Properties

Label 2320.2.d.g.929.1
Level $2320$
Weight $2$
Character 2320.929
Analytic conductor $18.525$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2320,2,Mod(929,2320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2320.929"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,3,0,0,0,-12,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5252932689\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.84345856.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 13x^{4} + 41x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 929.1
Root \(-2.30229i\) of defining polynomial
Character \(\chi\) \(=\) 2320.929
Dual form 2320.2.d.g.929.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.89028i q^{3} +(2.17686 + 0.511167i) q^{5} -3.91261i q^{7} -5.35371 q^{9} -2.65427 q^{11} -5.62692i q^{13} +(1.47742 - 6.29173i) q^{15} -1.86794i q^{17} +1.69944 q^{19} -11.3085 q^{21} +0.691975i q^{23} +(4.47742 + 2.22548i) q^{25} +6.80289i q^{27} +1.00000 q^{29} +0.654273 q^{31} +7.67159i q^{33} +(2.00000 - 8.51720i) q^{35} -3.91261i q^{37} -16.2634 q^{39} +10.7155i q^{43} +(-11.6543 - 2.73664i) q^{45} +4.93495i q^{47} -8.30855 q^{49} -5.39888 q^{51} +7.67159i q^{53} +(-5.77797 - 1.35678i) q^{55} -4.91186i q^{57} +10.0000 q^{59} -4.70743 q^{61} +20.9470i q^{63} +(2.87630 - 12.2490i) q^{65} -6.47253i q^{67} +2.00000 q^{69} -2.00000 q^{71} -10.5619i q^{73} +(6.43225 - 12.9410i) q^{75} +10.3851i q^{77} -2.05316 q^{79} +3.60112 q^{81} -1.86794i q^{83} +(0.954832 - 4.06625i) q^{85} -2.89028i q^{87} -3.30855 q^{89} -22.0160 q^{91} -1.89103i q^{93} +(3.69944 + 0.868699i) q^{95} -0.384703i q^{97} +14.2102 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} - 12 q^{9} + 10 q^{11} - 7 q^{15} + 16 q^{19} - 16 q^{21} + 11 q^{25} + 6 q^{29} - 22 q^{31} + 12 q^{35} - 14 q^{39} - 44 q^{45} + 2 q^{49} - 44 q^{51} - 13 q^{55} + 60 q^{59} + 12 q^{61}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2320\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(1857\) \(2031\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.89028i 1.66870i −0.551232 0.834352i \(-0.685842\pi\)
0.551232 0.834352i \(-0.314158\pi\)
\(4\) 0 0
\(5\) 2.17686 + 0.511167i 0.973520 + 0.228601i
\(6\) 0 0
\(7\) 3.91261i 1.47883i −0.673250 0.739415i \(-0.735102\pi\)
0.673250 0.739415i \(-0.264898\pi\)
\(8\) 0 0
\(9\) −5.35371 −1.78457
\(10\) 0 0
\(11\) −2.65427 −0.800294 −0.400147 0.916451i \(-0.631041\pi\)
−0.400147 + 0.916451i \(0.631041\pi\)
\(12\) 0 0
\(13\) 5.62692i 1.56063i −0.625388 0.780314i \(-0.715059\pi\)
0.625388 0.780314i \(-0.284941\pi\)
\(14\) 0 0
\(15\) 1.47742 6.29173i 0.381467 1.62452i
\(16\) 0 0
\(17\) 1.86794i 0.453043i −0.974006 0.226522i \(-0.927265\pi\)
0.974006 0.226522i \(-0.0727354\pi\)
\(18\) 0 0
\(19\) 1.69944 0.389879 0.194939 0.980815i \(-0.437549\pi\)
0.194939 + 0.980815i \(0.437549\pi\)
\(20\) 0 0
\(21\) −11.3085 −2.46773
\(22\) 0 0
\(23\) 0.691975i 0.144287i 0.997394 + 0.0721433i \(0.0229839\pi\)
−0.997394 + 0.0721433i \(0.977016\pi\)
\(24\) 0 0
\(25\) 4.47742 + 2.22548i 0.895483 + 0.445095i
\(26\) 0 0
\(27\) 6.80289i 1.30922i
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 0.654273 0.117511 0.0587555 0.998272i \(-0.481287\pi\)
0.0587555 + 0.998272i \(0.481287\pi\)
\(32\) 0 0
\(33\) 7.67159i 1.33545i
\(34\) 0 0
\(35\) 2.00000 8.51720i 0.338062 1.43967i
\(36\) 0 0
\(37\) 3.91261i 0.643230i −0.946871 0.321615i \(-0.895774\pi\)
