a.ca.1.4 6 3.2 odd 2
6975.2.a.cc.1.3 6 15.14 odd 2