Properties

Label 2320.4.a.f.1.1
Level $2320$
Weight $4$
Character 2320.1
Self dual yes
Analytic conductor $136.884$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,4,Mod(1,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(136.884431213\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{3} -5.00000 q^{5} +14.0000 q^{7} +37.0000 q^{9} +O(q^{10})\) \(q+8.00000 q^{3} -5.00000 q^{5} +14.0000 q^{7} +37.0000 q^{9} -62.0000 q^{11} +42.0000 q^{13} -40.0000 q^{15} -114.000 q^{17} +70.0000 q^{19} +112.000 q^{21} -62.0000 q^{23} +25.0000 q^{25} +80.0000 q^{27} -29.0000 q^{29} -142.000 q^{31} -496.000 q^{33} -70.0000 q^{35} +146.000 q^{37} +336.000 q^{39} +162.000 q^{41} -352.000 q^{43} -185.000 q^{45} +444.000 q^{47} -147.000 q^{49} -912.000 q^{51} -238.000 q^{53} +310.000 q^{55} +560.000 q^{57} -840.000 q^{59} +2.00000 q^{61} +518.000 q^{63} -210.000 q^{65} +154.000 q^{67} -496.000 q^{69} -892.000 q^{71} -38.0000 q^{73} +200.000 q^{75} -868.000 q^{77} -1050.00 q^{79} -359.000 q^{81} +778.000 q^{83} +570.000 q^{85} -232.000 q^{87} +1410.00 q^{89} +588.000 q^{91} -1136.00 q^{93} -350.000 q^{95} +466.000 q^{97} -2294.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.00000 1.53960 0.769800 0.638285i \(-0.220356\pi\)
0.769800 + 0.638285i \(0.220356\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 14.0000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 37.0000 1.37037
\(10\) 0 0
\(11\) −62.0000 −1.69943 −0.849714 0.527244i \(-0.823225\pi\)
−0.849714 + 0.527244i \(0.823225\pi\)
\(12\) 0 0
\(13\) 42.0000 0.896054 0.448027 0.894020i \(-0.352127\pi\)
0.448027 + 0.894020i \(0.352127\pi\)
\(14\) 0 0
\(15\) −40.0000 −0.688530
\(16\) 0 0
\(17\) −114.000 −1.62642 −0.813208 0.581974i \(-0.802281\pi\)
−0.813208 + 0.581974i \(0.802281\pi\)
\(18\) 0 0
\(19\) 70.0000 0.845216 0.422608 0.906313i \(-0.361115\pi\)
0.422608 + 0.906313i \(0.361115\pi\)
\(20\) 0 0
\(21\) 112.000 1.16383
\(22\) 0 0
\(23\) −62.0000 −0.562082 −0.281041 0.959696i \(-0.590680\pi\)
−0.281041 + 0.959696i \(0.590680\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 80.0000 0.570222
\(28\) 0 0
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −142.000 −0.822708 −0.411354 0.911476i \(-0.634944\pi\)
−0.411354 + 0.911476i \(0.634944\pi\)
\(32\) 0 0
\(33\) −496.000 −2.61644
\(34\) 0 0
\(35\) −70.0000 −0.338062
\(36\) 0 0
\(37\) 146.000 0.648710 0.324355 0.945936i \(-0.394853\pi\)
0.324355 + 0.945936i \(0.394853\pi\)
\(38\) 0 0
\(39\) 336.000 1.37957
\(40\) 0 0
\(41\) 162.000 0.617077 0.308538 0.951212i \(-0.400160\pi\)
0.308538 + 0.951212i \(0.400160\pi\)
\(42\) 0 0
\(43\) −352.000 −1.24836 −0.624180 0.781280i \(-0.714567\pi\)
−0.624180 + 0.781280i \(0.714567\pi\)
\(44\) 0 0
\(45\) −185.000 −0.612848
\(46\) 0 0
\(47\) 444.000 1.37796 0.688979 0.724781i \(-0.258059\pi\)
0.688979 + 0.724781i \(0.258059\pi\)
\(48\) 0 0
\(49\) −147.000 −0.428571
\(50\) 0 0
\(51\) −912.000 −2.50403
\(52\) 0 0
\(53\) −238.000 −0.616827 −0.308413 0.951252i \(-0.599798\pi\)
−0.308413 + 0.951252i \(0.599798\pi\)
\(54\) 0 0
\(55\) 310.000 0.760007
\(56\) 0 0
\(57\) 560.000 1.30129
\(58\) 0 0
\(59\) −840.000 −1.85354 −0.926769 0.375633i \(-0.877425\pi\)
−0.926769 + 0.375633i \(0.877425\pi\)
\(60\) 0 0
\(61\) 2.00000 0.00419793 0.00209897 0.999998i \(-0.499332\pi\)
0.00209897 + 0.999998i \(0.499332\pi\)
\(62\) 0 0
\(63\) 518.000 1.03590
\(64\) 0 0
\(65\) −210.000 −0.400728
\(66\) 0 0
\(67\) 154.000 0.280807 0.140404 0.990094i \(-0.455160\pi\)
0.140404 + 0.990094i \(0.455160\pi\)
\(68\) 0 0
\(69\) −496.000 −0.865382
\(70\) 0 0
\(71\) −892.000 −1.49100 −0.745499 0.666506i \(-0.767789\pi\)
−0.745499 + 0.666506i \(0.767789\pi\)
\(72\) 0 0
\(73\) −38.0000 −0.0609255 −0.0304628 0.999536i \(-0.509698\pi\)
−0.0304628 + 0.999536i \(0.509698\pi\)
\(74\) 0 0
\(75\) 200.000 0.307920
\(76\) 0 0
\(77\) −868.000 −1.28465
\(78\) 0 0
\(79\) −1050.00 −1.49537 −0.747685 0.664054i \(-0.768835\pi\)
−0.747685 + 0.664054i \(0.768835\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) 0 0
\(83\) 778.000 1.02887 0.514437 0.857528i \(-0.328001\pi\)
