Properties

Label 2320.4.a.f
Level $2320$
Weight $4$
Character orbit 2320.a
Self dual yes
Analytic conductor $136.884$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,4,Mod(1,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(136.884431213\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8 q^{3} - 5 q^{5} + 14 q^{7} + 37 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 8 q^{3} - 5 q^{5} + 14 q^{7} + 37 q^{9} - 62 q^{11} + 42 q^{13} - 40 q^{15} - 114 q^{17} + 70 q^{19} + 112 q^{21} - 62 q^{23} + 25 q^{25} + 80 q^{27} - 29 q^{29} - 142 q^{31} - 496 q^{33} - 70 q^{35} + 146 q^{37} + 336 q^{39} + 162 q^{41} - 352 q^{43} - 185 q^{45} + 444 q^{47} - 147 q^{49} - 912 q^{51} - 238 q^{53} + 310 q^{55} + 560 q^{57} - 840 q^{59} + 2 q^{61} + 518 q^{63} - 210 q^{65} + 154 q^{67} - 496 q^{69} - 892 q^{71} - 38 q^{73} + 200 q^{75} - 868 q^{77} - 1050 q^{79} - 359 q^{81} + 778 q^{83} + 570 q^{85} - 232 q^{87} + 1410 q^{89} + 588 q^{91} - 1136 q^{93} - 350 q^{95} + 466 q^{97} - 2294 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 8.00000 0 −5.00000 0 14.0000 0 37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2320.4.a.f 1
4.b odd 2 1 145.4.a.a 1
12.b even 2 1 1305.4.a.b 1
20.d odd 2 1 725.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.4.a.a 1 4.b odd 2 1
725.4.a.a 1 20.d odd 2 1
1305.4.a.b 1 12.b even 2 1
2320.4.a.f 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2320))\):

\( T_{3} - 8 \) Copy content Toggle raw display
\( T_{7} - 14 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 8 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T - 14 \) Copy content Toggle raw display
$11$ \( T + 62 \) Copy content Toggle raw display
$13$ \( T - 42 \) Copy content Toggle raw display
$17$ \( T + 114 \) Copy content Toggle raw display
$19$ \( T - 70 \) Copy content Toggle raw display
$23$ \( T + 62 \) Copy content Toggle raw display
$29$ \( T + 29 \) Copy content Toggle raw display
$31$ \( T + 142 \) Copy content Toggle raw display
$37$ \( T - 146 \) Copy content Toggle raw display
$41$ \( T - 162 \) Copy content Toggle raw display
$43$ \( T + 352 \) Copy content Toggle raw display
$47$ \( T - 444 \) Copy content Toggle raw display
$53$ \( T + 238 \) Copy content Toggle raw display
$59$ \( T + 840 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T - 154 \) Copy content Toggle raw display
$71$ \( T + 892 \) Copy content Toggle raw display
$73$ \( T + 38 \) Copy content Toggle raw display
$79$ \( T + 1050 \) Copy content Toggle raw display
$83$ \( T - 778 \) Copy content Toggle raw display
$89$ \( T - 1410 \) Copy content Toggle raw display
$97$ \( T - 466 \) Copy content Toggle raw display
show more
show less