0.946871 0.321615i \(-0.104226\pi\)
\(38\) 0 0
\(39\) −16.2634 −2.60422
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 10.7155i 1.63410i 0.576567 + 0.817050i \(0.304392\pi\)
−0.576567 + 0.817050i \(0.695608\pi\)
\(44\) 0 0
\(45\) −11.6543 2.73664i −1.73732 0.407955i
\(46\) 0 0
\(47\) 4.93495i 0.719836i 0.932984 + 0.359918i \(0.117195\pi\)
−0.932984 + 0.359918i \(0.882805\pi\)
\(48\) 0 0
\(49\) −8.30855 −1.18694
\(50\) 0 0
\(51\) −5.39888 −0.755995
\(52\) 0 0
\(53\) 7.67159i 1.05377i 0.849935 + 0.526887i \(0.176641\pi\)
−0.849935 + 0.526887i \(0.823359\pi\)
\(54\) 0 0
\(55\) −5.77797 1.35678i −0.779102 0.182948i
\(56\) 0 0
\(57\) 4.91186i 0.650592i
\(58\) 0 0
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −4.70743 −0.602725 −0.301362 0.953510i \(-0.597441\pi\)
−0.301362 + 0.953510i \(0.597441\pi\)
\(62\) 0 0
\(63\) 20.9470i 2.63908i
\(64\) 0 0
\(65\) 2.87630 12.2490i 0.356761 1.51930i
\(66\) 0 0
\(67\) 6.47253i 0.790746i −0.918521 0.395373i \(-0.870615\pi\)
0.918521 0.395373i \(-0.129385\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 10.5619i 1.23617i −0.786110 0.618087i \(-0.787908\pi\)
0.786110 0.618087i \(-0.212092\pi\)
\(74\) 0 0
\(75\) 6.43225 12.9410i 0.742732 1.49430i
\(76\) 0 0
\(77\) 10.3851i 1.18350i
\(78\) 0 0
\(79\) −2.05316 −0.230998 −0.115499 0.993308i \(-0.536847\pi\)
−0.115499 + 0.993308i \(0.536847\pi\)
\(80\) 0 0
\(81\) 3.60112 0.400124
\(82\) 0 0
\(83\) 1.86794i 0.205034i −0.994731 0.102517i \(-0.967310\pi\)
0.994731 0.102517i \(-0.0326895\pi\)
\(84\) 0 0
\(85\) 0.954832 4.06625i 0.103566 0.441047i
\(86\) 0 0
\(87\) 2.89028i 0.309870i
\(88\) 0 0
\(89\) −3.30855 −0.350705 −0.175353 0.984506i \(-0.556107\pi\)
−0.175353 + 0.984506i \(0.556107\pi\)
\(90\) 0 0
\(91\) −22.0160 −2.30790
\(92\) 0 0
\(93\) 1.89103i 0.196091i
\(94\) 0 0
\(95\) 3.69944 + 0.868699i 0.379555 + 0.0891266i
\(96\) 0 0
\(97\) 0.384703i 0.0390607i −0.999809 0.0195303i \(-0.993783\pi\)
0.999809 0.0195303i \(-0.00621710\pi\)
\(98\) 0 0
\(99\) 14.2102 1.42818
\(100\) 0 0
\(101\) 11.9097 1.18506 0.592528 0.805550i \(-0.298130\pi\)
0.592528 + 0.805550i \(0.298130\pi\)
\(102\) 0 0
\(103\) 14.9585i 1.47390i −0.675946 0.736951i \(-0.736265\pi\)
0.675946 0.736951i \(-0.263735\pi\)
\(104\) 0 0
\(105\) −24.6171 5.78056i −2.40238 0.564125i
\(106\) 0 0
\(107\) 3.91261i 0.378247i 0.981953 + 0.189123i \(0.0605646\pi\)
−0.981953 + 0.189123i \(0.939435\pi\)
\(108\) 0 0
\(109\) 7.55595 0.723729 0.361864 0.932231i \(-0.382140\pi\)
0.361864 + 0.932231i \(0.382140\pi\)
\(110\) 0 0
\(111\) −11.3085 −1.07336
\(112\) 0 0
\(113\) 18.6944i 1.75862i 0.476251 + 0.879309i \(0.341995\pi\)
−0.476251 + 0.879309i \(0.658005\pi\)
\(114\) 0 0
\(115\) −0.353715 + 1.50633i −0.0329841 + 0.140466i
\(116\) 0 0
\(117\) 30.1249i 2.78505i
\(118\) 0 0
\(119\) −7.30855 −0.669973
\(120\) 0 0
\(121\) −3.95483 −0.359530
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.60911 + 7.13325i 0.770022 + 0.638018i
\(126\) 0 0
\(127\) 4.98929i 0.442728i −0.975191 0.221364i \(-0.928949\pi\)
0.975191 0.221364i \(-0.0710509\pi\)
\(128\) 0 0
\(129\) 30.9708 2.72683
\(130\) 0 0
\(131\) −19.7154 −1.72254 −0.861272 0.508144i \(-0.830332\pi\)
−0.861272 + 0.508144i \(0.830332\pi\)
\(132\) 0 0
\(133\) 6.64926i 0.576564i
\(134\) 0 0
\(135\) −3.47742 + 14.8089i −0.299288 + 1.27455i
\(136\) 0 0
\(137\) 6.26455i 0.535217i −0.963528 0.267608i \(-0.913767\pi\)
0.963528 0.267608i \(-0.0862334\pi\)
\(138\) 0 0
