Properties

Label 2325.2.a.bb.1.2
Level $2325$
Weight $2$
Character 2325.1
Self dual yes
Analytic conductor $18.565$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,1,6,7,0,1,2,-3,6,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5652184699\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.75968016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 9x^{3} + 14x^{2} - 6x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.814748\) of defining polynomial
Character \(\chi\) \(=\) 2325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.814748 q^{2} +1.00000 q^{3} -1.33619 q^{4} -0.814748 q^{6} -3.06134 q^{7} +2.71815 q^{8} +1.00000 q^{9} +6.25805 q^{11} -1.33619 q^{12} -1.92186 q^{13} +2.49422 q^{14} +0.457766 q^{16} +2.14965 q^{17} -0.814748 q^{18} -4.29544 q^{19} -3.06134 q^{21} -5.09873 q^{22} +2.53804 q^{23} +2.71815 q^{24} +1.56583 q^{26} +1.00000 q^{27} +4.09052 q^{28} -2.37777 q^{29} -1.00000 q^{31} -5.80926 q^{32} +6.25805 q^{33} -1.75142 q^{34} -1.33619 q^{36} -3.09873 q^{37} +3.49970 q^{38} -1.92186 q^{39} +9.38690 q^{41} +2.49422 q^{42} -6.79095 q^{43} -8.36192 q^{44} -2.06786 q^{46} +0.0447403 q^{47} +0.457766 q^{48} +2.37179 q^{49} +2.14965 q^{51} +2.56797 q^{52} +2.37358 q^{53} -0.814748 q^{54} -8.32118 q^{56} -4.29544 q^{57} +1.93728 q^{58} +9.75741 q^{59} -2.13211 q^{61} +0.814748 q^{62} -3.06134 q^{63} +3.81755 q^{64} -5.09873 q^{66} +9.68208 q^{67} -2.87233 q^{68} +2.53804 q^{69} -1.94137 q^{71} +2.71815 q^{72} -3.07607 q^{73} +2.52468 q^{74} +5.73951 q^{76} -19.1580 q^{77} +1.56583 q^{78} +13.1684 q^{79} +1.00000 q^{81} -7.64796 q^{82} +2.27194 q^{83} +4.09052 q^{84} +5.53291 q^{86} -2.37777 q^{87} +17.0103 q^{88} +18.5502 q^{89} +5.88347 q^{91} -3.39129 q^{92} -1.00000 q^{93} -0.0364520 q^{94} -5.80926 q^{96} +3.56816 q^{97} -1.93241 q^{98} +6.25805 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 6 q^{3} + 7 q^{4} + q^{6} + 2 q^{7} - 3 q^{8} + 6 q^{9} + 7 q^{11} + 7 q^{12} + 4 q^{13} + 10 q^{14} + 17 q^{16} + q^{18} + 17 q^{19} + 2 q^{21} + 2 q^{22} - q^{23} - 3 q^{24} + 2 q^{26}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.814748 −0.576114 −0.288057 0.957613i \(-0.593009\pi\)
−0.288057 + 0.957613i \(0.593009\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.33619 −0.668093
\(5\) 0 0
\(6\) −0.814748 −0.332619
\(7\) −3.06134 −1.15708 −0.578539 0.815655i \(-0.696377\pi\)
−0.578539 + 0.815655i \(0.696377\pi\)
\(8\) 2.71815 0.961011
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 6.25805 1.88687 0.943436 0.331553i \(-0.107573\pi\)
0.943436 + 0.331553i \(0.107573\pi\)
\(12\) −1.33619 −0.385724
\(13\) −1.92186 −0.533029 −0.266514 0.963831i \(-0.585872\pi\)
−0.266514 + 0.963831i \(0.585872\pi\)
\(14\) 2.49422 0.666608
\(15\) 0 0
\(16\) 0.457766 0.114442
\(17\) 2.14965 0.521366 0.260683 0.965424i \(-0.416052\pi\)
0.260683 + 0.965424i \(0.416052\pi\)
\(18\) −0.814748 −0.192038
\(19\) −4.29544 −0.985442 −0.492721 0.870187i \(-0.663998\pi\)
−0.492721 + 0.870187i \(0.663998\pi\)
\(20\) 0 0
\(21\) −3.06134 −0.668039
\(22\) −5.09873 −1.08705
\(23\) 2.53804 0.529217 0.264609 0.964356i \(-0.414757\pi\)
0.264609 + 0.964356i \(0.414757\pi\)
\(24\) 2.71815 0.554840
\(25\) 0 0
\(26\) 1.56583 0.307085
\(27\) 1.00000 0.192450
\(28\) 4.09052 0.773035
\(29\) −2.37777 −0.441540 −0.220770 0.975326i \(-0.570857\pi\)
−0.220770 + 0.975326i \(0.570857\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) −5.80926 −1.02694
\(33\) 6.25805 1.08939
\(34\) −1.75142 −0.300366
\(35\) 0 0
\(36\) −1.33619 −0.222698
\(37\) −3.09873 −0.509428 −0.254714 0.967016i \(-0.581981\pi\)
−0.254714 + 0.967016i \(0.581981\pi\)
\(38\) 3.49970 0.567727
\(39\) −1.92186 −0.307744
\(40\) 0 0
\(41\) 9.38690 1.46599 0.732994 0.680235i \(-0.238122\pi\)
0.732994 + 0.680235i \(0.238122\pi\)
\(42\) 2.49422 0.384866
\(43\) −6.79095 −1.03561 −0.517805 0.855499i \(-0.673251\pi\)
−0.517805 + 0.855499i \(0.673251\pi\)
\(44\) −8.36192 −1.26061
\(45\) 0 0
\(46\) −2.06786 −0.304889
\(47\) 0.0447403 0.00652604 0.00326302 0.999995i \(-0.498961\pi\)
0.00326302 + 0.999995i \(0.498961\pi\)
\(48\) 0.457766 0.0660728
\(49\) 2.37179 0.338827
\(50\) 0 0
\(51\) 2.14965 0.301011
\(52\) 2.56797 0.356113
\(53\) 2.37358 0.326036 0.163018 0.986623i \(-0.447877\pi\)
0.163018 + 0.986623i \(0.447877\pi\)
\(54\) −0.814748 −0.110873
\(55\) 0 0
\(56\) −8.32118 −1.11196
\(57\) −4.29544 −0.568945
\(58\) 1.93728 0.254377
\(59\) 9.75741 1.27031 0.635153 0.772386i \(-0.280937\pi\)
0.635153 + 0.772386i \(0.280937\pi\)
\(60\) 0 0
\(61\) −2.13211 −0.272989 −0.136494 0.990641i \(-0.543584\pi\)
−0.136494 + 0.990641i \(0.543584\pi\)
\(62\) 0.814748 0.103473
\(63\) −3.06134 −0.385692
\(64\) 3.81755 0.477194
\(65\) 0 0
\(66\) −5.09873 −0.627610
\(67\) 9.68208 1.18285 0.591427 0.806358i \(-0.298565\pi\)