0.514437 + 0.857528i \(0.328001\pi\)
\(84\) 0 0
\(85\) 570.000 0.727355
\(86\) 0 0
\(87\) −232.000 −0.285897
\(88\) 0 0
\(89\) 1410.00 1.67932 0.839661 0.543110i \(-0.182754\pi\)
0.839661 + 0.543110i \(0.182754\pi\)
\(90\) 0 0
\(91\) 588.000 0.677353
\(92\) 0 0
\(93\) −1136.00 −1.26664
\(94\) 0 0
\(95\) −350.000 −0.377992
\(96\) 0 0
\(97\) 466.000 0.487785 0.243892 0.969802i \(-0.421576\pi\)
0.243892 + 0.969802i \(0.421576\pi\)
\(98\) 0 0
\(99\) −2294.00 −2.32885
\(100\) 0 0
\(101\) −878.000 −0.864993 −0.432496 0.901636i \(-0.642367\pi\)
−0.432496 + 0.901636i \(0.642367\pi\)
\(102\) 0 0
\(103\) −1062.00 −1.01594 −0.507971 0.861374i \(-0.669604\pi\)
−0.507971 + 0.861374i \(0.669604\pi\)
\(104\) 0 0
\(105\) −560.000 −0.520480
\(106\) 0 0
\(107\) −1826.00 −1.64978 −0.824888 0.565296i \(-0.808762\pi\)
−0.824888 + 0.565296i \(0.808762\pi\)
\(108\) 0 0
\(109\) −1270.00 −1.11600 −0.558000 0.829841i \(-0.688431\pi\)
−0.558000 + 0.829841i \(0.688431\pi\)
\(110\) 0 0
\(111\) 1168.00 0.998754
\(112\) 0 0
\(113\) 82.0000 0.0682647 0.0341324 0.999417i \(-0.489133\pi\)
0.0341324 + 0.999417i \(0.489133\pi\)
\(114\) 0 0
\(115\) 310.000 0.251371
\(116\) 0 0
\(117\) 1554.00 1.22793
\(118\) 0 0
\(119\) −1596.00 −1.22945
\(120\) 0 0
\(121\) 2513.00 1.88805
\(122\) 0 0
\(123\) 1296.00 0.950052
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −296.000 −0.206817 −0.103408 0.994639i \(-0.532975\pi\)
−0.103408 + 0.994639i \(0.532975\pi\)
\(128\) 0 0
\(129\) −2816.00 −1.92198
\(130\) 0 0
\(131\) 198.000 0.132056 0.0660280 0.997818i \(-0.478967\pi\)
0.0660280 + 0.997818i \(0.478967\pi\)
\(132\) 0 0
\(133\) 980.000 0.638923
\(134\) 0 0
\(135\) −400.000 −0.255011
\(136\) 0 0
\(137\) 166.000 0.103521 0.0517604 0.998660i \(-0.483517\pi\)
0.0517604 + 0.998660i \(0.483517\pi\)
\(138\) 0 0
\(139\) 80.0000 0.0488166 0.0244083 0.999702i \(-0.492230\pi\)
0.0244083 + 0.999702i \(0.492230\pi\)
\(140\) 0 0
\(141\) 3552.00 2.12151
\(142\) 0 0
\(143\) −2604.00 −1.52278
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 0 0
\(147\) −1176.00 −0.659829
\(148\) 0 0
\(149\) 3150.00 1.73193 0.865967 0.500102i \(-0.166704\pi\)
0.865967 + 0.500102i \(0.166704\pi\)
\(150\) 0 0
\(151\) 1868.00 1.00673 0.503363 0.864075i \(-0.332096\pi\)
0.503363 + 0.864075i \(0.332096\pi\)
\(152\) 0 0
\(153\) −4218.00 −2.22879
\(154\) 0 0
\(155\) 710.000 0.367926
\(156\) 0 0
\(157\) −354.000 −0.179951 −0.0899754 0.995944i \(-0.528679\pi\)
−0.0899754 + 0.995944i \(0.528679\pi\)
\(158\) 0 0
\(159\) −1904.00 −0.949667
\(160\) 0 0
\(161\) −868.000 −0.424894
\(162\) 0 0
\(163\) 2268.00 1.08984 0.544919 0.838489i \(-0.316561\pi\)
0.544919 + 0.838489i \(0.316561\pi\)
\(164\) 0 0
\(165\) 2480.00 1.17011
\(166\) 0 0
\(167\) −2046.00 −0.948049 −0.474025 0.880512i \(-0.657199\pi\)
−0.474025 + 0.880512i \(0.657199\pi\)
\(168\) 0 0
\(169\) −433.000 −0.197087
\(170\) 0 0
\(171\) 2590.00 1.15826
\(172\) 0 0
\(173\) −2118.00 −0.930801 −0.465400 0.885100i \(-0.654090\pi\)
−0.465400 + 0.885100i \(0.654090\pi\)
\(174\) 0 0
\(175\) 350.000 0.151186
\(176\) 0 0
\(177\) −6720.00 −2.85371
\(178\) 0 0
\(179\) −1260.00 −0.526127 −0.263064 0.964778i \(-0.584733\pi\)
−0.263064 + 0.964778i \(0.584733\pi\)
\(180\) 0 0
\(181\) 1342.00 0.551105 0.275553 0.961286i \(-0.411139\pi\)
0.275553 + 0.961286i \(0.411139\pi\)
\(182\) 0 0
\(183\) 16.0000 0.00646314
\(184\) 0 0
\(185\) −730.000 −0.290112
\(186\) 0 0
\(187\) 7068.00 2.76398
\(188\) 0 0
\(189\) 1120.00 0.431048
\(190\) 0 0
\(191\) −1622.00 −0.614470 −0.307235 0.951634i \(-0.599404\pi\)
−0.307235 + 0.951634i \(0.599404\pi\)
\(192\) 0 0
\(193\) −4058.00 −1.51348 −0.756739 0.653717i \(-0.773209\pi\)
−0.756739 + 0.653717i \(0.773209\pi\)
\(194\) 0 0
\(195\) −1680.00 −0.616961
\(196\) 0 0
\(197\) 266.000 0.0962016 0.0481008 0.998842i \(-0.484683\pi\)
0.0481008 + 0.998842i \(0.484683\pi\)
\(198\) 0 0
\(199\) 2220.00 0.790812 0.395406 0.918506i \(-0.370604\pi\)
0.395406 + 0.918506i \(0.370604\pi\)
\(200\) 0 0
\(201\) 1232.00 0.432331
\(202\) 0 0
\(203\) −406.000 −0.140372
\(204\) 0 0
\(205\) −810.000 −0.275965