\(139\) 21.9097 1.85835 0.929177 0.369636i \(-0.120518\pi\)
0.929177 + 0.369636i \(0.120518\pi\)
\(140\) 0 0
\(141\) 14.2634 1.20119
\(142\) 0 0
\(143\) 14.9354i 1.24896i
\(144\) 0 0
\(145\) 2.17686 + 0.511167i 0.180778 + 0.0424501i
\(146\) 0 0
\(147\) 24.0140i 1.98064i
\(148\) 0 0
\(149\) −4.24740 −0.347961 −0.173980 0.984749i \(-0.555663\pi\)
−0.173980 + 0.984749i \(0.555663\pi\)
\(150\) 0 0
\(151\) 11.3085 0.920277 0.460138 0.887847i \(-0.347800\pi\)
0.460138 + 0.887847i \(0.347800\pi\)
\(152\) 0 0
\(153\) 10.0004i 0.808488i
\(154\) 0 0
\(155\) 1.42426 + 0.334443i 0.114399 + 0.0268631i
\(156\) 0 0
\(157\) 4.12059i 0.328859i −0.986389 0.164430i \(-0.947422\pi\)
0.986389 0.164430i \(-0.0525783\pi\)
\(158\) 0 0
\(159\) 22.1730 1.75844
\(160\) 0 0
\(161\) 2.70743 0.213375
\(162\) 0 0
\(163\) 3.19755i 0.250452i 0.992128 + 0.125226i \(0.0399655\pi\)
−0.992128 + 0.125226i \(0.960034\pi\)
\(164\) 0 0
\(165\) −3.92147 + 16.7000i −0.305286 + 1.30009i
\(166\) 0 0
\(167\) 14.6050i 1.13017i −0.825032 0.565086i \(-0.808843\pi\)
0.825032 0.565086i \(-0.191157\pi\)
\(168\) 0 0
\(169\) −18.6623 −1.43556
\(170\) 0 0
\(171\) −9.09832 −0.695766
\(172\) 0 0
\(173\) 9.00120i 0.684348i 0.939637 + 0.342174i \(0.111163\pi\)
−0.939637 + 0.342174i \(0.888837\pi\)
\(174\) 0 0
\(175\) 8.70743 17.5184i 0.658220 1.32427i
\(176\) 0 0
\(177\) 28.9028i 2.17247i
\(178\) 0 0
\(179\) −21.3085 −1.59268 −0.796338 0.604852i \(-0.793232\pi\)
−0.796338 + 0.604852i \(0.793232\pi\)
\(180\) 0 0
\(181\) −16.9708 −1.26143 −0.630715 0.776014i \(-0.717238\pi\)
−0.630715 + 0.776014i \(0.717238\pi\)
\(182\) 0 0
\(183\) 13.6058i 1.00577i
\(184\) 0 0
\(185\) 2.00000 8.51720i 0.147043 0.626197i
\(186\) 0 0
\(187\) 4.95804i 0.362568i
\(188\) 0 0
\(189\) 26.6171 1.93611
\(190\) 0 0
\(191\) 8.40687 0.608300 0.304150 0.952624i \(-0.401628\pi\)
0.304150 + 0.952624i \(0.401628\pi\)
\(192\) 0 0
\(193\) 0.791267i 0.0569567i −0.999594 0.0284783i \(-0.990934\pi\)
0.999594 0.0284783i \(-0.00906616\pi\)
\(194\) 0 0
\(195\) −35.4031 8.31331i −2.53527 0.595328i
\(196\) 0 0
\(197\) 24.5062i 1.74599i 0.487726 + 0.872997i \(0.337826\pi\)
−0.487726 + 0.872997i \(0.662174\pi\)
\(198\) 0 0
\(199\) 19.3085 1.36875 0.684373 0.729132i \(-0.260076\pi\)
0.684373 + 0.729132i \(0.260076\pi\)
\(200\) 0 0
\(201\) −18.7074 −1.31952
\(202\) 0 0
\(203\) 3.91261i 0.274612i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.70463i 0.257490i
\(208\) 0 0
\(209\) −4.51078 −0.312017
\(210\) 0 0
\(211\) −19.2554 −1.32560 −0.662798 0.748798i \(-0.730631\pi\)
−0.662798 + 0.748798i \(0.730631\pi\)
\(212\) 0 0
\(213\) 5.78056i 0.396077i
\(214\) 0 0
\(215\) −5.47742 + 23.3261i −0.373557 + 1.59083i
\(216\) 0 0
\(217\) 2.55992i 0.173779i
\(218\) 0 0
\(219\) −30.5268 −2.06281
\(220\) 0 0
\(221\) −10.5108 −0.707032
\(222\) 0 0
\(223\) 10.8691i 0.727852i 0.931428 + 0.363926i \(0.118564\pi\)
−0.931428 + 0.363926i \(0.881436\pi\)
\(224\) 0 0
\(225\) −23.9708 11.9146i −1.59805 0.794304i
\(226\) 0 0
\(227\) 17.3104i 1.14893i −0.818528 0.574467i \(-0.805210\pi\)
0.818528 0.574467i \(-0.194790\pi\)
\(228\) 0 0
\(229\) −18.7074 −1.23622 −0.618111 0.786091i \(-0.712102\pi\)
−0.618111 + 0.786091i \(0.712102\pi\)
\(230\) 0 0
\(231\) 30.0160 1.97491
\(232\) 0 0
\(233\) 14.6281i 0.958320i −0.877728 0.479160i \(-0.840941\pi\)
0.877728 0.479160i \(-0.159059\pi\)
\(234\) 0 0
\(235\) −2.52258 + 10.7427i −0.164555 + 0.700775i
\(236\) 0 0
\(237\) 5.93419i 0.385467i