0.591427 + 0.806358i \(0.298565\pi\)
\(68\) −2.87233 −0.348321
\(69\) 2.53804 0.305544
\(70\) 0 0
\(71\) −1.94137 −0.230399 −0.115199 0.993342i \(-0.536751\pi\)
−0.115199 + 0.993342i \(0.536751\pi\)
\(72\) 2.71815 0.320337
\(73\) −3.07607 −0.360027 −0.180014 0.983664i \(-0.557614\pi\)
−0.180014 + 0.983664i \(0.557614\pi\)
\(74\) 2.52468 0.293489
\(75\) 0 0
\(76\) 5.73951 0.658367
\(77\) −19.1580 −2.18326
\(78\) 1.56583 0.177296
\(79\) 13.1684 1.48156 0.740779 0.671749i \(-0.234456\pi\)
0.740779 + 0.671749i \(0.234456\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −7.64796 −0.844575
\(83\) 2.27194 0.249377 0.124689 0.992196i \(-0.460207\pi\)
0.124689 + 0.992196i \(0.460207\pi\)
\(84\) 4.09052 0.446312
\(85\) 0 0
\(86\) 5.53291 0.596629
\(87\) −2.37777 −0.254923
\(88\) 17.0103 1.81331
\(89\) 18.5502 1.96632 0.983160 0.182749i \(-0.0584997\pi\)
0.983160 + 0.182749i \(0.0584997\pi\)
\(90\) 0 0
\(91\) 5.88347 0.616756
\(92\) −3.39129 −0.353566
\(93\) −1.00000 −0.103695
\(94\) −0.0364520 −0.00375974
\(95\) 0 0
\(96\) −5.80926 −0.592906
\(97\) 3.56816 0.362291 0.181146 0.983456i \(-0.442019\pi\)
0.181146 + 0.983456i \(0.442019\pi\)
\(98\) −1.93241 −0.195203
\(99\) 6.25805 0.628958
\(100\) 0 0
\(101\) 11.3485 1.12922 0.564608 0.825360i \(-0.309028\pi\)
0.564608 + 0.825360i \(0.309028\pi\)
\(102\) −1.75142 −0.173416
\(103\) −4.38784 −0.432347 −0.216174 0.976355i \(-0.569358\pi\)
−0.216174 + 0.976355i \(0.569358\pi\)
\(104\) −5.22391 −0.512247
\(105\) 0 0
\(106\) −1.93387 −0.187834
\(107\) 0.759270 0.0734014 0.0367007 0.999326i \(-0.488315\pi\)
0.0367007 + 0.999326i \(0.488315\pi\)
\(108\) −1.33619 −0.128575
\(109\) 17.2241 1.64977 0.824884 0.565303i \(-0.191241\pi\)
0.824884 + 0.565303i \(0.191241\pi\)
\(110\) 0 0
\(111\) −3.09873 −0.294119
\(112\) −1.40138 −0.132418
\(113\) 0.689986 0.0649084 0.0324542 0.999473i \(-0.489668\pi\)
0.0324542 + 0.999473i \(0.489668\pi\)
\(114\) 3.49970 0.327777
\(115\) 0 0
\(116\) 3.17714 0.294990
\(117\) −1.92186 −0.177676
\(118\) −7.94982 −0.731841
\(119\) −6.58080 −0.603261
\(120\) 0 0
\(121\) 28.1632 2.56029
\(122\) 1.73713 0.157272
\(123\) 9.38690 0.846388
\(124\) 1.33619 0.119993
\(125\) 0 0
\(126\) 2.49422 0.222203
\(127\) 12.9581 1.14985 0.574924 0.818207i \(-0.305032\pi\)
0.574924 + 0.818207i \(0.305032\pi\)
\(128\) 8.50819 0.752024
\(129\) −6.79095 −0.597910
\(130\) 0 0
\(131\) 10.1273 0.884829 0.442415 0.896811i \(-0.354122\pi\)
0.442415 + 0.896811i \(0.354122\pi\)
\(132\) −8.36192 −0.727812
\(133\) 13.1498 1.14023
\(134\) −7.88846 −0.681459
\(135\) 0 0
\(136\) 5.84306 0.501039
\(137\) −15.8094 −1.35069 −0.675345 0.737502i \(-0.736005\pi\)
−0.675345 + 0.737502i \(0.736005\pi\)
\(138\) −2.06786 −0.176028
\(139\) 23.2476 1.97183 0.985917 0.167235i \(-0.0534838\pi\)
0.985917 + 0.167235i \(0.0534838\pi\)
\(140\) 0 0
\(141\) 0.0447403 0.00376781
\(142\) 1.58173 0.132736
\(143\) −12.0271 −1.00576
\(144\) 0.457766 0.0381472
\(145\) 0 0
\(146\) 2.50622 0.207417
\(147\) 2.37179 0.195622
\(148\) 4.14048 0.340346
\(149\) −11.4764 −0.940182 −0.470091 0.882618i \(-0.655779\pi\)
−0.470091 + 0.882618i \(0.655779\pi\)
\(150\) 0 0
\(151\) −15.4597 −1.25809 −0.629047 0.777368i \(-0.716555\pi\)
−0.629047 + 0.777368i \(0.716555\pi\)
\(152\) −11.6757 −0.947021
\(153\) 2.14965 0.173789
\(154\) 15.6089 1.25780
\(155\) 0 0
\(156\) 2.56797 0.205602
\(157\) 0.633105 0.0505273 0.0252637 0.999681i \(-0.491957\pi\)
0.0252637 + 0.999681i \(0.491957\pi\)
\(158\) −10.7289 −0.853546
\(159\) 2.37358 0.188237
\(160\) 0 0
\(161\) −7.76979 −0.612345
\(162\) −0.814748 −0.0640126
\(163\) 0.396238 0.0310358 0.0155179 0.999880i \(-0.495060\pi\)
0.0155179 + 0.999880i \(0.495060\pi\)
\(164\) −12.5426 −0.979416
\(165\) 0 0
\(166\) −1.85106 −0.143670
\(167\) −6.62529 −0.512680 −0.256340 0.966587i \(-0.582517\pi\)
−0.256340 + 0.966587i \(0.582517\pi\)
\(168\) −8.32118 −0.641993
\(169\) −9.30644 −0.715880
\(170\) 0 0
\(171\) −4.29544 −0.328481
\(172\) 9.07397 0.691884
\(173\) 14.3869 1.09382 0.546909 0.837192i \(-0.315804\pi\)
0.546909 + 0.837192i \(0.315804\pi\)
\(174\) 1.93728 0.146865
\(175\) 0 0
\(176\) 2.86472 0.215937
\(177\) 9.75741 0.733412
\(178\) −15.1137 −1.13282
\(179\) −0.101643 −0.00759712 −0.00379856 0.999993i \(-0.501209\pi\)
−0.00379856 + 0.999993i \(0.501209\pi\)
\(180\) 0 0
\(181\) −19.6352 −1.45947 −0.729736 0.683729i \(-0.760357\pi\)
−0.729736 + 0.683729i \(0.760357\pi\)
\(182\) −4.79355 −0.355321
\(183\) −2.13211 −0.157610
\(184\) 6.89876 0.508584
\(185\) 0 0
\(186\) 0.814748 0.0597402
\(187\) 13.4526 0.983752
\(188\) −0.0597813 −0.00436000
\(189\) −3.06134 −0.222680
\(190\) 0 0
\(191\) 2.11276 0.152874 0.0764368 0.997074i \(-0.475646\pi\)
0.0764368 + 0.997074i \(0.475646\pi\)
\(192\) 3.81755 0.275508
\(193\) 17.9065 1.28894 0.644468 0.764631i \(-0.277079\pi\)
