Properties

Label 2320.4.a
Level $2320$
Weight $4$
Character orbit 2320.a
Rep. character $\chi_{2320}(1,\cdot)$
Character field $\Q$
Dimension $168$
Newform subspaces $29$
Sturm bound $1440$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 29 \)
Sturm bound: \(1440\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2320))\).

Total New Old
Modular forms 1092 168 924
Cusp forms 1068 168 900
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(29\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(22\)
\(+\)\(+\)\(-\)\(-\)\(20\)
\(+\)\(-\)\(+\)\(-\)\(20\)
\(+\)\(-\)\(-\)\(+\)\(22\)
\(-\)\(+\)\(+\)\(-\)\(20\)
\(-\)\(+\)\(-\)\(+\)\(22\)
\(-\)\(-\)\(+\)\(+\)\(22\)
\(-\)\(-\)\(-\)\(-\)\(20\)
Plus space\(+\)\(88\)
Minus space\(-\)\(80\)

Trace form

\( 168 q + 12 q^{3} - 72 q^{7} + 1472 q^{9} + O(q^{10}) \) \( 168 q + 12 q^{3} - 72 q^{7} + 1472 q^{9} - 60 q^{15} + 152 q^{17} - 384 q^{19} + 4200 q^{25} + 432 q^{27} + 744 q^{31} + 768 q^{33} - 840 q^{39} - 256 q^{41} - 156 q^{43} - 196 q^{47} + 8848 q^{49} - 656 q^{51} - 440 q^{55} + 1104 q^{57} - 808 q^{59} + 912 q^{61} - 2552 q^{63} + 280 q^{65} - 1512 q^{67} - 1552 q^{69} - 112 q^{71} - 2088 q^{73} + 300 q^{75} - 1312 q^{77} + 360 q^{79} + 11608 q^{81} + 2440 q^{83} - 240 q^{85} - 1044 q^{87} + 2736 q^{89} - 6016 q^{91} + 224 q^{93} - 1520 q^{95} - 1512 q^{97} - 2656 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2320))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 29
2320.4.a.a 2320.a 1.a $1$ $136.884$ \(\Q\) None 290.4.a.d \(0\) \(-2\) \(-5\) \(24\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-5q^{5}+24q^{7}-23q^{9}-12q^{11}+\cdots\)
2320.4.a.b 2320.a 1.a $1$ $136.884$ \(\Q\) None 290.4.a.a \(0\) \(-2\) \(-5\) \(32\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-5q^{5}+2^{5}q^{7}-23q^{9}-12q^{11}+\cdots\)
2320.4.a.c 2320.a 1.a $1$ $136.884$ \(\Q\) None 290.4.a.c \(0\) \(0\) \(5\) \(20\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+5q^{5}+20q^{7}-3^{3}q^{9}+52q^{11}+\cdots\)
2320.4.a.d 2320.a 1.a $1$ $136.884$ \(\Q\) None 290.4.a.b \(0\) \(2\) \(-5\) \(-12\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-5q^{5}-12q^{7}-23q^{9}+48q^{11}+\cdots\)
2320.4.a.e 2320.a 1.a $1$ $136.884$ \(\Q\) None 1160.4.a.a \(0\) \(8\) \(-5\) \(6\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+8q^{3}-5q^{5}+6q^{7}+37q^{9}+58q^{11}+\cdots\)
2320.4.a.f 2320.a 1.a $1$ $136.884$ \(\Q\) None 145.4.a.a \(0\) \(8\) \(-5\) \(14\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+8q^{3}-5q^{5}+14q^{7}+37q^{9}-62q^{11}+\cdots\)
2320.4.a.g 2320.a 1.a $3$ $136.884$ 3.3.6133.1 None 290.4.a.g \(0\) \(1\) \(-15\) \(-47\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(\beta _{1}-\beta _{2})q^{3}-5q^{5}+(-17+4\beta _{1}+\cdots)q^{7}+\cdots\)
2320.4.a.h 2320.a 1.a $3$ $136.884$ 3.3.48244.1 None 290.4.a.e \(0\) \(2\) \(-15\) \(34\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}-5q^{5}+(11-\beta _{1}-\beta _{2})q^{7}+\cdots\)
2320.4.a.i 2320.a 1.a $3$ $136.884$ 3.3.2804.1 None 290.4.a.f \(0\) \(2\) \(15\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}+5q^{5}+(-1-2\beta _{1}-\beta _{2})q^{7}+\cdots\)
2320.4.a.j 2320.a 1.a $3$ $136.884$ 3.3.1556.1 None 1160.4.a.b \(0\) \(8\) \(-15\) \(42\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(3-\beta _{2})q^{3}-5q^{5}+(15+2\beta _{1}-\beta _{2})q^{7}+\cdots\)
2320.4.a.k 2320.a 1.a $5$ $136.884$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 290.4.a.i \(0\) \(-9\) \(-25\) \(-9\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{3}-5q^{5}+(-2+\beta _{1}+\cdots)q^{7}+\cdots\)
2320.4.a.l 2320.a 1.a $5$ $136.884$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 290.4.a.j \(0\) \(-9\) \(25\) \(-29\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{3}+5q^{5}+(-6-\beta _{1}+\cdots)q^{7}+\cdots\)
2320.4.a.m 2320.a 1.a $5$ $136.884$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 290.4.a.h \(0\) \(-1\) \(25\) \(-21\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+5q^{5}+(-4-\beta _{1}-\beta _{2}+\beta _{3}+\cdots)q^{7}+\cdots\)