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) −5.55595 −0.357890 −0.178945 0.983859i \(-0.557268\pi\)
−0.178945 + 0.983859i \(0.557268\pi\)
\(242\) 0 0
\(243\) 10.0004i 0.641529i
\(244\) 0 0
\(245\) −18.0865 4.24706i −1.15551 0.271335i
\(246\) 0 0
\(247\) 9.56263i 0.608455i
\(248\) 0 0
\(249\) −5.39888 −0.342140
\(250\) 0 0
\(251\) 9.27137 0.585204 0.292602 0.956234i \(-0.405479\pi\)
0.292602 + 0.956234i \(0.405479\pi\)
\(252\) 0 0
\(253\) 1.83669i 0.115472i
\(254\) 0 0
\(255\) −11.7526 2.75973i −0.735976 0.172821i
\(256\) 0 0
\(257\) 14.1129i 0.880337i −0.897915 0.440168i \(-0.854919\pi\)
0.897915 0.440168i \(-0.145081\pi\)
\(258\) 0 0
\(259\) −15.3085 −0.951227
\(260\) 0 0
\(261\) −5.35371 −0.331387
\(262\) 0 0
\(263\) 6.97962i 0.430382i 0.976572 + 0.215191i \(0.0690373\pi\)
−0.976572 + 0.215191i \(0.930963\pi\)
\(264\) 0 0
\(265\) −3.92147 + 16.7000i −0.240894 + 1.02587i
\(266\) 0 0
\(267\) 9.56263i 0.585223i
\(268\) 0 0
\(269\) 7.29257 0.444636 0.222318 0.974974i \(-0.428638\pi\)
0.222318 + 0.974974i \(0.428638\pi\)
\(270\) 0 0
\(271\) 23.3617 1.41912 0.709561 0.704644i \(-0.248893\pi\)
0.709561 + 0.704644i \(0.248893\pi\)
\(272\) 0 0
\(273\) 63.6323i 3.85120i
\(274\) 0 0
\(275\) −11.8843 5.90702i −0.716649 0.356207i
\(276\) 0 0
\(277\) 2.91337i 0.175047i 0.996162 + 0.0875236i \(0.0278953\pi\)
−0.996162 + 0.0875236i \(0.972105\pi\)
\(278\) 0 0
\(279\) −3.50279 −0.209707
\(280\) 0 0
\(281\) 30.1730 1.79997 0.899986 0.435918i \(-0.143576\pi\)
0.899986 + 0.435918i \(0.143576\pi\)
\(282\) 0 0
\(283\) 2.01341i 0.119685i 0.998208 + 0.0598425i \(0.0190599\pi\)
−0.998208 + 0.0598425i \(0.980940\pi\)
\(284\) 0 0
\(285\) 2.51078 10.6924i 0.148726 0.633364i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 13.5108 0.794752
\(290\) 0 0
\(291\) −1.11190 −0.0651807
\(292\) 0 0
\(293\) 10.8691i 0.634982i −0.948261 0.317491i \(-0.897160\pi\)
0.948261 0.317491i \(-0.102840\pi\)
\(294\) 0 0
\(295\) 21.7686 + 5.11167i 1.26742 + 0.297613i
\(296\) 0 0
\(297\) 18.0567i 1.04776i
\(298\) 0 0
\(299\) 3.89369 0.225178
\(300\) 0 0
\(301\) 41.9256 2.41655
\(302\) 0 0
\(303\) 34.4223i 1.97751i
\(304\) 0 0
\(305\) −10.2474 2.40628i −0.586765 0.137783i
\(306\) 0 0
\(307\) 9.02429i 0.515043i −0.966273 0.257522i \(-0.917094\pi\)
0.966273 0.257522i \(-0.0829059\pi\)
\(308\) 0 0
\(309\) −43.2342 −2.45951
\(310\) 0 0
\(311\) 11.1143 0.630234 0.315117 0.949053i \(-0.397956\pi\)
0.315117 + 0.949053i \(0.397956\pi\)
\(312\) 0 0
\(313\) 25.7365i 1.45471i −0.686260 0.727356i \(-0.740749\pi\)
0.686260 0.727356i \(-0.259251\pi\)
\(314\) 0 0
\(315\) −10.7074 + 45.5987i −0.603295 + 2.56919i
\(316\) 0 0
\(317\) 0.837444i 0.0470355i −0.999723 0.0235178i \(-0.992513\pi\)
0.999723 0.0235178i \(-0.00748663\pi\)
\(318\) 0 0
\(319\) −2.65427 −0.148611
\(320\) 0 0
\(321\) 11.3085 0.631182
\(322\) 0 0
\(323\) 3.17446i 0.176632i
\(324\) 0 0
\(325\) 12.5226 25.1941i 0.694628 1.39752i
\(326\) 0 0
\(327\) 21.8388i 1.20769i
\(328\) 0 0
\(329\) 19.3085 1.06451
\(330\) 0 0
\(331\) −22.0691 −1.21303 −0.606515 0.795072i \(-0.707433\pi\)
−0.606515 + 0.795072i \(0.707433\pi\)
\(332\) 0 0
\(333\) 20.9470i 1.14789i
\(334\) 0 0
\(335\) 3.30855 14.0898i 0.180765 0.769807i
\(336\) 0 0
\(337\) 7.74780i 0.422049i −0.977481 0.211025i \(-0.932320\pi\)
0.977481 0.211025i \(-0.0676800\pi\)
\(338\) 0 0
\(339\) 54.0320 2.93461
\(340\) 0 0
\(341\) −1.73662 −0.0940433
\(342\) 0 0
\(343\) 5.11984i 0.276445i