0.644468 + 0.764631i \(0.277079\pi\)
\(194\) −2.90715 −0.208721
\(195\) 0 0
\(196\) −3.16915 −0.226368
\(197\) −3.23922 −0.230785 −0.115393 0.993320i \(-0.536813\pi\)
−0.115393 + 0.993320i \(0.536813\pi\)
\(198\) −5.09873 −0.362351
\(199\) −11.9427 −0.846596 −0.423298 0.905990i \(-0.639128\pi\)
−0.423298 + 0.905990i \(0.639128\pi\)
\(200\) 0 0
\(201\) 9.68208 0.682922
\(202\) −9.24614 −0.650556
\(203\) 7.27915 0.510896
\(204\) −2.87233 −0.201103
\(205\) 0 0
\(206\) 3.57498 0.249081
\(207\) 2.53804 0.176406
\(208\) −0.879764 −0.0610006
\(209\) −26.8811 −1.85940
\(210\) 0 0
\(211\) −1.06298 −0.0731786 −0.0365893 0.999330i \(-0.511649\pi\)
−0.0365893 + 0.999330i \(0.511649\pi\)
\(212\) −3.17154 −0.217823
\(213\) −1.94137 −0.133021
\(214\) −0.618613 −0.0422875
\(215\) 0 0
\(216\) 2.71815 0.184947
\(217\) 3.06134 0.207817
\(218\) −14.0333 −0.950453
\(219\) −3.07607 −0.207862
\(220\) 0 0
\(221\) −4.13133 −0.277903
\(222\) 2.52468 0.169446
\(223\) −23.9213 −1.60189 −0.800943 0.598741i \(-0.795668\pi\)
−0.800943 + 0.598741i \(0.795668\pi\)
\(224\) 17.7841 1.18825
\(225\) 0 0
\(226\) −0.562165 −0.0373946
\(227\) 22.7268 1.50843 0.754215 0.656628i \(-0.228018\pi\)
0.754215 + 0.656628i \(0.228018\pi\)
\(228\) 5.73951 0.380108
\(229\) 9.93641 0.656616 0.328308 0.944571i \(-0.393522\pi\)
0.328308 + 0.944571i \(0.393522\pi\)
\(230\) 0 0
\(231\) −19.1580 −1.26050
\(232\) −6.46313 −0.424325
\(233\) −3.23150 −0.211703 −0.105851 0.994382i \(-0.533757\pi\)
−0.105851 + 0.994382i \(0.533757\pi\)
\(234\) 1.56583 0.102362
\(235\) 0 0
\(236\) −13.0377 −0.848683
\(237\) 13.1684 0.855378
\(238\) 5.36169 0.347547
\(239\) 12.0594 0.780055 0.390028 0.920803i \(-0.372465\pi\)
0.390028 + 0.920803i \(0.372465\pi\)
\(240\) 0 0
\(241\) 4.37449 0.281786 0.140893 0.990025i \(-0.455003\pi\)
0.140893 + 0.990025i \(0.455003\pi\)
\(242\) −22.9459 −1.47502
\(243\) 1.00000 0.0641500
\(244\) 2.84889 0.182382
\(245\) 0 0
\(246\) −7.64796 −0.487616
\(247\) 8.25525 0.525269
\(248\) −2.71815 −0.172603
\(249\) 2.27194 0.143978
\(250\) 0 0
\(251\) −14.4610 −0.912771 −0.456385 0.889782i \(-0.650856\pi\)
−0.456385 + 0.889782i \(0.650856\pi\)
\(252\) 4.09052 0.257678
\(253\) 15.8832 0.998566
\(254\) −10.5576 −0.662443
\(255\) 0 0
\(256\) −14.5671 −0.910446
\(257\) −6.75766 −0.421531 −0.210765 0.977537i \(-0.567596\pi\)
−0.210765 + 0.977537i \(0.567596\pi\)
\(258\) 5.53291 0.344464
\(259\) 9.48626 0.589448
\(260\) 0 0
\(261\) −2.37777 −0.147180
\(262\) −8.25122 −0.509762
\(263\) 21.5901 1.33130 0.665651 0.746263i \(-0.268154\pi\)
0.665651 + 0.746263i \(0.268154\pi\)
\(264\) 17.0103 1.04691
\(265\) 0 0
\(266\) −10.7138 −0.656903
\(267\) 18.5502 1.13525
\(268\) −12.9371 −0.790257
\(269\) 26.7921 1.63355 0.816773 0.576960i \(-0.195761\pi\)
0.816773 + 0.576960i \(0.195761\pi\)
\(270\) 0 0
\(271\) 14.5309 0.882691 0.441346 0.897337i \(-0.354501\pi\)
0.441346 + 0.897337i \(0.354501\pi\)
\(272\) 0.984036 0.0596659
\(273\) 5.88347 0.356084
\(274\) 12.8807 0.778151
\(275\) 0 0
\(276\) −3.39129 −0.204132
\(277\) 28.4512 1.70947 0.854733 0.519068i \(-0.173721\pi\)
0.854733 + 0.519068i \(0.173721\pi\)
\(278\) −18.9409 −1.13600
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 9.95480 0.593854 0.296927 0.954900i \(-0.404038\pi\)
0.296927 + 0.954900i \(0.404038\pi\)
\(282\) −0.0364520 −0.00217069
\(283\) −20.4848 −1.21770 −0.608848 0.793287i \(-0.708368\pi\)
−0.608848 + 0.793287i \(0.708368\pi\)
\(284\) 2.59403 0.153928
\(285\) 0 0
\(286\) 9.79906 0.579431
\(287\) −28.7365 −1.69626
\(288\) −5.80926 −0.342314
\(289\) −12.3790 −0.728177
\(290\) 0 0
\(291\) 3.56816 0.209169
\(292\) 4.11021 0.240532
\(293\) −4.84395 −0.282987 −0.141493 0.989939i \(-0.545190\pi\)
−0.141493 + 0.989939i \(0.545190\pi\)
\(294\) −1.93241 −0.112701
\(295\) 0 0
\(296\) −8.42282 −0.489566
\(297\) 6.25805 0.363129
\(298\) 9.35036 0.541652
\(299\) −4.87776 −0.282088
\(300\) 0 0
\(301\) 20.7894 1.19828
\(302\) 12.5958 0.724805
\(303\) 11.3485 0.651953
\(304\) −1.96631 −0.112775
\(305\) 0 0
\(306\) −1.75142 −0.100122
\(307\) −32.4859 −1.85407 −0.927035 0.374975i \(-0.877651\pi\)
−0.927035 + 0.374975i \(0.877651\pi\)
\(308\) 25.5987 1.45862
\(309\) −4.38784 −0.249616
\(310\) 0 0
\(311\) 2.63183 0.149237 0.0746187 0.997212i \(-0.476226\pi\)
0.0746187 + 0.997212i \(0.476226\pi\)
\(312\) −5.22391 −0.295746
\(313\) −12.1880 −0.688904 −0.344452 0.938804i \(-0.611935\pi\)
−0.344452 + 0.938804i \(0.611935\pi\)
\(314\) −0.515821 −0.0291095
\(315\) 0 0
\(316\) −17.5954 −0.989819
\(317\) −29.2725 −1.64411 −0.822054 0.569410i \(-0.807172\pi\)
−0.822054 + 0.569410i \(0.807172\pi\)
\(318\) −1.93387 −0.108446
\(319\) −14.8802 −0.833130
\(320\) 0 0
\(321\) 0.759270 0.0423783
\(322\) 6.33042 0.352780
\(323\) −9.23369 −0.513776
\(324\) −1.33619 −0.0742326
\(325\) 0 0