\(206\) 0 0
\(207\) −2294.00 −0.770261
\(208\) 0 0
\(209\) −4340.00 −1.43638
\(210\) 0 0
\(211\) 3478.00 1.13476 0.567382 0.823454i \(-0.307956\pi\)
0.567382 + 0.823454i \(0.307956\pi\)
\(212\) 0 0
\(213\) −7136.00 −2.29554
\(214\) 0 0
\(215\) 1760.00 0.558284
\(216\) 0 0
\(217\) −1988.00 −0.621909
\(218\) 0 0
\(219\) −304.000 −0.0938010
\(220\) 0 0
\(221\) −4788.00 −1.45736
\(222\) 0 0
\(223\) −6622.00 −1.98853 −0.994264 0.106950i \(-0.965891\pi\)
−0.994264 + 0.106950i \(0.965891\pi\)
\(224\) 0 0
\(225\) 925.000 0.274074
\(226\) 0 0
\(227\) −3666.00 −1.07190 −0.535949 0.844250i \(-0.680046\pi\)
−0.535949 + 0.844250i \(0.680046\pi\)
\(228\) 0 0
\(229\) −350.000 −0.100998 −0.0504992 0.998724i \(-0.516081\pi\)
−0.0504992 + 0.998724i \(0.516081\pi\)
\(230\) 0 0
\(231\) −6944.00 −1.97784
\(232\) 0 0
\(233\) 2.00000 0.000562336 0 0.000281168 1.00000i \(-0.499911\pi\)
0.000281168 1.00000i \(0.499911\pi\)
\(234\) 0 0
\(235\) −2220.00 −0.616242
\(236\) 0 0
\(237\) −8400.00 −2.30227
\(238\) 0 0
\(239\) −700.000 −0.189453 −0.0947264 0.995503i \(-0.530198\pi\)
−0.0947264 + 0.995503i \(0.530198\pi\)
\(240\) 0 0
\(241\) −1018.00 −0.272096 −0.136048 0.990702i \(-0.543440\pi\)
−0.136048 + 0.990702i \(0.543440\pi\)
\(242\) 0 0
\(243\) −5032.00 −1.32841
\(244\) 0 0
\(245\) 735.000 0.191663
\(246\) 0 0
\(247\) 2940.00 0.757359
\(248\) 0 0
\(249\) 6224.00 1.58406
\(250\) 0 0
\(251\) −7102.00 −1.78595 −0.892977 0.450103i \(-0.851387\pi\)
−0.892977 + 0.450103i \(0.851387\pi\)
\(252\) 0 0
\(253\) 3844.00 0.955218
\(254\) 0 0
\(255\) 4560.00 1.11984
\(256\) 0 0
\(257\) 5906.00 1.43349 0.716743 0.697337i \(-0.245632\pi\)
0.716743 + 0.697337i \(0.245632\pi\)
\(258\) 0 0
\(259\) 2044.00 0.490378
\(260\) 0 0
\(261\) −1073.00 −0.254471
\(262\) 0 0
\(263\) −6252.00 −1.46584 −0.732918 0.680317i \(-0.761842\pi\)
−0.732918 + 0.680317i \(0.761842\pi\)
\(264\) 0 0
\(265\) 1190.00 0.275853
\(266\) 0 0
\(267\) 11280.0 2.58549
\(268\) 0 0
\(269\) −7230.00 −1.63874 −0.819370 0.573266i \(-0.805676\pi\)
−0.819370 + 0.573266i \(0.805676\pi\)
\(270\) 0 0
\(271\) 7838.00 1.75692 0.878459 0.477818i \(-0.158572\pi\)
0.878459 + 0.477818i \(0.158572\pi\)
\(272\) 0 0
\(273\) 4704.00 1.04285
\(274\) 0 0
\(275\) −1550.00 −0.339886
\(276\) 0 0
\(277\) 5386.00 1.16828 0.584140 0.811653i \(-0.301432\pi\)
0.584140 + 0.811653i \(0.301432\pi\)
\(278\) 0 0
\(279\) −5254.00 −1.12741
\(280\) 0 0
\(281\) 6502.00 1.38034 0.690172 0.723645i \(-0.257535\pi\)
0.690172 + 0.723645i \(0.257535\pi\)
\(282\) 0 0
\(283\) 6478.00 1.36070 0.680348 0.732889i \(-0.261829\pi\)
0.680348 + 0.732889i \(0.261829\pi\)
\(284\) 0 0
\(285\) −2800.00 −0.581957
\(286\) 0 0
\(287\) 2268.00 0.466466
\(288\) 0 0
\(289\) 8083.00 1.64523
\(290\) 0 0
\(291\) 3728.00 0.750994
\(292\) 0 0
\(293\) −6858.00 −1.36740 −0.683701 0.729762i \(-0.739631\pi\)
−0.683701 + 0.729762i \(0.739631\pi\)
\(294\) 0 0
\(295\) 4200.00 0.828927
\(296\) 0 0
\(297\) −4960.00 −0.969052
\(298\) 0 0
\(299\) −2604.00 −0.503656
\(300\) 0 0
\(301\) −4928.00 −0.943672
\(302\) 0 0
\(303\) −7024.00 −1.33174
\(304\) 0 0
\(305\) −10.0000 −0.00187737
\(306\) 0 0
\(307\) 3684.00 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) −8496.00 −1.56414
\(310\) 0 0
\(311\) 138.000 0.0251616 0.0125808 0.999921i \(-0.495995\pi\)
0.0125808 + 0.999921i \(0.495995\pi\)
\(312\) 0 0
\(313\) 8802.00 1.58952 0.794758 0.606927i \(-0.207598\pi\)
0.794758 + 0.606927i \(0.207598\pi\)
\(314\) 0 0
\(315\) −2590.00 −0.463270
\(316\) 0 0
\(317\) 5546.00 0.982632 0.491316 0.870981i \(-0.336516\pi\)
0.491316 + 0.870981i \(0.336516\pi\)
\(318\) 0 0
\(319\) 1798.00 0.315576
\(320\) 0 0
\(321\) −14608.0 −2.54000
\(322\) 0 0
\(323\) −7980.00 −1.37467
\(324\) 0 0
\(325\) 1050.00 0.179211
\(326\) 0 0
\(327\) −10160.0 −1.71819
\(328\) 0 0
\(329\) 6216.00 1.04164
\(330\) 0 0
\(331\) −3082.00 −0.511789 −0.255894 0.966705i \(-0.582370\pi\)
−0.255894 + 0.966705i \(0.582370\pi\)
\(332\) 0 0
\(333\) 5402.00 0.888972
\(334\) 0 0
\(335\) −770.000 −0.125581
\(336\) 0 0
\(337\) −6414.00 −1.03677 −0.518387 0.855146i \(-0.673467\pi\)