2320.4.a.n 2320.a 1.a $6$ $136.884$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 145.4.a.c \(0\) \(1\) \(-30\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{3}-5q^{5}+(-\beta _{1}-\beta _{2}-2\beta _{3}+\cdots)q^{7}+\cdots\)
2320.4.a.o 2320.a 1.a $6$ $136.884$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 580.4.a.a \(0\) \(5\) \(-30\) \(-9\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{3})q^{3}-5q^{5}+(-1-\beta _{2})q^{7}+\cdots\)
2320.4.a.p 2320.a 1.a $6$ $136.884$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 580.4.a.b \(0\) \(5\) \(30\) \(-7\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}+5q^{5}+(-1+2\beta _{1}-2\beta _{2}+\cdots)q^{7}+\cdots\)
2320.4.a.q 2320.a 1.a $6$ $136.884$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 145.4.a.b \(0\) \(13\) \(30\) \(79\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta _{4})q^{3}+5q^{5}+(12-\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
2320.4.a.r 2320.a 1.a $7$ $136.884$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1160.4.a.c \(0\) \(-1\) \(-35\) \(-65\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-5q^{5}+(-9+\beta _{5})q^{7}+(7+\cdots)q^{9}+\cdots\)
2320.4.a.s 2320.a 1.a $7$ $136.884$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 145.4.a.d \(0\) \(-1\) \(-35\) \(-17\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{3}-5q^{5}+(-3+\beta _{4}-2\beta _{5}+\cdots)q^{7}+\cdots\)
2320.4.a.t 2320.a 1.a $8$ $136.884$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 145.4.a.e \(0\) \(-17\) \(40\) \(-33\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{2})q^{3}+5q^{5}+(-4-\beta _{1}+\cdots)q^{7}+\cdots\)
2320.4.a.u 2320.a 1.a $8$ $136.884$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 580.4.a.c \(0\) \(-1\) \(-40\) \(19\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-5q^{5}+(2-\beta _{7})q^{7}+(7+\beta _{2}+\cdots)q^{9}+\cdots\)
2320.4.a.v 2320.a 1.a $8$ $136.884$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 580.4.a.d \(0\) \(-1\) \(40\) \(-35\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+5q^{5}+(-4-\beta _{2})q^{7}+(19+\cdots)q^{9}+\cdots\)
2320.4.a.w 2320.a 1.a $9$ $136.884$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1160.4.a.e \(0\) \(3\) \(-45\) \(27\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-5q^{5}+(3+\beta _{1}+\beta _{4})q^{7}+\cdots\)
2320.4.a.x 2320.a 1.a $9$ $136.884$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1160.4.a.f \(0\) \(3\) \(45\) \(-9\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+5q^{5}+(-1-\beta _{1}-\beta _{2})q^{7}+\cdots\)
2320.4.a.y 2320.a 1.a $9$ $136.884$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1160.4.a.d \(0\) \(7\) \(45\) \(39\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+5q^{5}+(4+\beta _{1}+\beta _{4}+\cdots)q^{7}+\cdots\)
2320.4.a.z 2320.a 1.a $11$ $136.884$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 1160.4.a.h \(0\) \(-8\) \(-55\) \(-16\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}-5q^{5}+(-1-\beta _{1}+\cdots)q^{7}+\cdots\)
2320.4.a.ba 2320.a 1.a $11$ $136.884$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 1160.4.a.i \(0\) \(-8\) \(55\) \(-38\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+5q^{5}+(-4+\beta _{1}+\cdots)q^{7}+\cdots\)
2320.4.a.bb 2320.a 1.a $11$ $136.884$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 1160.4.a.g \(0\) \(-2\) \(-55\) \(-56\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-5q^{5}+(-5-\beta _{7})q^{7}+(6+\cdots)q^{9}+\cdots\)
2320.4.a.bc 2320.a 1.a $13$ $136.884$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 1160.4.a.j \(0\) \(6\) \(65\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+5q^{5}+(-1+\beta _{1}+\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2320))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(2320)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(116))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(232))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(290))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(464))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(580))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(1160))\)\(^{\oplus 2}\)