Properties

Label 2325.1.u.d
Level $2325$
Weight $1$
Character orbit 2325.u
Analytic conductor $1.160$
Analytic rank $0$
Dimension $4$
Projective image $D_{3}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,1,Mod(1451,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1451"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2325.u (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.16032615437\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.14415.1
Artin image: $S_3\times C_{12}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{24} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12}^{3} q^{2} + \zeta_{12} q^{3} - \zeta_{12}^{4} q^{6} - \zeta_{12}^{3} q^{8} + \zeta_{12}^{2} q^{9} - q^{16} + \zeta_{12} q^{17} - \zeta_{12}^{5} q^{18} + \zeta_{12}^{4} q^{19} - 2 \zeta_{12}^{3} q^{23} + \cdots - \zeta_{12}^{5} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{6} + 2 q^{9} - 4 q^{16} - 2 q^{19} + 2 q^{24} + 4 q^{31} + 2 q^{34} - 8 q^{46} + 2 q^{49} + 2 q^{51} + 4 q^{54} - 4 q^{61} - 4 q^{64} + 4 q^{69} - 2 q^{79} - 2 q^{81} - 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2325\mathbb{Z}\right)^\times\).

\(n\) \(652\) \(776\) \(1801\)
\(\chi(n)\) \(1\) \(-1\) \(-\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1451.1
−0.866025 + 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
1.00000i −0.866025 + 0.500000i 0 0 0.500000 + 0.866025i 0 1.00000i 0.500000 0.866025i 0
1451.2 1.00000i 0.866025 0.500000i 0 0 0.500000 + 0.866025i 0 1.00000i 0.500000 0.866025i 0
2051.1 1.00000i 0.866025 + 0.500000i 0 0 0.500000 0.866025i 0 1.00000i 0.500000 + 0.866025i 0
2051.2 1.00000i −0.866025 0.500000i 0 0 0.500000 0.866025i 0 1.00000i 0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
31.c even 3 1 inner
93.h odd 6 1 inner
155.j even 6 1 inner
465.u odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2325.1.u.d 4
3.b odd 2 1 inner 2325.1.u.d 4
5.b even 2 1 inner 2325.1.u.d 4
5.c odd 4 1 465.1.u.a 2
5.c odd 4 1 465.1.u.b yes 2
15.d odd 2 1 CM 2325.1.u.d 4
15.e even 4 1 465.1.u.a 2
15.e even 4 1 465.1.u.b yes 2
31.c even 3 1 inner 2325.1.u.d 4
93.h odd 6 1 inner 2325.1.u.d 4
155.j even 6 1 inner 2325.1.u.d 4
155.o odd 12 1 465.1.u.a 2
155.o odd 12 1 465.1.u.b yes 2
465.u odd 6 1 inner 2325.1.u.d 4
465.be even 12 1 465.1.u.a 2
465.be even 12 1 465.1.u.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
465.1.u.a 2 5.c odd 4 1
465.1.u.a 2 15.e even 4 1
465.1.u.a 2 155.o odd 12 1
465.1.u.a 2 465.be even 12 1
465.1.u.b yes 2 5.c odd 4 1
465.1.u.b yes 2 15.e even 4 1
465.1.u.b yes 2 155.o odd 12 1
465.1.u.b yes 2 465.be even 12 1
2325.1.u.d 4 1.a even 1 1 trivial
2325.1.u.d 4 3.b odd 2 1 inner
2325.1.u.d 4 5.b even 2 1 inner
2325.1.u.d 4 15.d odd 2 1 CM
2325.1.u.d 4 31.c even 3 1 inner
2325.1.u.d 4 93.h odd 6 1 inner
2325.1.u.d 4 155.j even 6 1 inner
2325.1.u.d 4 465.u odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2325, [\chi])\):

\( T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$19$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T - 1)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T + 1)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less