−0.518387 + 0.855146i \(0.673467\pi\)
\(338\) 0 0
\(339\) 656.000 0.105100
\(340\) 0 0
\(341\) 8804.00 1.39813
\(342\) 0 0
\(343\) −6860.00 −1.07990
\(344\) 0 0
\(345\) 2480.00 0.387011
\(346\) 0 0
\(347\) −1486.00 −0.229892 −0.114946 0.993372i \(-0.536670\pi\)
−0.114946 + 0.993372i \(0.536670\pi\)
\(348\) 0 0
\(349\) 1370.00 0.210127 0.105064 0.994466i \(-0.466495\pi\)
0.105064 + 0.994466i \(0.466495\pi\)
\(350\) 0 0
\(351\) 3360.00 0.510950
\(352\) 0 0
\(353\) 1122.00 0.169173 0.0845865 0.996416i \(-0.473043\pi\)
0.0845865 + 0.996416i \(0.473043\pi\)
\(354\) 0 0
\(355\) 4460.00 0.666795
\(356\) 0 0
\(357\) −12768.0 −1.89287
\(358\) 0 0
\(359\) 4230.00 0.621869 0.310934 0.950431i \(-0.399358\pi\)
0.310934 + 0.950431i \(0.399358\pi\)
\(360\) 0 0
\(361\) −1959.00 −0.285610
\(362\) 0 0
\(363\) 20104.0 2.90685
\(364\) 0 0
\(365\) 190.000 0.0272467
\(366\) 0 0
\(367\) −4016.00 −0.571208 −0.285604 0.958348i \(-0.592194\pi\)
−0.285604 + 0.958348i \(0.592194\pi\)
\(368\) 0 0
\(369\) 5994.00 0.845624
\(370\) 0 0
\(371\) −3332.00 −0.466277
\(372\) 0 0
\(373\) 3802.00 0.527775 0.263888 0.964553i \(-0.414995\pi\)
0.263888 + 0.964553i \(0.414995\pi\)
\(374\) 0 0
\(375\) −1000.00 −0.137706
\(376\) 0 0
\(377\) −1218.00 −0.166393
\(378\) 0 0
\(379\) 4430.00 0.600406 0.300203 0.953875i \(-0.402946\pi\)
0.300203 + 0.953875i \(0.402946\pi\)
\(380\) 0 0
\(381\) −2368.00 −0.318416
\(382\) 0 0
\(383\) −8642.00 −1.15296 −0.576482 0.817110i \(-0.695575\pi\)
−0.576482 + 0.817110i \(0.695575\pi\)
\(384\) 0 0
\(385\) 4340.00 0.574511
\(386\) 0 0
\(387\) −13024.0 −1.71072
\(388\) 0 0
\(389\) 10.0000 0.00130339 0.000651697 1.00000i \(-0.499793\pi\)
0.000651697 1.00000i \(0.499793\pi\)
\(390\) 0 0
\(391\) 7068.00 0.914179
\(392\) 0 0
\(393\) 1584.00 0.203314
\(394\) 0 0
\(395\) 5250.00 0.668750
\(396\) 0 0
\(397\) −7654.00 −0.967615 −0.483808 0.875174i \(-0.660747\pi\)
−0.483808 + 0.875174i \(0.660747\pi\)
\(398\) 0 0
\(399\) 7840.00 0.983687
\(400\) 0 0
\(401\) 8402.00 1.04632 0.523162 0.852233i \(-0.324752\pi\)
0.523162 + 0.852233i \(0.324752\pi\)
\(402\) 0 0
\(403\) −5964.00 −0.737191
\(404\) 0 0
\(405\) 1795.00 0.220233
\(406\) 0 0
\(407\) −9052.00 −1.10243
\(408\) 0 0
\(409\) −790.000 −0.0955085 −0.0477543 0.998859i \(-0.515206\pi\)
−0.0477543 + 0.998859i \(0.515206\pi\)
\(410\) 0 0
\(411\) 1328.00 0.159381
\(412\) 0 0
\(413\) −11760.0 −1.40114
\(414\) 0 0
\(415\) −3890.00 −0.460127
\(416\) 0 0
\(417\) 640.000 0.0751581
\(418\) 0 0
\(419\) 15220.0 1.77457 0.887286 0.461220i \(-0.152588\pi\)
0.887286 + 0.461220i \(0.152588\pi\)
\(420\) 0 0
\(421\) 4122.00 0.477183 0.238591 0.971120i \(-0.423314\pi\)
0.238591 + 0.971120i \(0.423314\pi\)
\(422\) 0 0
\(423\) 16428.0 1.88831
\(424\) 0 0
\(425\) −2850.00 −0.325283
\(426\) 0 0
\(427\) 28.0000 0.00317334
\(428\) 0 0
\(429\) −20832.0 −2.34447
\(430\) 0 0
\(431\) 12168.0 1.35989 0.679944 0.733264i \(-0.262004\pi\)
0.679944 + 0.733264i \(0.262004\pi\)
\(432\) 0 0
\(433\) 11822.0 1.31208 0.656038 0.754728i \(-0.272231\pi\)
0.656038 + 0.754728i \(0.272231\pi\)
\(434\) 0 0
\(435\) 1160.00 0.127857
\(436\) 0 0
\(437\) −4340.00 −0.475081
\(438\) 0 0
\(439\) 6480.00 0.704496 0.352248 0.935907i \(-0.385417\pi\)
0.352248 + 0.935907i \(0.385417\pi\)
\(440\) 0 0
\(441\) −5439.00 −0.587302
\(442\) 0 0
\(443\) 5308.00 0.569279 0.284640 0.958635i \(-0.408126\pi\)
0.284640 + 0.958635i \(0.408126\pi\)
\(444\) 0 0
\(445\) −7050.00 −0.751016
\(446\) 0 0
\(447\) 25200.0 2.66649
\(448\) 0 0
\(449\) 5210.00 0.547606 0.273803 0.961786i \(-0.411718\pi\)
0.273803 + 0.961786i \(0.411718\pi\)
\(450\) 0 0
\(451\) −10044.0 −1.04868
\(452\) 0 0
\(453\) 14944.0 1.54996
\(454\) 0 0
\(455\) −2940.00 −0.302922
\(456\) 0 0
\(457\) 5626.00 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(458\) 0 0
\(459\) −9120.00 −0.927419
\(460\) 0 0
\(461\) −4278.00 −0.432205 −0.216102 0.976371i \(-0.569334\pi\)
−0.216102 + 0.976371i \(0.569334\pi\)
\(462\) 0 0
\(463\) −9642.00 −0.967822 −0.483911 0.875117i \(-0.660784\pi\)
−0.483911 + 0.875117i \(0.660784\pi\)
\(464\) 0 0
\(465\) 5680.00 0.566460