\(326\) −0.322834 −0.0178801
\(327\) 17.2241 0.952494
\(328\) 25.5150 1.40883
\(329\) −0.136965 −0.00755113
\(330\) 0 0
\(331\) 2.79790 0.153787 0.0768933 0.997039i \(-0.475500\pi\)
0.0768933 + 0.997039i \(0.475500\pi\)
\(332\) −3.03573 −0.166607
\(333\) −3.09873 −0.169809
\(334\) 5.39794 0.295362
\(335\) 0 0
\(336\) −1.40138 −0.0764514
\(337\) 32.8136 1.78747 0.893735 0.448596i \(-0.148076\pi\)
0.893735 + 0.448596i \(0.148076\pi\)
\(338\) 7.58240 0.412428
\(339\) 0.689986 0.0374749
\(340\) 0 0
\(341\) −6.25805 −0.338892
\(342\) 3.49970 0.189242
\(343\) 14.1685 0.765028
\(344\) −18.4588 −0.995232
\(345\) 0 0
\(346\) −11.7217 −0.630164
\(347\) 24.1159 1.29461 0.647306 0.762231i \(-0.275896\pi\)
0.647306 + 0.762231i \(0.275896\pi\)
\(348\) 3.17714 0.170312
\(349\) 3.70288 0.198211 0.0991053 0.995077i \(-0.468402\pi\)
0.0991053 + 0.995077i \(0.468402\pi\)
\(350\) 0 0
\(351\) −1.92186 −0.102581
\(352\) −36.3547 −1.93771
\(353\) −17.4522 −0.928888 −0.464444 0.885602i \(-0.653746\pi\)
−0.464444 + 0.885602i \(0.653746\pi\)
\(354\) −7.94982 −0.422528
\(355\) 0 0
\(356\) −24.7865 −1.31368
\(357\) −6.58080 −0.348293
\(358\) 0.0828130 0.00437680
\(359\) −4.87364 −0.257221 −0.128610 0.991695i \(-0.541052\pi\)
−0.128610 + 0.991695i \(0.541052\pi\)
\(360\) 0 0
\(361\) −0.549172 −0.0289038
\(362\) 15.9977 0.840821
\(363\) 28.1632 1.47818
\(364\) −7.86142 −0.412050
\(365\) 0 0
\(366\) 1.73713 0.0908013
\(367\) 18.1098 0.945326 0.472663 0.881243i \(-0.343293\pi\)
0.472663 + 0.881243i \(0.343293\pi\)
\(368\) 1.16183 0.0605644
\(369\) 9.38690 0.488663
\(370\) 0 0
\(371\) −7.26633 −0.377249
\(372\) 1.33619 0.0692780
\(373\) −5.16154 −0.267254 −0.133627 0.991032i \(-0.542662\pi\)
−0.133627 + 0.991032i \(0.542662\pi\)
\(374\) −10.9605 −0.566753
\(375\) 0 0
\(376\) 0.121611 0.00627160
\(377\) 4.56974 0.235354
\(378\) 2.49422 0.128289
\(379\) −9.11288 −0.468097 −0.234049 0.972225i \(-0.575197\pi\)
−0.234049 + 0.972225i \(0.575197\pi\)
\(380\) 0 0
\(381\) 12.9581 0.663865
\(382\) −1.72136 −0.0880726
\(383\) −5.51110 −0.281604 −0.140802 0.990038i \(-0.544968\pi\)
−0.140802 + 0.990038i \(0.544968\pi\)
\(384\) 8.50819 0.434182
\(385\) 0 0
\(386\) −14.5893 −0.742574
\(387\) −6.79095 −0.345203
\(388\) −4.76772 −0.242044
\(389\) −25.8364 −1.30996 −0.654978 0.755648i \(-0.727322\pi\)
−0.654978 + 0.755648i \(0.727322\pi\)
\(390\) 0 0
\(391\) 5.45588 0.275916
\(392\) 6.44688 0.325617
\(393\) 10.1273 0.510856
\(394\) 2.63915 0.132958
\(395\) 0 0
\(396\) −8.36192 −0.420202
\(397\) 26.4578 1.32788 0.663941 0.747785i \(-0.268883\pi\)
0.663941 + 0.747785i \(0.268883\pi\)
\(398\) 9.73029 0.487736
\(399\) 13.1498 0.658314
\(400\) 0 0
\(401\) 32.4069 1.61832 0.809162 0.587586i \(-0.199922\pi\)
0.809162 + 0.587586i \(0.199922\pi\)
\(402\) −7.88846 −0.393440
\(403\) 1.92186 0.0957348
\(404\) −15.1637 −0.754421
\(405\) 0 0
\(406\) −5.93067 −0.294334
\(407\) −19.3920 −0.961226
\(408\) 5.84306 0.289275
\(409\) −31.1727 −1.54139 −0.770696 0.637203i \(-0.780091\pi\)
−0.770696 + 0.637203i \(0.780091\pi\)
\(410\) 0 0
\(411\) −15.8094 −0.779821
\(412\) 5.86298 0.288848
\(413\) −29.8707 −1.46984
\(414\) −2.06786 −0.101630
\(415\) 0 0
\(416\) 11.1646 0.547390
\(417\) 23.2476 1.13844
\(418\) 21.9013 1.07123
\(419\) 33.2948 1.62656 0.813280 0.581873i \(-0.197680\pi\)
0.813280 + 0.581873i \(0.197680\pi\)
\(420\) 0 0
\(421\) −30.5713 −1.48996 −0.744978 0.667089i \(-0.767540\pi\)
−0.744978 + 0.667089i \(0.767540\pi\)
\(422\) 0.866061 0.0421592
\(423\) 0.0447403 0.00217535
\(424\) 6.45174 0.313324
\(425\) 0 0
\(426\) 1.58173 0.0766350
\(427\) 6.52711 0.315869
\(428\) −1.01453 −0.0490389
\(429\) −12.0271 −0.580675
\(430\) 0 0
\(431\) 17.6780 0.851520 0.425760 0.904836i \(-0.360007\pi\)
0.425760 + 0.904836i \(0.360007\pi\)
\(432\) 0.457766 0.0220243
\(433\) −6.19475 −0.297701 −0.148850 0.988860i \(-0.547557\pi\)
−0.148850 + 0.988860i \(0.547557\pi\)
\(434\) −2.49422 −0.119726
\(435\) 0 0
\(436\) −23.0146 −1.10220
\(437\) −10.9020 −0.521513
\(438\) 2.50622 0.119752
\(439\) −29.0218 −1.38513 −0.692567 0.721354i \(-0.743520\pi\)
−0.692567 + 0.721354i \(0.743520\pi\)
\(440\) 0 0
\(441\) 2.37179 0.112942
\(442\) 3.36599 0.160104
\(443\) −9.05107 −0.430029 −0.215015 0.976611i \(-0.568980\pi\)
−0.215015 + 0.976611i \(0.568980\pi\)
\(444\) 4.14048 0.196499
\(445\) 0 0
\(446\) 19.4898 0.922868
\(447\) −11.4764 −0.542814
\(448\) −11.6868 −0.552150
\(449\) −3.37540 −0.159295 −0.0796475 0.996823i \(-0.525379\pi\)
−0.0796475 + 0.996823i \(0.525379\pi\)
\(450\) 0 0
\(451\) 58.7437 2.76613
\(452\) −0.921950 −0.0433649
\(453\) −15.4597 −0.726361
\(454\) −18.5166 −0.869027
\(455\) 0 0
\(456\) −11.6757 −0.546763
\(457\) 31.4976 1.47340 0.736698 0.676221i \(-0.236384\pi\)
0.736698 + 0.676221i \(0.236384\pi\)
\(458\) −8.09567 −0.378286
\(459\) 2.14965 0.100337