\(344\) 0 0
\(345\) 4.35371 + 1.02233i 0.234396 + 0.0550406i
\(346\) 0 0
\(347\) 9.33972i 0.501383i 0.968067 + 0.250691i \(0.0806579\pi\)
−0.968067 + 0.250691i \(0.919342\pi\)
\(348\) 0 0
\(349\) 21.6623 1.15955 0.579777 0.814775i \(-0.303140\pi\)
0.579777 + 0.814775i \(0.303140\pi\)
\(350\) 0 0
\(351\) 38.2794 2.04320
\(352\) 0 0
\(353\) 20.5623i 1.09442i −0.836995 0.547211i \(-0.815690\pi\)
0.836995 0.547211i \(-0.184310\pi\)
\(354\) 0 0
\(355\) −4.35371 1.02233i −0.231071 0.0542599i
\(356\) 0 0
\(357\) 21.1237i 1.11799i
\(358\) 0 0
\(359\) 30.5639 1.61310 0.806551 0.591164i \(-0.201331\pi\)
0.806551 + 0.591164i \(0.201331\pi\)
\(360\) 0 0
\(361\) −16.1119 −0.847995
\(362\) 0 0
\(363\) 11.4306i 0.599949i
\(364\) 0 0
\(365\) 5.39888 22.9917i 0.282590 1.20344i
\(366\) 0 0
\(367\) 13.7825i 0.719441i 0.933060 + 0.359721i \(0.117128\pi\)
−0.933060 + 0.359721i \(0.882872\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 30.0160 1.55835
\(372\) 0 0
\(373\) 27.2659i 1.41178i 0.708324 + 0.705888i \(0.249452\pi\)
−0.708324 + 0.705888i \(0.750548\pi\)
\(374\) 0 0
\(375\) 20.6171 24.8827i 1.06466 1.28494i
\(376\) 0 0
\(377\) 5.62692i 0.289801i
\(378\) 0 0
\(379\) 16.4069 0.842764 0.421382 0.906883i \(-0.361545\pi\)
0.421382 + 0.906883i \(0.361545\pi\)
\(380\) 0 0
\(381\) −14.4204 −0.738782
\(382\) 0 0
\(383\) 11.7378i 0.599776i −0.953974 0.299888i \(-0.903051\pi\)
0.953974 0.299888i \(-0.0969493\pi\)
\(384\) 0 0
\(385\) −5.30855 + 22.6070i −0.270549 + 1.15216i
\(386\) 0 0
\(387\) 57.3678i 2.91617i
\(388\) 0 0
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 1.29257 0.0653681
\(392\) 0 0
\(393\) 56.9831i 2.87442i
\(394\) 0 0
\(395\) −4.46943 1.04951i −0.224881 0.0528064i
\(396\) 0 0
\(397\) 6.03349i 0.302812i 0.988472 + 0.151406i \(0.0483801\pi\)
−0.988472 + 0.151406i \(0.951620\pi\)
\(398\) 0 0
\(399\) −19.2182 −0.962114
\(400\) 0 0
\(401\) −21.4656 −1.07194 −0.535971 0.844237i \(-0.680054\pi\)
−0.535971 + 0.844237i \(0.680054\pi\)
\(402\) 0 0
\(403\) 3.68155i 0.183391i
\(404\) 0 0
\(405\) 7.83912 + 1.84077i 0.389529 + 0.0914688i
\(406\) 0 0
\(407\) 10.3851i 0.514773i
\(408\) 0 0
\(409\) 4.49481 0.222254 0.111127 0.993806i \(-0.464554\pi\)
0.111127 + 0.993806i \(0.464554\pi\)
\(410\) 0 0
\(411\) −18.1063 −0.893119
\(412\) 0 0
\(413\) 39.1261i 1.92527i
\(414\) 0 0
\(415\) 0.954832 4.06625i 0.0468709 0.199604i
\(416\) 0 0
\(417\) 63.3251i 3.10104i
\(418\) 0 0
\(419\) 4.19665 0.205020 0.102510 0.994732i \(-0.467313\pi\)
0.102510 + 0.994732i \(0.467313\pi\)
\(420\) 0 0
\(421\) −18.5108 −0.902160 −0.451080 0.892483i \(-0.648961\pi\)
−0.451080 + 0.892483i \(0.648961\pi\)
\(422\) 0 0
\(423\) 26.4203i 1.28460i
\(424\) 0 0
\(425\) 4.15707 8.36357i 0.201647 0.405693i
\(426\) 0 0
\(427\) 18.4184i 0.891327i
\(428\) 0 0
\(429\) 43.1675 2.08414
\(430\) 0 0
\(431\) −37.1279 −1.78839 −0.894193 0.447681i \(-0.852250\pi\)
−0.894193 + 0.447681i \(0.852250\pi\)
\(432\) 0 0
\(433\) 16.8577i 0.810128i 0.914288 + 0.405064i \(0.132751\pi\)
−0.914288 + 0.405064i \(0.867249\pi\)
\(434\) 0 0
\(435\) 1.47742 6.29173i 0.0708367 0.301665i
\(436\) 0 0
\(437\) 1.17597i 0.0562543i
\(438\) 0 0
\(439\) −9.21821 −0.439961 −0.219981 0.975504i \(-0.570599\pi\)
−0.219981 + 0.975504i \(0.570599\pi\)
\(440\) 0 0
\(441\) 44.4816 2.11817
\(442\) 0 0
\(443\) 18.9023i 0.898078i 0.893512 + 0.449039i \(0.148234\pi\)
−0.893512 + 0.449039i \(0.851766\pi\)
\(444\) 0 0