\(466\) 0 0
\(467\) 2204.00 0.218392 0.109196 0.994020i \(-0.465172\pi\)
0.109196 + 0.994020i \(0.465172\pi\)
\(468\) 0 0
\(469\) 2156.00 0.212270
\(470\) 0 0
\(471\) −2832.00 −0.277052
\(472\) 0 0
\(473\) 21824.0 2.12150
\(474\) 0 0
\(475\) 1750.00 0.169043
\(476\) 0 0
\(477\) −8806.00 −0.845281
\(478\) 0 0
\(479\) −11870.0 −1.13226 −0.566132 0.824315i \(-0.691561\pi\)
−0.566132 + 0.824315i \(0.691561\pi\)
\(480\) 0 0
\(481\) 6132.00 0.581279
\(482\) 0 0
\(483\) −6944.00 −0.654168
\(484\) 0 0
\(485\) −2330.00 −0.218144
\(486\) 0 0
\(487\) −12626.0 −1.17482 −0.587411 0.809289i \(-0.699853\pi\)
−0.587411 + 0.809289i \(0.699853\pi\)
\(488\) 0 0
\(489\) 18144.0 1.67791
\(490\) 0 0
\(491\) −922.000 −0.0847439 −0.0423720 0.999102i \(-0.513491\pi\)
−0.0423720 + 0.999102i \(0.513491\pi\)
\(492\) 0 0
\(493\) 3306.00 0.302018
\(494\) 0 0
\(495\) 11470.0 1.04149
\(496\) 0 0
\(497\) −12488.0 −1.12709
\(498\) 0 0
\(499\) −18060.0 −1.62019 −0.810097 0.586296i \(-0.800586\pi\)
−0.810097 + 0.586296i \(0.800586\pi\)
\(500\) 0 0
\(501\) −16368.0 −1.45962
\(502\) 0 0
\(503\) −13272.0 −1.17648 −0.588240 0.808687i \(-0.700179\pi\)
−0.588240 + 0.808687i \(0.700179\pi\)
\(504\) 0 0
\(505\) 4390.00 0.386837
\(506\) 0 0
\(507\) −3464.00 −0.303435
\(508\) 0 0
\(509\) 2410.00 0.209865 0.104933 0.994479i \(-0.466537\pi\)
0.104933 + 0.994479i \(0.466537\pi\)
\(510\) 0 0
\(511\) −532.000 −0.0460554
\(512\) 0 0
\(513\) 5600.00 0.481961
\(514\) 0 0
\(515\) 5310.00 0.454343
\(516\) 0 0
\(517\) −27528.0 −2.34174
\(518\) 0 0
\(519\) −16944.0 −1.43306
\(520\) 0 0
\(521\) −4018.00 −0.337873 −0.168936 0.985627i \(-0.554033\pi\)
−0.168936 + 0.985627i \(0.554033\pi\)
\(522\) 0 0
\(523\) 3618.00 0.302493 0.151247 0.988496i \(-0.451671\pi\)
0.151247 + 0.988496i \(0.451671\pi\)
\(524\) 0 0
\(525\) 2800.00 0.232766
\(526\) 0 0
\(527\) 16188.0 1.33807
\(528\) 0 0
\(529\) −8323.00 −0.684063
\(530\) 0 0
\(531\) −31080.0 −2.54003
\(532\) 0 0
\(533\) 6804.00 0.552934
\(534\) 0 0
\(535\) 9130.00 0.737802
\(536\) 0 0
\(537\) −10080.0 −0.810026
\(538\) 0 0
\(539\) 9114.00 0.728326
\(540\) 0 0
\(541\) 20522.0 1.63089 0.815443 0.578837i \(-0.196493\pi\)
0.815443 + 0.578837i \(0.196493\pi\)
\(542\) 0 0
\(543\) 10736.0 0.848482
\(544\) 0 0
\(545\) 6350.00 0.499090
\(546\) 0 0
\(547\) −20026.0 −1.56536 −0.782678 0.622427i \(-0.786147\pi\)
−0.782678 + 0.622427i \(0.786147\pi\)
\(548\) 0 0
\(549\) 74.0000 0.00575272
\(550\) 0 0
\(551\) −2030.00 −0.156953
\(552\) 0 0
\(553\) −14700.0 −1.13039
\(554\) 0 0
\(555\) −5840.00 −0.446656
\(556\) 0 0
\(557\) 9186.00 0.698785 0.349393 0.936976i \(-0.386388\pi\)
0.349393 + 0.936976i \(0.386388\pi\)
\(558\) 0 0
\(559\) −14784.0 −1.11860
\(560\) 0 0
\(561\) 56544.0 4.25542
\(562\) 0 0
\(563\) 17068.0 1.27767 0.638837 0.769342i \(-0.279416\pi\)
0.638837 + 0.769342i \(0.279416\pi\)
\(564\) 0 0
\(565\) −410.000 −0.0305289
\(566\) 0 0
\(567\) −5026.00 −0.372261
\(568\) 0 0
\(569\) −15270.0 −1.12505 −0.562523 0.826781i \(-0.690169\pi\)
−0.562523 + 0.826781i \(0.690169\pi\)
\(570\) 0 0
\(571\) −15492.0 −1.13541 −0.567706 0.823232i \(-0.692169\pi\)
−0.567706 + 0.823232i \(0.692169\pi\)
\(572\) 0 0
\(573\) −12976.0 −0.946039
\(574\) 0 0
\(575\) −1550.00 −0.112416
\(576\) 0 0
\(577\) −14554.0 −1.05007 −0.525035 0.851080i \(-0.675948\pi\)
−0.525035 + 0.851080i \(0.675948\pi\)
\(578\) 0 0
\(579\) −32464.0 −2.33015
\(580\) 0 0
\(581\) 10892.0 0.777756
\(582\) 0 0
\(583\) 14756.0 1.04825
\(584\) 0 0
\(585\) −7770.00 −0.549145
\(586\) 0 0
\(587\) −13226.0 −0.929975 −0.464988 0.885317i \(-0.653941\pi\)
−0.464988 + 0.885317i \(0.653941\pi\)
\(588\) 0 0
\(589\) −9940.00 −0.695366
\(590\) 0 0
\(591\) 2128.00 0.148112
\(592\) 0 0
\(593\) 4642.00 0.321457 0.160729 0.986999i \(-0.448616\pi\)
0.160729 + 0.986999i \(0.448616\pi\)
\(594\) 0 0
\(595\) 7980.00 0.549829
\(596\) 0 0
\(597\) 17760.0 1.21754
\(598\) 0 0
\(599\) −16530.0 −1.12754 −0.563771 0.825931i \(-0.690650\pi\)
−0.563771 + 0.825931i \(0.690650\pi\)
\(600\) 0 0
\(601\) −23198.0 −1.57449 −0.787243 0.616643i \(-0.788492\pi\)
−0.787243 + 0.616643i \(0.788492\pi\)
