Defining parameters
Level: | \( N \) | \(=\) | \( 2320 = 2^{4} \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2320.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 29 \) | ||
Sturm bound: | \(1440\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2320))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1092 | 168 | 924 |
Cusp forms | 1068 | 168 | 900 |
Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(29\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(22\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(20\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(20\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(22\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(20\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(22\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(22\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(20\) |
Plus space | \(+\) | \(88\) | ||
Minus space | \(-\) | \(80\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2320))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2320))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(2320)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(116))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(232))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(290))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(464))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(580))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(1160))\)\(^{\oplus 2}\)