\(445\) −7.20223 1.69122i −0.341419 0.0801716i
\(446\) 0 0
\(447\) 12.2762i 0.580643i
\(448\) 0 0
\(449\) 31.3245 1.47830 0.739148 0.673543i \(-0.235228\pi\)
0.739148 + 0.673543i \(0.235228\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 32.6849i 1.53567i
\(454\) 0 0
\(455\) −47.9256 11.2538i −2.24679 0.527588i
\(456\) 0 0
\(457\) 36.6287i 1.71342i −0.515799 0.856710i \(-0.672505\pi\)
0.515799 0.856710i \(-0.327495\pi\)
\(458\) 0 0
\(459\) 12.7074 0.593132
\(460\) 0 0
\(461\) 28.8297 1.34273 0.671367 0.741125i \(-0.265707\pi\)
0.671367 + 0.741125i \(0.265707\pi\)
\(462\) 0 0
\(463\) 29.6409i 1.37753i −0.724984 0.688766i \(-0.758153\pi\)
0.724984 0.688766i \(-0.241847\pi\)
\(464\) 0 0
\(465\) 0.966634 4.11651i 0.0448266 0.190899i
\(466\) 0 0
\(467\) 26.4746i 1.22510i −0.790432 0.612550i \(-0.790144\pi\)
0.790432 0.612550i \(-0.209856\pi\)
\(468\) 0 0
\(469\) −25.3245 −1.16938
\(470\) 0 0
\(471\) −11.9097 −0.548768
\(472\) 0 0
\(473\) 28.4419i 1.30776i
\(474\) 0 0
\(475\) 7.60911 + 3.78207i 0.349130 + 0.173533i
\(476\) 0 0
\(477\) 41.0715i 1.88054i
\(478\) 0 0
\(479\) 27.1810 1.24193 0.620967 0.783837i \(-0.286740\pi\)
0.620967 + 0.783837i \(0.286740\pi\)
\(480\) 0 0
\(481\) −22.0160 −1.00384
\(482\) 0 0
\(483\) 7.82523i 0.356060i
\(484\) 0 0
\(485\) 0.196648 0.837444i 0.00892931 0.0380264i
\(486\) 0 0
\(487\) 32.0922i 1.45424i −0.686513 0.727118i \(-0.740859\pi\)
0.686513 0.727118i \(-0.259141\pi\)
\(488\) 0 0
\(489\) 9.24182 0.417929
\(490\) 0 0
\(491\) 10.0691 0.454414 0.227207 0.973847i \(-0.427041\pi\)
0.227207 + 0.973847i \(0.427041\pi\)
\(492\) 0 0
\(493\) 1.86794i 0.0841280i
\(494\) 0 0
\(495\) 30.9336 + 7.26380i 1.39036 + 0.326484i
\(496\) 0 0
\(497\) 7.82523i 0.351009i
\(498\) 0 0
\(499\) −29.9416 −1.34037 −0.670185 0.742194i \(-0.733785\pi\)
−0.670185 + 0.742194i \(0.733785\pi\)
\(500\) 0 0
\(501\) −42.2126 −1.88592
\(502\) 0 0
\(503\) 24.0140i 1.07073i −0.844620 0.535366i \(-0.820174\pi\)
0.844620 0.535366i \(-0.179826\pi\)
\(504\) 0 0
\(505\) 25.9256 + 6.08783i 1.15368 + 0.270905i
\(506\) 0 0
\(507\) 53.9391i 2.39552i
\(508\) 0 0
\(509\) 21.0771 0.934227 0.467113 0.884197i \(-0.345294\pi\)
0.467113 + 0.884197i \(0.345294\pi\)
\(510\) 0 0
\(511\) −41.3245 −1.82809
\(512\) 0 0
\(513\) 11.5611i 0.510436i
\(514\) 0 0
\(515\) 7.64629 32.5625i 0.336936 1.43487i
\(516\) 0 0
\(517\) 13.0987i 0.576080i
\(518\) 0 0
\(519\) 26.0160 1.14197
\(520\) 0 0
\(521\) 11.6623 0.510933 0.255466 0.966818i \(-0.417771\pi\)
0.255466 + 0.966818i \(0.417771\pi\)
\(522\) 0 0
\(523\) 36.3895i 1.59120i −0.605821 0.795601i \(-0.707155\pi\)
0.605821 0.795601i \(-0.292845\pi\)
\(524\) 0 0
\(525\) −50.6331 25.1669i −2.20981 1.09837i
\(526\) 0 0
\(527\) 1.22215i 0.0532376i
\(528\) 0 0
\(529\) 22.5212 0.979181
\(530\) 0 0
\(531\) −53.5371 −2.32331
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −2.00000 + 8.51720i −0.0864675 + 0.368231i
\(536\) 0 0
\(537\) 61.5877i 2.65770i
\(538\) 0 0
\(539\) 22.0532 0.949897
\(540\) 0 0
\(541\) 9.92564 0.426737 0.213368 0.976972i \(-0.431557\pi\)
0.213368 + 0.976972i \(0.431557\pi\)
\(542\) 0 0
\(543\) 49.0504i 2.10495i
\(544\) 0 0
\(545\) 16.4482 + 3.86235i 0.704565 + 0.165445i
\(546\) 0 0
\(547\) 9.03245i 0.386200i −0.981179 0.193100i \(-0.938146\pi\)
0.981179 0.193100i \(-0.0618541\pi\)
\(548\) 0 0
\(549\) 25.2022 1.07561
\(550\) 0 0
\(551\) 1.69944 0.0723986
\(552\) 0 0
\(553\) 8.03321i 0.341607i
\(554\) 0 0
\(555\) −24.6171 5.78056i −1.04494 0.245371i