\(602\) 0 0
\(603\) 5698.00 0.384810
\(604\) 0 0
\(605\) −12565.0 −0.844363
\(606\) 0 0
\(607\) −7196.00 −0.481181 −0.240590 0.970627i \(-0.577341\pi\)
−0.240590 + 0.970627i \(0.577341\pi\)
\(608\) 0 0
\(609\) −3248.00 −0.216118
\(610\) 0 0
\(611\) 18648.0 1.23473
\(612\) 0 0
\(613\) 9282.00 0.611577 0.305788 0.952100i \(-0.401080\pi\)
0.305788 + 0.952100i \(0.401080\pi\)
\(614\) 0 0
\(615\) −6480.00 −0.424876
\(616\) 0 0
\(617\) −7974.00 −0.520294 −0.260147 0.965569i \(-0.583771\pi\)
−0.260147 + 0.965569i \(0.583771\pi\)
\(618\) 0 0
\(619\) 15890.0 1.03178 0.515891 0.856654i \(-0.327461\pi\)
0.515891 + 0.856654i \(0.327461\pi\)
\(620\) 0 0
\(621\) −4960.00 −0.320512
\(622\) 0 0
\(623\) 19740.0 1.26945
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −34720.0 −2.21146
\(628\) 0 0
\(629\) −16644.0 −1.05507
\(630\) 0 0
\(631\) 19788.0 1.24841 0.624206 0.781260i \(-0.285423\pi\)
0.624206 + 0.781260i \(0.285423\pi\)
\(632\) 0 0
\(633\) 27824.0 1.74708
\(634\) 0 0
\(635\) 1480.00 0.0924914
\(636\) 0 0
\(637\) −6174.00 −0.384023
\(638\) 0 0
\(639\) −33004.0 −2.04322
\(640\) 0 0
\(641\) −9878.00 −0.608670 −0.304335 0.952565i \(-0.598434\pi\)
−0.304335 + 0.952565i \(0.598434\pi\)
\(642\) 0 0
\(643\) 23918.0 1.46693 0.733463 0.679729i \(-0.237903\pi\)
0.733463 + 0.679729i \(0.237903\pi\)
\(644\) 0 0
\(645\) 14080.0 0.859534
\(646\) 0 0
\(647\) −28646.0 −1.74063 −0.870317 0.492492i \(-0.836086\pi\)
−0.870317 + 0.492492i \(0.836086\pi\)
\(648\) 0 0
\(649\) 52080.0 3.14995
\(650\) 0 0
\(651\) −15904.0 −0.957491
\(652\) 0 0
\(653\) −23578.0 −1.41298 −0.706492 0.707721i \(-0.749723\pi\)
−0.706492 + 0.707721i \(0.749723\pi\)
\(654\) 0 0
\(655\) −990.000 −0.0590573
\(656\) 0 0
\(657\) −1406.00 −0.0834905
\(658\) 0 0
\(659\) −22770.0 −1.34597 −0.672984 0.739657i \(-0.734988\pi\)
−0.672984 + 0.739657i \(0.734988\pi\)
\(660\) 0 0
\(661\) −1298.00 −0.0763787 −0.0381894 0.999271i \(-0.512159\pi\)
−0.0381894 + 0.999271i \(0.512159\pi\)
\(662\) 0 0
\(663\) −38304.0 −2.24375
\(664\) 0 0
\(665\) −4900.00 −0.285735
\(666\) 0 0
\(667\) 1798.00 0.104376
\(668\) 0 0
\(669\) −52976.0 −3.06154
\(670\) 0 0
\(671\) −124.000 −0.00713408
\(672\) 0 0
\(673\) 1362.00 0.0780108 0.0390054 0.999239i \(-0.487581\pi\)
0.0390054 + 0.999239i \(0.487581\pi\)
\(674\) 0 0
\(675\) 2000.00 0.114044
\(676\) 0 0
\(677\) 12326.0 0.699744 0.349872 0.936798i \(-0.386225\pi\)
0.349872 + 0.936798i \(0.386225\pi\)
\(678\) 0 0
\(679\) 6524.00 0.368731
\(680\) 0 0
\(681\) −29328.0 −1.65030
\(682\) 0 0
\(683\) 22538.0 1.26265 0.631327 0.775517i \(-0.282511\pi\)
0.631327 + 0.775517i \(0.282511\pi\)
\(684\) 0 0
\(685\) −830.000 −0.0462959
\(686\) 0 0
\(687\) −2800.00 −0.155497
\(688\) 0 0
\(689\) −9996.00 −0.552710
\(690\) 0 0
\(691\) 21148.0 1.16427 0.582133 0.813094i \(-0.302218\pi\)
0.582133 + 0.813094i \(0.302218\pi\)
\(692\) 0 0
\(693\) −32116.0 −1.76044
\(694\) 0 0
\(695\) −400.000 −0.0218315
\(696\) 0 0
\(697\) −18468.0 −1.00362
\(698\) 0 0
\(699\) 16.0000 0.000865773 0
\(700\) 0 0
\(701\) −24498.0 −1.31994 −0.659969 0.751293i \(-0.729431\pi\)
−0.659969 + 0.751293i \(0.729431\pi\)
\(702\) 0 0
\(703\) 10220.0 0.548300
\(704\) 0 0
\(705\) −17760.0 −0.948766
\(706\) 0 0
\(707\) −12292.0 −0.653873
\(708\) 0 0
\(709\) 17890.0 0.947635 0.473817 0.880623i \(-0.342876\pi\)
0.473817 + 0.880623i \(0.342876\pi\)
\(710\) 0 0
\(711\) −38850.0 −2.04921
\(712\) 0 0
\(713\) 8804.00 0.462430
\(714\) 0 0
\(715\) 13020.0 0.681008
\(716\) 0 0
\(717\) −5600.00 −0.291682
\(718\) 0 0
\(719\) 25140.0 1.30398 0.651992 0.758226i \(-0.273934\pi\)
0.651992 + 0.758226i \(0.273934\pi\)
\(720\) 0 0
\(721\) −14868.0 −0.767980
\(722\) 0 0
\(723\) −8144.00 −0.418919
\(724\) 0 0
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) 9944.00 0.507294 0.253647 0.967297i \(-0.418370\pi\)
0.253647 + 0.967297i \(0.418370\pi\)
\(728\) 0 0
\(729\) −30563.0 −1.55276
\(730\) 0 0
\(731\) 40128.0 2.03035
\(732\) 0 0
\(733\) −25318.0 −1.27577 −0.637887 0.770130i \(-0.720191\pi\)
−0.637887 + 0.770130i \(0.720191\pi\)
\(734\) 0 0
\(735\) 5880.00 0.295084