\(460\) 0 0
\(461\) 4.80633 0.223853 0.111926 0.993716i \(-0.464298\pi\)
0.111926 + 0.993716i \(0.464298\pi\)
\(462\) 15.6089 0.726194
\(463\) 39.6402 1.84224 0.921119 0.389282i \(-0.127277\pi\)
0.921119 + 0.389282i \(0.127277\pi\)
\(464\) −1.08846 −0.0505305
\(465\) 0 0
\(466\) 2.63286 0.121965
\(467\) 38.2581 1.77037 0.885186 0.465237i \(-0.154031\pi\)
0.885186 + 0.465237i \(0.154031\pi\)
\(468\) 2.56797 0.118704
\(469\) −29.6401 −1.36865
\(470\) 0 0
\(471\) 0.633105 0.0291720
\(472\) 26.5221 1.22078
\(473\) −42.4981 −1.95406
\(474\) −10.7289 −0.492795
\(475\) 0 0
\(476\) 8.79317 0.403034
\(477\) 2.37358 0.108679
\(478\) −9.82534 −0.449400
\(479\) 10.4061 0.475468 0.237734 0.971330i \(-0.423595\pi\)
0.237734 + 0.971330i \(0.423595\pi\)
\(480\) 0 0
\(481\) 5.95534 0.271540
\(482\) −3.56411 −0.162341
\(483\) −7.76979 −0.353538
\(484\) −37.6313 −1.71051
\(485\) 0 0
\(486\) −0.814748 −0.0369577
\(487\) −31.2648 −1.41674 −0.708372 0.705840i \(-0.750570\pi\)
−0.708372 + 0.705840i \(0.750570\pi\)
\(488\) −5.79539 −0.262345
\(489\) 0.396238 0.0179185
\(490\) 0 0
\(491\) 37.1097 1.67474 0.837369 0.546637i \(-0.184092\pi\)
0.837369 + 0.546637i \(0.184092\pi\)
\(492\) −12.5426 −0.565466
\(493\) −5.11136 −0.230204
\(494\) −6.72595 −0.302615
\(495\) 0 0
\(496\) −0.457766 −0.0205543
\(497\) 5.94320 0.266589
\(498\) −1.85106 −0.0829478
\(499\) −15.4963 −0.693708 −0.346854 0.937919i \(-0.612750\pi\)
−0.346854 + 0.937919i \(0.612750\pi\)
\(500\) 0 0
\(501\) −6.62529 −0.295996
\(502\) 11.7821 0.525860
\(503\) −15.0939 −0.673003 −0.336501 0.941683i \(-0.609244\pi\)
−0.336501 + 0.941683i \(0.609244\pi\)
\(504\) −8.32118 −0.370655
\(505\) 0 0
\(506\) −12.9408 −0.575287
\(507\) −9.30644 −0.413314
\(508\) −17.3145 −0.768206
\(509\) −34.0674 −1.51001 −0.755005 0.655719i \(-0.772366\pi\)
−0.755005 + 0.655719i \(0.772366\pi\)
\(510\) 0 0
\(511\) 9.41690 0.416579
\(512\) −5.14784 −0.227504
\(513\) −4.29544 −0.189648
\(514\) 5.50578 0.242850
\(515\) 0 0
\(516\) 9.07397 0.399459
\(517\) 0.279987 0.0123138
\(518\) −7.72891 −0.339589
\(519\) 14.3869 0.631517
\(520\) 0 0
\(521\) 14.8298 0.649703 0.324852 0.945765i \(-0.394686\pi\)
0.324852 + 0.945765i \(0.394686\pi\)
\(522\) 1.93728 0.0847924
\(523\) −1.32531 −0.0579519 −0.0289760 0.999580i \(-0.509225\pi\)
−0.0289760 + 0.999580i \(0.509225\pi\)
\(524\) −13.5320 −0.591148
\(525\) 0 0
\(526\) −17.5905 −0.766981
\(527\) −2.14965 −0.0936401
\(528\) 2.86472 0.124671
\(529\) −16.5584 −0.719929
\(530\) 0 0
\(531\) 9.75741 0.423435
\(532\) −17.5706 −0.761781
\(533\) −18.0403 −0.781414
\(534\) −15.1137 −0.654036
\(535\) 0 0
\(536\) 26.3174 1.13674
\(537\) −0.101643 −0.00438620
\(538\) −21.8288 −0.941108
\(539\) 14.8428 0.639324
\(540\) 0 0
\(541\) −22.7998 −0.980238 −0.490119 0.871656i \(-0.663047\pi\)
−0.490119 + 0.871656i \(0.663047\pi\)
\(542\) −11.8390 −0.508530
\(543\) −19.6352 −0.842626
\(544\) −12.4879 −0.535413
\(545\) 0 0
\(546\) −4.79355 −0.205145
\(547\) −44.3323 −1.89551 −0.947756 0.318995i \(-0.896655\pi\)
−0.947756 + 0.318995i \(0.896655\pi\)
\(548\) 21.1243 0.902387
\(549\) −2.13211 −0.0909962
\(550\) 0 0
\(551\) 10.2136 0.435112
\(552\) 6.89876 0.293631
\(553\) −40.3129 −1.71428
\(554\) −23.1805 −0.984847
\(555\) 0 0
\(556\) −31.0631 −1.31737
\(557\) −42.1780 −1.78714 −0.893570 0.448924i \(-0.851807\pi\)
−0.893570 + 0.448924i \(0.851807\pi\)
\(558\) 0.814748 0.0344910
\(559\) 13.0513 0.552010
\(560\) 0 0
\(561\) 13.4526 0.567969
\(562\) −8.11065 −0.342127
\(563\) −40.8544 −1.72181 −0.860903 0.508768i \(-0.830101\pi\)
−0.860903 + 0.508768i \(0.830101\pi\)
\(564\) −0.0597813 −0.00251725
\(565\) 0 0
\(566\) 16.6900 0.701531
\(567\) −3.06134 −0.128564
\(568\) −5.27694 −0.221416
\(569\) −43.6669 −1.83061 −0.915306 0.402759i \(-0.868051\pi\)
−0.915306 + 0.402759i \(0.868051\pi\)
\(570\) 0 0
\(571\) −25.7023 −1.07561 −0.537804 0.843070i \(-0.680746\pi\)
−0.537804 + 0.843070i \(0.680746\pi\)
\(572\) 16.0705 0.671940
\(573\) 2.11276 0.0882617
\(574\) 23.4130 0.977239
\(575\) 0 0
\(576\) 3.81755 0.159065
\(577\) 24.7113 1.02874 0.514372 0.857567i \(-0.328025\pi\)
0.514372 + 0.857567i \(0.328025\pi\)
\(578\) 10.0858 0.419513
\(579\) 17.9065 0.744168
\(580\) 0 0
\(581\) −6.95517 −0.288549
\(582\) −2.90715 −0.120505
\(583\) 14.8540 0.615189
\(584\) −8.36123 −0.345990
\(585\) 0 0
\(586\) 3.94660 0.163032
\(587\) 17.8011 0.734729 0.367364 0.930077i \(-0.380260\pi\)
0.367364 + 0.930077i \(0.380260\pi\)
\(588\) −3.16915 −0.130694
\(589\) 4.29544 0.176991
\(590\) 0 0
\(591\) −3.23922 −0.133244
\(592\) −1.41849 −0.0582997
\(593\) 28.1408 1.15560 0.577802 0.816177i \(-0.303910\pi\)
0.577802 + 0.816177i \(0.303910\pi\)
\(594\) −5.09873 −0.209203
\(595\) 0 0
\(596\) 15.3346 0.628129
\(597\) −11.9427 −0.488782
\(598\) 3.97414 0.162515