\(556\) 0 0
\(557\) 13.7145i 0.581101i 0.956860 + 0.290550i \(0.0938384\pi\)
−0.956860 + 0.290550i \(0.906162\pi\)
\(558\) 0 0
\(559\) 60.2953 2.55022
\(560\) 0 0
\(561\) 14.3301 0.605018
\(562\) 0 0
\(563\) 20.2781i 0.854621i −0.904105 0.427311i \(-0.859461\pi\)
0.904105 0.427311i \(-0.140539\pi\)
\(564\) 0 0
\(565\) −9.55595 + 40.6950i −0.402022 + 1.71205i
\(566\) 0 0
\(567\) 14.0898i 0.591715i
\(568\) 0 0
\(569\) −13.3085 −0.557923 −0.278962 0.960302i \(-0.589990\pi\)
−0.278962 + 0.960302i \(0.589990\pi\)
\(570\) 0 0
\(571\) 16.4204 0.687174 0.343587 0.939121i \(-0.388358\pi\)
0.343587 + 0.939121i \(0.388358\pi\)
\(572\) 0 0
\(573\) 24.2982i 1.01507i
\(574\) 0 0
\(575\) −1.53997 + 3.09826i −0.0642213 + 0.129206i
\(576\) 0 0
\(577\) 14.7505i 0.614071i −0.951698 0.307036i \(-0.900663\pi\)
0.951698 0.307036i \(-0.0993371\pi\)
\(578\) 0 0
\(579\) −2.28698 −0.0950438
\(580\) 0 0
\(581\) −7.30855 −0.303210
\(582\) 0 0
\(583\) 20.3625i 0.843329i
\(584\) 0 0
\(585\) −15.3989 + 65.5777i −0.636665 + 2.71130i
\(586\) 0 0
\(587\) 6.36385i 0.262664i 0.991338 + 0.131332i \(0.0419254\pi\)
−0.991338 + 0.131332i \(0.958075\pi\)
\(588\) 0 0
\(589\) 1.11190 0.0458150
\(590\) 0 0
\(591\) 70.8297 2.91355
\(592\) 0 0
\(593\) 30.0706i 1.23485i −0.786629 0.617426i \(-0.788176\pi\)
0.786629 0.617426i \(-0.211824\pi\)
\(594\) 0 0
\(595\) −15.9097 3.73589i −0.652233 0.153157i
\(596\) 0 0
\(597\) 55.8071i 2.28403i
\(598\) 0 0
\(599\) −25.0587 −1.02387 −0.511936 0.859023i \(-0.671072\pi\)
−0.511936 + 0.859023i \(0.671072\pi\)
\(600\) 0 0
\(601\) 40.0320 1.63294 0.816469 0.577390i \(-0.195929\pi\)
0.816469 + 0.577390i \(0.195929\pi\)
\(602\) 0 0
\(603\) 34.6521i 1.41114i
\(604\) 0 0
\(605\) −8.60911 2.02158i −0.350010 0.0821889i
\(606\) 0 0
\(607\) 41.3557i 1.67858i 0.543687 + 0.839288i \(0.317028\pi\)
−0.543687 + 0.839288i \(0.682972\pi\)
\(608\) 0 0
\(609\) −11.3085 −0.458245
\(610\) 0 0
\(611\) 27.7686 1.12340
\(612\) 0 0
\(613\) 40.5183i 1.63652i −0.574851 0.818258i \(-0.694940\pi\)
0.574851 0.818258i \(-0.305060\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.76865i 0.0712033i 0.999366 + 0.0356016i \(0.0113347\pi\)
−0.999366 + 0.0356016i \(0.988665\pi\)
\(618\) 0 0
\(619\) −0.249804 −0.0100405 −0.00502023 0.999987i \(-0.501598\pi\)
−0.00502023 + 0.999987i \(0.501598\pi\)
\(620\) 0 0
\(621\) −4.70743 −0.188903
\(622\) 0 0
\(623\) 12.9451i 0.518633i
\(624\) 0 0
\(625\) 15.0945 + 19.9288i 0.603780 + 0.797151i
\(626\) 0 0
\(627\) 13.0374i 0.520664i
\(628\) 0 0
\(629\) −7.30855 −0.291411
\(630\) 0 0
\(631\) −9.48922 −0.377760 −0.188880 0.982000i \(-0.560486\pi\)
−0.188880 + 0.982000i \(0.560486\pi\)
\(632\) 0 0
\(633\) 55.6535i 2.21203i
\(634\) 0 0
\(635\) 2.55036 10.8610i 0.101208 0.431005i
\(636\) 0 0
\(637\) 46.7516i 1.85236i
\(638\) 0 0
\(639\) 10.7074 0.423579
\(640\) 0 0
\(641\) −49.9416 −1.97258 −0.986288 0.165035i \(-0.947226\pi\)
−0.986288 + 0.165035i \(0.947226\pi\)
\(642\) 0 0
\(643\) 25.8589i 1.01977i 0.860241 + 0.509887i \(0.170313\pi\)
−0.860241 + 0.509887i \(0.829687\pi\)
\(644\) 0 0
\(645\) 67.4190 + 15.8313i 2.65462 + 0.623355i
\(646\) 0 0
\(647\) 32.1384i 1.26349i 0.775177 + 0.631745i \(0.217661\pi\)
−0.775177 + 0.631745i \(0.782339\pi\)
\(648\) 0 0
\(649\) −26.5427 −1.04189
\(650\) 0 0
\(651\) −7.39888 −0.289985
\(652\) 0 0
\(653\) 9.79247i 0.383209i 0.981472 + 0.191604i \(0.0613691\pi\)
−0.981472 + 0.191604i \(0.938631\pi\)