\(736\) 0 0
\(737\) −9548.00 −0.477212
\(738\) 0 0
\(739\) 7830.00 0.389758 0.194879 0.980827i \(-0.437569\pi\)
0.194879 + 0.980827i \(0.437569\pi\)
\(740\) 0 0
\(741\) 23520.0 1.16603
\(742\) 0 0
\(743\) 30008.0 1.48168 0.740839 0.671683i \(-0.234428\pi\)
0.740839 + 0.671683i \(0.234428\pi\)
\(744\) 0 0
\(745\) −15750.0 −0.774544
\(746\) 0 0
\(747\) 28786.0 1.40994
\(748\) 0 0
\(749\) −25564.0 −1.24711
\(750\) 0 0
\(751\) −15562.0 −0.756146 −0.378073 0.925776i \(-0.623413\pi\)
−0.378073 + 0.925776i \(0.623413\pi\)
\(752\) 0 0
\(753\) −56816.0 −2.74965
\(754\) 0 0
\(755\) −9340.00 −0.450222
\(756\) 0 0
\(757\) −6914.00 −0.331960 −0.165980 0.986129i \(-0.553079\pi\)
−0.165980 + 0.986129i \(0.553079\pi\)
\(758\) 0 0
\(759\) 30752.0 1.47065
\(760\) 0 0
\(761\) −13018.0 −0.620108 −0.310054 0.950719i \(-0.600347\pi\)
−0.310054 + 0.950719i \(0.600347\pi\)
\(762\) 0 0
\(763\) −17780.0 −0.843616
\(764\) 0 0
\(765\) 21090.0 0.996746
\(766\) 0 0
\(767\) −35280.0 −1.66087
\(768\) 0 0
\(769\) 18450.0 0.865181 0.432590 0.901591i \(-0.357600\pi\)
0.432590 + 0.901591i \(0.357600\pi\)
\(770\) 0 0
\(771\) 47248.0 2.20700
\(772\) 0 0
\(773\) −1838.00 −0.0855217 −0.0427608 0.999085i \(-0.513615\pi\)
−0.0427608 + 0.999085i \(0.513615\pi\)
\(774\) 0 0
\(775\) −3550.00 −0.164542
\(776\) 0 0
\(777\) 16352.0 0.754987
\(778\) 0 0
\(779\) 11340.0 0.521563
\(780\) 0 0
\(781\) 55304.0 2.53384
\(782\) 0 0
\(783\) −2320.00 −0.105888
\(784\) 0 0
\(785\) 1770.00 0.0804764
\(786\) 0 0
\(787\) 5274.00 0.238879 0.119440 0.992841i \(-0.461890\pi\)
0.119440 + 0.992841i \(0.461890\pi\)
\(788\) 0 0
\(789\) −50016.0 −2.25680
\(790\) 0 0
\(791\) 1148.00 0.0516033
\(792\) 0 0
\(793\) 84.0000 0.00376157
\(794\) 0 0
\(795\) 9520.00 0.424704
\(796\) 0 0
\(797\) 21926.0 0.974478 0.487239 0.873269i \(-0.338004\pi\)
0.487239 + 0.873269i \(0.338004\pi\)
\(798\) 0 0
\(799\) −50616.0 −2.24113
\(800\) 0 0
\(801\) 52170.0 2.30129
\(802\) 0 0
\(803\) 2356.00 0.103539
\(804\) 0 0
\(805\) 4340.00 0.190019
\(806\) 0 0
\(807\) −57840.0 −2.52300
\(808\) 0 0
\(809\) 35010.0 1.52149 0.760745 0.649050i \(-0.224834\pi\)
0.760745 + 0.649050i \(0.224834\pi\)
\(810\) 0 0
\(811\) 2888.00 0.125045 0.0625224 0.998044i \(-0.480086\pi\)
0.0625224 + 0.998044i \(0.480086\pi\)
\(812\) 0 0
\(813\) 62704.0 2.70495
\(814\) 0 0
\(815\) −11340.0 −0.487390
\(816\) 0 0
\(817\) −24640.0 −1.05513
\(818\) 0 0
\(819\) 21756.0 0.928225
\(820\) 0 0
\(821\) 3542.00 0.150568 0.0752842 0.997162i \(-0.476014\pi\)
0.0752842 + 0.997162i \(0.476014\pi\)
\(822\) 0 0
\(823\) 11468.0 0.485722 0.242861 0.970061i \(-0.421914\pi\)
0.242861 + 0.970061i \(0.421914\pi\)
\(824\) 0 0
\(825\) −12400.0 −0.523288
\(826\) 0 0
\(827\) −16616.0 −0.698664 −0.349332 0.936999i \(-0.613591\pi\)
−0.349332 + 0.936999i \(0.613591\pi\)
\(828\) 0 0
\(829\) 33970.0 1.42319 0.711596 0.702588i \(-0.247972\pi\)
0.711596 + 0.702588i \(0.247972\pi\)
\(830\) 0 0
\(831\) 43088.0 1.79868
\(832\) 0 0
\(833\) 16758.0 0.697035
\(834\) 0 0
\(835\) 10230.0 0.423981
\(836\) 0 0
\(837\) −11360.0 −0.469127
\(838\) 0 0
\(839\) 43410.0 1.78627 0.893134 0.449790i \(-0.148501\pi\)
0.893134 + 0.449790i \(0.148501\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) 52016.0 2.12518
\(844\) 0 0
\(845\) 2165.00 0.0881400
\(846\) 0 0
\(847\) 35182.0 1.42723
\(848\) 0 0
\(849\) 51824.0 2.09493
\(850\) 0 0
\(851\) −9052.00 −0.364628
\(852\) 0 0
\(853\) 82.0000 0.00329147 0.00164574 0.999999i \(-0.499476\pi\)
0.00164574 + 0.999999i \(0.499476\pi\)
\(854\) 0 0
\(855\) −12950.0 −0.517989
\(856\) 0 0
\(857\) 29306.0 1.16811 0.584057 0.811713i \(-0.301464\pi\)
0.584057 + 0.811713i \(0.301464\pi\)
\(858\) 0 0
\(859\) 490.000 0.0194628 0.00973142 0.999953i \(-0.496902\pi\)
0.00973142 + 0.999953i \(0.496902\pi\)
\(860\) 0 0
\(861\) 18144.0 0.718172
\(862\) 0 0
\(863\) −31642.0 −1.24810 −0.624048 0.781386i \(-0.714513\pi\)
−0.624048 + 0.781386i \(0.714513\pi\)
\(864\) 0 0
\(865\) 10590.0 0.416267
\(866\) 0 0
\(867\) 64664.0 2.53299
\(868\) 0 0
\(869\) 65100.0 2.54127
\(870\) 0 0
\(871\) 6468.00 0.251619
\(872\) 0 0