\(599\) −4.56567 −0.186548 −0.0932742 0.995640i \(-0.529733\pi\)
−0.0932742 + 0.995640i \(0.529733\pi\)
\(600\) 0 0
\(601\) −36.3342 −1.48210 −0.741051 0.671448i \(-0.765672\pi\)
−0.741051 + 0.671448i \(0.765672\pi\)
\(602\) −16.9381 −0.690346
\(603\) 9.68208 0.394285
\(604\) 20.6571 0.840523
\(605\) 0 0
\(606\) −9.24614 −0.375599
\(607\) 35.3618 1.43529 0.717646 0.696408i \(-0.245220\pi\)
0.717646 + 0.696408i \(0.245220\pi\)
\(608\) 24.9534 1.01199
\(609\) 7.27915 0.294966
\(610\) 0 0
\(611\) −0.0859847 −0.00347857
\(612\) −2.87233 −0.116107
\(613\) 17.7586 0.717264 0.358632 0.933479i \(-0.383243\pi\)
0.358632 + 0.933479i \(0.383243\pi\)
\(614\) 26.4678 1.06815
\(615\) 0 0
\(616\) −52.0743 −2.09813
\(617\) −25.6310 −1.03186 −0.515932 0.856629i \(-0.672554\pi\)
−0.515932 + 0.856629i \(0.672554\pi\)
\(618\) 3.57498 0.143807
\(619\) 10.8503 0.436110 0.218055 0.975936i \(-0.430029\pi\)
0.218055 + 0.975936i \(0.430029\pi\)
\(620\) 0 0
\(621\) 2.53804 0.101848
\(622\) −2.14428 −0.0859777
\(623\) −56.7885 −2.27518
\(624\) −0.879764 −0.0352187
\(625\) 0 0
\(626\) 9.93011 0.396887
\(627\) −26.8811 −1.07353
\(628\) −0.845947 −0.0337569
\(629\) −6.66118 −0.265599
\(630\) 0 0
\(631\) −11.6128 −0.462299 −0.231150 0.972918i \(-0.574249\pi\)
−0.231150 + 0.972918i \(0.574249\pi\)
\(632\) 35.7936 1.42379
\(633\) −1.06298 −0.0422497
\(634\) 23.8497 0.947193
\(635\) 0 0
\(636\) −3.17154 −0.125760
\(637\) −4.55826 −0.180605
\(638\) 12.1236 0.479978
\(639\) −1.94137 −0.0767995
\(640\) 0 0
\(641\) −27.2175 −1.07503 −0.537514 0.843255i \(-0.680636\pi\)
−0.537514 + 0.843255i \(0.680636\pi\)
\(642\) −0.618613 −0.0244147
\(643\) 39.3223 1.55072 0.775360 0.631520i \(-0.217569\pi\)
0.775360 + 0.631520i \(0.217569\pi\)
\(644\) 10.3819 0.409104
\(645\) 0 0
\(646\) 7.52313 0.295993
\(647\) −10.0918 −0.396748 −0.198374 0.980126i \(-0.563566\pi\)
−0.198374 + 0.980126i \(0.563566\pi\)
\(648\) 2.71815 0.106779
\(649\) 61.0623 2.39691
\(650\) 0 0
\(651\) 3.06134 0.119983
\(652\) −0.529448 −0.0207348
\(653\) −49.1010 −1.92147 −0.960736 0.277465i \(-0.910506\pi\)
−0.960736 + 0.277465i \(0.910506\pi\)
\(654\) −14.0333 −0.548745
\(655\) 0 0
\(656\) 4.29701 0.167770
\(657\) −3.07607 −0.120009
\(658\) 0.111592 0.00435031
\(659\) 20.5311 0.799780 0.399890 0.916563i \(-0.369048\pi\)
0.399890 + 0.916563i \(0.369048\pi\)
\(660\) 0 0
\(661\) 35.4798 1.38001 0.690003 0.723807i \(-0.257609\pi\)
0.690003 + 0.723807i \(0.257609\pi\)
\(662\) −2.27958 −0.0885985
\(663\) −4.13133 −0.160448
\(664\) 6.17547 0.239655
\(665\) 0 0
\(666\) 2.52468 0.0978295
\(667\) −6.03486 −0.233671
\(668\) 8.85262 0.342518
\(669\) −23.9213 −0.924849
\(670\) 0 0
\(671\) −13.3428 −0.515095
\(672\) 17.7841 0.686037
\(673\) −40.8488 −1.57461 −0.787304 0.616565i \(-0.788524\pi\)
−0.787304 + 0.616565i \(0.788524\pi\)
\(674\) −26.7348 −1.02979
\(675\) 0 0
\(676\) 12.4351 0.478275
\(677\) 20.7335 0.796855 0.398427 0.917200i \(-0.369556\pi\)
0.398427 + 0.917200i \(0.369556\pi\)
\(678\) −0.562165 −0.0215898
\(679\) −10.9233 −0.419199
\(680\) 0 0
\(681\) 22.7268 0.870892
\(682\) 5.09873 0.195241
\(683\) 25.3363 0.969468 0.484734 0.874662i \(-0.338916\pi\)
0.484734 + 0.874662i \(0.338916\pi\)
\(684\) 5.73951 0.219456
\(685\) 0 0
\(686\) −11.5438 −0.440743
\(687\) 9.93641 0.379098
\(688\) −3.10867 −0.118517
\(689\) −4.56170 −0.173787
\(690\) 0 0
\(691\) −4.41093 −0.167800 −0.0838999 0.996474i \(-0.526738\pi\)
−0.0838999 + 0.996474i \(0.526738\pi\)
\(692\) −19.2236 −0.730773
\(693\) −19.1580 −0.727752
\(694\) −19.6484 −0.745843
\(695\) 0 0
\(696\) −6.46313 −0.244984
\(697\) 20.1785 0.764316
\(698\) −3.01691 −0.114192
\(699\) −3.23150 −0.122227
\(700\) 0 0
\(701\) −19.8054 −0.748041 −0.374020 0.927420i \(-0.622021\pi\)
−0.374020 + 0.927420i \(0.622021\pi\)
\(702\) 1.56583 0.0590986
\(703\) 13.3104 0.502012
\(704\) 23.8904 0.900404
\(705\) 0 0
\(706\) 14.2192 0.535145
\(707\) −34.7415 −1.30659
\(708\) −13.0377 −0.489987
\(709\) −20.0167 −0.751742 −0.375871 0.926672i \(-0.622657\pi\)
−0.375871 + 0.926672i \(0.622657\pi\)
\(710\) 0 0
\(711\) 13.1684 0.493853
\(712\) 50.4223 1.88965
\(713\) −2.53804 −0.0950502
\(714\) 5.36169 0.200656
\(715\) 0 0
\(716\) 0.135813 0.00507558
\(717\) 12.0594 0.450365
\(718\) 3.97078 0.148188
\(719\) 30.3316 1.13118 0.565589 0.824687i \(-0.308649\pi\)
0.565589 + 0.824687i \(0.308649\pi\)
\(720\) 0 0
\(721\) 13.4327 0.500259
\(722\) 0.447436 0.0166519
\(723\) 4.37449 0.162689
\(724\) 26.2363 0.975063
\(725\) 0 0
\(726\) −22.9459 −0.851602
\(727\) −44.9071 −1.66551 −0.832756 0.553640i \(-0.813239\pi\)
−0.832756 + 0.553640i \(0.813239\pi\)
\(728\) 15.9922 0.592709
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −14.5981 −0.539932
\(732\) 2.84889 0.105298
\(733\) 43.7146 1.61463 0.807317 0.590117i \(-0.200919\pi\)
0.807317 + 0.590117i \(0.200919\pi\)