\(873\) 17242.0 0.668446
\(874\) 0 0
\(875\) −1750.00 −0.0676123
\(876\) 0 0
\(877\) −7774.00 −0.299326 −0.149663 0.988737i \(-0.547819\pi\)
−0.149663 + 0.988737i \(0.547819\pi\)
\(878\) 0 0
\(879\) −54864.0 −2.10525
\(880\) 0 0
\(881\) 14682.0 0.561463 0.280732 0.959786i \(-0.409423\pi\)
0.280732 + 0.959786i \(0.409423\pi\)
\(882\) 0 0
\(883\) −922.000 −0.0351390 −0.0175695 0.999846i \(-0.505593\pi\)
−0.0175695 + 0.999846i \(0.505593\pi\)
\(884\) 0 0
\(885\) 33600.0 1.27622
\(886\) 0 0
\(887\) 9664.00 0.365823 0.182912 0.983129i \(-0.441448\pi\)
0.182912 + 0.983129i \(0.441448\pi\)
\(888\) 0 0
\(889\) −4144.00 −0.156339
\(890\) 0 0
\(891\) 22258.0 0.836892
\(892\) 0 0
\(893\) 31080.0 1.16467
\(894\) 0 0
\(895\) 6300.00 0.235291
\(896\) 0 0
\(897\) −20832.0 −0.775429
\(898\) 0 0
\(899\) 4118.00 0.152773
\(900\) 0 0
\(901\) 27132.0 1.00322
\(902\) 0 0
\(903\) −39424.0 −1.45288
\(904\) 0 0
\(905\) −6710.00 −0.246462
\(906\) 0 0
\(907\) 31904.0 1.16798 0.583988 0.811762i \(-0.301491\pi\)
0.583988 + 0.811762i \(0.301491\pi\)
\(908\) 0 0
\(909\) −32486.0 −1.18536
\(910\) 0 0
\(911\) 27518.0 1.00078 0.500391 0.865800i \(-0.333190\pi\)
0.500391 + 0.865800i \(0.333190\pi\)
\(912\) 0 0
\(913\) −48236.0 −1.74850
\(914\) 0 0
\(915\) −80.0000 −0.00289040
\(916\) 0 0
\(917\) 2772.00 0.0998250
\(918\) 0 0
\(919\) 19420.0 0.697069 0.348535 0.937296i \(-0.386679\pi\)
0.348535 + 0.937296i \(0.386679\pi\)
\(920\) 0 0
\(921\) 29472.0 1.05444
\(922\) 0 0
\(923\) −37464.0 −1.33602
\(924\) 0 0
\(925\) 3650.00 0.129742
\(926\) 0 0
\(927\) −39294.0 −1.39222
\(928\) 0 0
\(929\) 39010.0 1.37769 0.688846 0.724907i \(-0.258117\pi\)
0.688846 + 0.724907i \(0.258117\pi\)
\(930\) 0 0
\(931\) −10290.0 −0.362235
\(932\) 0 0
\(933\) 1104.00 0.0387388
\(934\) 0 0
\(935\) −35340.0 −1.23609
\(936\) 0 0
\(937\) −18734.0 −0.653162 −0.326581 0.945169i \(-0.605897\pi\)
−0.326581 + 0.945169i \(0.605897\pi\)
\(938\) 0 0
\(939\) 70416.0 2.44722
\(940\) 0 0
\(941\) −29298.0 −1.01497 −0.507485 0.861660i \(-0.669425\pi\)
−0.507485 + 0.861660i \(0.669425\pi\)
\(942\) 0 0
\(943\) −10044.0 −0.346848
\(944\) 0 0
\(945\) −5600.00 −0.192770
\(946\) 0 0
\(947\) 45044.0 1.54565 0.772826 0.634617i \(-0.218842\pi\)
0.772826 + 0.634617i \(0.218842\pi\)
\(948\) 0 0
\(949\) −1596.00 −0.0545926
\(950\) 0 0
\(951\) 44368.0 1.51286
\(952\) 0 0
\(953\) 30282.0 1.02931 0.514654 0.857398i \(-0.327920\pi\)
0.514654 + 0.857398i \(0.327920\pi\)
\(954\) 0 0
\(955\) 8110.00 0.274799
\(956\) 0 0
\(957\) 14384.0 0.485861
\(958\) 0 0
\(959\) 2324.00 0.0782543
\(960\) 0 0
\(961\) −9627.00 −0.323151
\(962\) 0 0
\(963\) −67562.0 −2.26080
\(964\) 0 0
\(965\) 20290.0 0.676848
\(966\) 0 0
\(967\) 15364.0 0.510934 0.255467 0.966818i \(-0.417771\pi\)
0.255467 + 0.966818i \(0.417771\pi\)
\(968\) 0 0
\(969\) −63840.0 −2.11645
\(970\) 0 0
\(971\) −44462.0 −1.46947 −0.734734 0.678355i \(-0.762693\pi\)
−0.734734 + 0.678355i \(0.762693\pi\)
\(972\) 0 0
\(973\) 1120.00 0.0369019
\(974\) 0 0
\(975\) 8400.00 0.275913
\(976\) 0 0
\(977\) −18534.0 −0.606914 −0.303457 0.952845i \(-0.598141\pi\)
−0.303457 + 0.952845i \(0.598141\pi\)
\(978\) 0 0
\(979\) −87420.0 −2.85389
\(980\) 0 0
\(981\) −46990.0 −1.52933
\(982\) 0 0
\(983\) −14272.0 −0.463078 −0.231539 0.972826i \(-0.574376\pi\)
−0.231539 + 0.972826i \(0.574376\pi\)
\(984\) 0 0
\(985\) −1330.00 −0.0430227
\(986\) 0 0
\(987\) 49728.0 1.60371
\(988\) 0 0
\(989\) 21824.0 0.701681
\(990\) 0 0
\(991\) 6508.00 0.208611 0.104305 0.994545i \(-0.466738\pi\)
0.104305 + 0.994545i \(0.466738\pi\)
\(992\) 0 0
\(993\) −24656.0 −0.787950
\(994\) 0 0
\(995\) −11100.0 −0.353662
\(996\) 0 0
\(997\) −39874.0 −1.26662 −0.633311 0.773897i \(-0.718305\pi\)
−0.633311 + 0.773897i \(0.718305\pi\)
\(998\) 0 0
\(999\) 11680.0 0.369909
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.4.a.f.1.1 1
4.3 odd 2 145.4.a.a.1.1 1
12.11 even 2 1305.4.a.b.1.1 1
20.19 odd 2 725.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.4.a.a.1.1 1 4.3 odd 2
725.4.a.a.1.1 1 20.19 odd 2
1305.4.a.b.1.1 1 12.11 even 2
2320.4.a.f.1.1 1 1.1 even 1 trivial