\(734\) −14.7549 −0.544615
\(735\) 0 0
\(736\) −14.7441 −0.543476
\(737\) 60.5910 2.23190
\(738\) −7.64796 −0.281525
\(739\) −3.82705 −0.140780 −0.0703902 0.997520i \(-0.522424\pi\)
−0.0703902 + 0.997520i \(0.522424\pi\)
\(740\) 0 0
\(741\) 8.25525 0.303264
\(742\) 5.92022 0.217338
\(743\) 0.238858 0.00876284 0.00438142 0.999990i \(-0.498605\pi\)
0.00438142 + 0.999990i \(0.498605\pi\)
\(744\) −2.71815 −0.0996522
\(745\) 0 0
\(746\) 4.20535 0.153969
\(747\) 2.27194 0.0831258
\(748\) −17.9752 −0.657238
\(749\) −2.32438 −0.0849310
\(750\) 0 0
\(751\) 0.229588 0.00837780 0.00418890 0.999991i \(-0.498667\pi\)
0.00418890 + 0.999991i \(0.498667\pi\)
\(752\) 0.0204806 0.000746850 0
\(753\) −14.4610 −0.526988
\(754\) −3.72319 −0.135590
\(755\) 0 0
\(756\) 4.09052 0.148771
\(757\) −14.5670 −0.529448 −0.264724 0.964324i \(-0.585281\pi\)
−0.264724 + 0.964324i \(0.585281\pi\)
\(758\) 7.42470 0.269677
\(759\) 15.8832 0.576522
\(760\) 0 0
\(761\) −17.4223 −0.631558 −0.315779 0.948833i \(-0.602266\pi\)
−0.315779 + 0.948833i \(0.602266\pi\)
\(762\) −10.5576 −0.382462
\(763\) −52.7287 −1.90891
\(764\) −2.82304 −0.102134
\(765\) 0 0
\(766\) 4.49016 0.162236
\(767\) −18.7524 −0.677110
\(768\) −14.5671 −0.525646
\(769\) −5.67168 −0.204526 −0.102263 0.994757i \(-0.532608\pi\)
−0.102263 + 0.994757i \(0.532608\pi\)
\(770\) 0 0
\(771\) −6.75766 −0.243371
\(772\) −23.9264 −0.861130
\(773\) −1.33846 −0.0481410 −0.0240705 0.999710i \(-0.507663\pi\)
−0.0240705 + 0.999710i \(0.507663\pi\)
\(774\) 5.53291 0.198876
\(775\) 0 0
\(776\) 9.69879 0.348166
\(777\) 9.48626 0.340318
\(778\) 21.0501 0.754684
\(779\) −40.3209 −1.44465
\(780\) 0 0
\(781\) −12.1492 −0.434733
\(782\) −4.44517 −0.158959
\(783\) −2.37777 −0.0849744
\(784\) 1.08573 0.0387759
\(785\) 0 0
\(786\) −8.25122 −0.294311
\(787\) −9.06643 −0.323183 −0.161592 0.986858i \(-0.551663\pi\)
−0.161592 + 0.986858i \(0.551663\pi\)
\(788\) 4.32820 0.154186
\(789\) 21.5901 0.768628
\(790\) 0 0
\(791\) −2.11228 −0.0751041
\(792\) 17.0103 0.604435
\(793\) 4.09762 0.145511
\(794\) −21.5565 −0.765010
\(795\) 0 0
\(796\) 15.9577 0.565605
\(797\) 42.0326 1.48887 0.744435 0.667695i \(-0.232719\pi\)
0.744435 + 0.667695i \(0.232719\pi\)
\(798\) −10.7138 −0.379263
\(799\) 0.0961758 0.00340246
\(800\) 0 0
\(801\) 18.5502 0.655440
\(802\) −26.4035 −0.932338
\(803\) −19.2502 −0.679325
\(804\) −12.9371 −0.456255
\(805\) 0 0
\(806\) −1.56583 −0.0551541
\(807\) 26.7921 0.943128
\(808\) 30.8468 1.08519
\(809\) 8.36057 0.293942 0.146971 0.989141i \(-0.453048\pi\)
0.146971 + 0.989141i \(0.453048\pi\)
\(810\) 0 0
\(811\) −8.34955 −0.293192 −0.146596 0.989196i \(-0.546832\pi\)
−0.146596 + 0.989196i \(0.546832\pi\)
\(812\) −9.72629 −0.341326
\(813\) 14.5309 0.509622
\(814\) 15.7996 0.553776
\(815\) 0 0
\(816\) 0.984036 0.0344481
\(817\) 29.1701 1.02053
\(818\) 25.3979 0.888017
\(819\) 5.88347 0.205585
\(820\) 0 0
\(821\) −38.5533 −1.34552 −0.672760 0.739861i \(-0.734891\pi\)
−0.672760 + 0.739861i \(0.734891\pi\)
\(822\) 12.8807 0.449266
\(823\) −13.0332 −0.454307 −0.227154 0.973859i \(-0.572942\pi\)
−0.227154 + 0.973859i \(0.572942\pi\)
\(824\) −11.9268 −0.415490
\(825\) 0 0
\(826\) 24.3371 0.846796
\(827\) −21.5679 −0.749988 −0.374994 0.927027i \(-0.622355\pi\)
−0.374994 + 0.927027i \(0.622355\pi\)
\(828\) −3.39129 −0.117855
\(829\) −36.3699 −1.26318 −0.631589 0.775304i \(-0.717597\pi\)
−0.631589 + 0.775304i \(0.717597\pi\)
\(830\) 0 0
\(831\) 28.4512 0.986961
\(832\) −7.33681 −0.254358
\(833\) 5.09851 0.176653
\(834\) −18.9409 −0.655870
\(835\) 0 0
\(836\) 35.9181 1.24226
\(837\) −1.00000 −0.0345651
\(838\) −27.1269 −0.937083
\(839\) 22.5371 0.778066 0.389033 0.921224i \(-0.372809\pi\)
0.389033 + 0.921224i \(0.372809\pi\)
\(840\) 0 0
\(841\) −23.3462 −0.805042
\(842\) 24.9079 0.858384
\(843\) 9.95480 0.342862
\(844\) 1.42034 0.0488901
\(845\) 0 0
\(846\) −0.0364520 −0.00125325
\(847\) −86.2170 −2.96245
\(848\) 1.08654 0.0373121
\(849\) −20.4848 −0.703037
\(850\) 0 0
\(851\) −7.86469 −0.269598
\(852\) 2.59403 0.0888702
\(853\) −13.9666 −0.478206 −0.239103 0.970994i \(-0.576853\pi\)
−0.239103 + 0.970994i \(0.576853\pi\)
\(854\) −5.31794 −0.181976
\(855\) 0 0
\(856\) 2.06381 0.0705395
\(857\) 21.2802 0.726917 0.363459 0.931610i \(-0.381596\pi\)
0.363459 + 0.931610i \(0.381596\pi\)
\(858\) 9.79906 0.334535
\(859\) −25.1971 −0.859715 −0.429857 0.902897i \(-0.641436\pi\)
−0.429857 + 0.902897i \(0.641436\pi\)
\(860\) 0 0
\(861\) −28.7365 −0.979337
\(862\) −14.4031 −0.490572
\(863\) 11.5544 0.393315 0.196658 0.980472i \(-0.436991\pi\)
0.196658 + 0.980472i \(0.436991\pi\)
\(864\) −5.80926 −0.197635
\(865\) 0 0
\(866\) 5.04716 0.171509
\(867\) −12.3790 −0.420413
\(868\) −4.09052 −0.138841
\(869\) 82.4084 2.79551
\(870\) 0 0
\(871\) −18.6076 −0.630496
\(872\) 46.8176 1.58544
\(873\) 3.56816 0.120764
\(874\) 8.88237 0.300451
\(875\) 0 0
\(876\) 4.11021 0.138871
\(877\) −8.31898 −0.280912 −0.140456 0.990087i \(-0.544857\pi\)
−0.140456 + 0.990087i \(0.544857\pi\)
\(878\) 23.6454 0.797994
\(879\) −4.84395 −0.163382
\(880\) 0 0
\(881\) 33.9387 1.14342 0.571712 0.820454i \(-0.306279\pi\)
0.571712 + 0.820454i \(0.306279\pi\)
\(882\) −1.93241 −0.0650677
\(883\) 8.11857 0.273212 0.136606 0.990625i \(-0.456381\pi\)
0.136606 + 0.990625i \(0.456381\pi\)
\(884\) 5.52022 0.185665
\(885\) 0 0
\(886\) 7.37434 0.247746
\(887\) 24.3414 0.817306 0.408653 0.912690i \(-0.365999\pi\)
0.408653 + 0.912690i \(0.365999\pi\)
\(888\) −8.42282 −0.282651
\(889\) −39.6692 −1.33046
\(890\) 0 0
\(891\) 6.25805 0.209653
\(892\) 31.9632 1.07021
\(893\) −0.192179 −0.00643103
\(894\) 9.35036 0.312723
\(895\) 0 0
\(896\) −26.0464 −0.870150
\(897\) −4.87776 −0.162864
\(898\) 2.75010 0.0917721
\(899\) 2.37777 0.0793029
\(900\) 0 0
\(901\) 5.10236 0.169984
\(902\) −47.8613 −1.59361
\(903\) 20.7894 0.691827
\(904\) 1.87549 0.0623777
\(905\) 0 0
\(906\) 12.5958 0.418466
\(907\) −41.2773 −1.37059 −0.685296 0.728265i \(-0.740327\pi\)
−0.685296 + 0.728265i \(0.740327\pi\)
\(908\) −30.3672 −1.00777
\(909\) 11.3485 0.376405
\(910\) 0 0
\(911\) −22.2389 −0.736808 −0.368404 0.929666i \(-0.620096\pi\)
−0.368404 + 0.929666i \(0.620096\pi\)
\(912\) −1.96631 −0.0651110
\(913\) 14.2179 0.470544
\(914\) −25.6626 −0.848844
\(915\) 0 0
\(916\) −13.2769 −0.438681
\(917\) −31.0032 −1.02382
\(918\) −1.75142 −0.0578055
\(919\) 3.34964 0.110494 0.0552472 0.998473i \(-0.482405\pi\)
0.0552472 + 0.998473i \(0.482405\pi\)
\(920\) 0 0
\(921\) −32.4859 −1.07045
\(922\) −3.91594 −0.128965
\(923\) 3.73105 0.122809
\(924\) 25.5987 0.842134
\(925\) 0 0
\(926\) −32.2968 −1.06134
\(927\) −4.38784 −0.144116
\(928\) 13.8131 0.453436
\(929\) −39.8614 −1.30781 −0.653905 0.756576i \(-0.726871\pi\)
−0.653905 + 0.756576i \(0.726871\pi\)
\(930\) 0 0
\(931\) −10.1879 −0.333895
\(932\) 4.31789 0.141437
\(933\) 2.63183 0.0861622
\(934\) −31.1707 −1.01994
\(935\) 0 0
\(936\) −5.22391 −0.170749
\(937\) 26.1149 0.853135 0.426568 0.904456i \(-0.359723\pi\)
0.426568 + 0.904456i \(0.359723\pi\)
\(938\) 24.1492 0.788500
\(939\) −12.1880 −0.397739
\(940\) 0 0
\(941\) −13.4578 −0.438711 −0.219355 0.975645i \(-0.570395\pi\)
−0.219355 + 0.975645i \(0.570395\pi\)
\(942\) −0.515821 −0.0168064
\(943\) 23.8243 0.775826
\(944\) 4.46661 0.145376
\(945\) 0 0
\(946\) 34.6252 1.12576
\(947\) 32.6693 1.06161 0.530804 0.847494i \(-0.321890\pi\)
0.530804 + 0.847494i \(0.321890\pi\)
\(948\) −17.5954 −0.571472
\(949\) 5.91179 0.191905
\(950\) 0 0
\(951\) −29.2725 −0.949226
\(952\) −17.8876 −0.579740
\(953\) 46.0674 1.49227 0.746135 0.665794i \(-0.231907\pi\)
0.746135 + 0.665794i \(0.231907\pi\)
\(954\) −1.93387 −0.0626113
\(955\) 0 0
\(956\) −16.1136 −0.521149
\(957\) −14.8802 −0.481008
\(958\) −8.47836 −0.273923
\(959\) 48.3980 1.56285
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −4.85210 −0.156438
\(963\) 0.759270 0.0244671
\(964\) −5.84513 −0.188259
\(965\) 0 0
\(966\) 6.33042 0.203678
\(967\) 21.1842 0.681239 0.340620 0.940201i \(-0.389363\pi\)
0.340620 + 0.940201i \(0.389363\pi\)
\(968\) 76.5518 2.46047
\(969\) −9.23369 −0.296629
\(970\) 0 0
\(971\) 10.2935 0.330335 0.165167 0.986266i \(-0.447184\pi\)
0.165167 + 0.986266i \(0.447184\pi\)
\(972\) −1.33619 −0.0428582
\(973\) −71.1687 −2.28156
\(974\) 25.4729 0.816205
\(975\) 0 0
\(976\) −0.976007 −0.0312412
\(977\) −38.6604 −1.23686 −0.618428 0.785841i \(-0.712230\pi\)
−0.618428 + 0.785841i \(0.712230\pi\)
\(978\) −0.322834 −0.0103231
\(979\) 116.088 3.71019
\(980\) 0 0
\(981\) 17.2241 0.549922
\(982\) −30.2351 −0.964840
\(983\) −29.1883 −0.930961 −0.465480 0.885058i \(-0.654118\pi\)
−0.465480 + 0.885058i \(0.654118\pi\)
\(984\) 25.5150 0.813389
\(985\) 0 0
\(986\) 4.16447 0.132624
\(987\) −0.136965 −0.00435965
\(988\) −11.0306 −0.350929
\(989\) −17.2357 −0.548062
\(990\) 0 0
\(991\) 1.83184 0.0581903 0.0290951 0.999577i \(-0.490737\pi\)
0.0290951 + 0.999577i \(0.490737\pi\)
\(992\) 5.80926 0.184444
\(993\) 2.79790 0.0887887
\(994\) −4.84221 −0.153585
\(995\) 0 0
\(996\) −3.03573 −0.0961908
\(997\) −48.0354 −1.52130 −0.760648 0.649165i \(-0.775118\pi\)
−0.760648 + 0.649165i \(0.775118\pi\)
\(998\) 12.6255 0.399654
\(999\) −3.09873 −0.0980395
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.a.bb.1.2 yes 6
3.2 odd 2 6975.2.a.ca.1.5 6
5.2 odd 4 2325.2.c.r.1024.5 12
5.3 odd 4 2325.2.c.r.1024.8 12
5.4 even 2 2325.2.a.y.1.5 6
15.14 odd 2 6975.2.a.cc.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2325.2.a.y.1.5 6 5.4 even 2
2325.2.a.bb.1.2 yes 6 1.1 even 1 trivial
2325.2.c.r.1024.5 12 5.2 odd 4
2325.2.c.r.1024.8 12 5.3 odd 4
6975.2.a.ca.1.5 6 3.2 odd 2
6975.2.a.cc.1.2 6 15.14 odd 2