\(654\) 0 0
\(655\) −42.9177 10.0779i −1.67693 0.393775i
\(656\) 0 0
\(657\) 56.5452i 2.20604i
\(658\) 0 0
\(659\) −7.55835 −0.294432 −0.147216 0.989104i \(-0.547031\pi\)
−0.147216 + 0.989104i \(0.547031\pi\)
\(660\) 0 0
\(661\) −10.9041 −0.424119 −0.212060 0.977257i \(-0.568017\pi\)
−0.212060 + 0.977257i \(0.568017\pi\)
\(662\) 0 0
\(663\) 30.3791i 1.17983i
\(664\) 0 0
\(665\) 3.39888 14.4745i 0.131803 0.561296i
\(666\) 0 0
\(667\) 0.691975i 0.0267934i
\(668\) 0 0
\(669\) 31.4149 1.21457
\(670\) 0 0
\(671\) 12.4948 0.482357
\(672\) 0 0
\(673\) 12.6296i 0.486836i −0.969921 0.243418i \(-0.921731\pi\)
0.969921 0.243418i \(-0.0782687\pi\)
\(674\) 0 0
\(675\) −15.1397 + 30.4594i −0.582726 + 1.17238i
\(676\) 0 0
\(677\) 8.87065i 0.340927i −0.985364 0.170463i \(-0.945474\pi\)
0.985364 0.170463i \(-0.0545265\pi\)
\(678\) 0 0
\(679\) −1.50519 −0.0577641
\(680\) 0 0
\(681\) −50.0320 −1.91723
\(682\) 0 0
\(683\) 24.4749i 0.936507i 0.883594 + 0.468254i \(0.155117\pi\)
−0.883594 + 0.468254i \(0.844883\pi\)
\(684\) 0 0
\(685\) 3.20223 13.6370i 0.122351 0.521045i
\(686\) 0 0
\(687\) 54.0697i 2.06289i
\(688\) 0 0
\(689\) 43.1675 1.64455
\(690\) 0 0
\(691\) 3.30855 0.125863 0.0629315 0.998018i \(-0.479955\pi\)
0.0629315 + 0.998018i \(0.479955\pi\)
\(692\) 0 0
\(693\) 55.5991i 2.11204i
\(694\) 0 0
\(695\) 47.6942 + 11.1995i 1.80914 + 0.424821i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −42.2794 −1.59915
\(700\) 0 0
\(701\) −10.8485 −0.409743 −0.204871 0.978789i \(-0.565678\pi\)
−0.204871 + 0.978789i \(0.565678\pi\)
\(702\) 0 0
\(703\) 6.64926i 0.250781i
\(704\) 0 0
\(705\) 31.0493 + 7.29097i 1.16939 + 0.274594i
\(706\) 0 0
\(707\) 46.5979i 1.75250i
\(708\) 0 0
\(709\) 31.1675 1.17052 0.585259 0.810846i \(-0.300993\pi\)
0.585259 + 0.810846i \(0.300993\pi\)
\(710\) 0 0
\(711\) 10.9920 0.412233
\(712\) 0 0
\(713\) 0.452741i 0.0169553i
\(714\) 0 0
\(715\) −7.63448 + 32.5122i −0.285513 + 1.21589i
\(716\) 0 0
\(717\) 5.78056i 0.215879i
\(718\) 0 0
\(719\) −13.0056 −0.485027 −0.242513 0.970148i \(-0.577972\pi\)
−0.242513 + 0.970148i \(0.577972\pi\)
\(720\) 0 0
\(721\) −58.5268 −2.17965
\(722\) 0 0
\(723\) 16.0582i 0.597213i
\(724\) 0 0
\(725\) 4.47742 + 2.22548i 0.166287 + 0.0826521i
\(726\) 0 0
\(727\) 1.19089i 0.0441677i −0.999756 0.0220839i \(-0.992970\pi\)
0.999756 0.0220839i \(-0.00703008\pi\)
\(728\) 0 0
\(729\) 39.7074 1.47065
\(730\) 0 0
\(731\) 20.0160 0.740318
\(732\) 0 0
\(733\) 34.5990i 1.27794i 0.769231 + 0.638971i \(0.220640\pi\)
−0.769231 + 0.638971i \(0.779360\pi\)
\(734\) 0 0
\(735\) −12.2752 + 52.2751i −0.452777 + 1.92820i
\(736\) 0 0
\(737\) 17.1799i 0.632829i
\(738\) 0 0
\(739\) −41.7821 −1.53698 −0.768491 0.639861i \(-0.778992\pi\)
−0.768491 + 0.639861i \(0.778992\pi\)
\(740\) 0 0
\(741\) −27.6387 −1.01533
\(742\) 0 0
\(743\) 4.02130i 0.147527i 0.997276 + 0.0737636i \(0.0235010\pi\)
−0.997276 + 0.0737636i \(0.976499\pi\)
\(744\) 0 0
\(745\) −9.24599 2.17113i −0.338747 0.0795442i
\(746\) 0 0
\(747\) 10.0004i 0.365897i
\(748\) 0 0
\(749\) 15.3085 0.559362
\(750\) 0 0
\(751\) 0.497206 0.0181433 0.00907166 0.999959i \(-0.497112\pi\)
0.00907166 + 0.999959i \(0.497112\pi\)
\(752\) 0 0
\(753\) 26.7968i 0.976531i
\(754\) 0 0
\(755\) 24.6171 + 5.78056i 0.895908 + 0.210376i
\(756\) 0 0
\(757\) 18.6944i 0.679458i 0.940523 + 0.339729i \(0.110335\pi\)
−0.940523 + 0.339729i \(0.889665\pi\)
\(758\) 0 0
\(759\) −5.30855 −0.192688
\(760\) 0 0
\(761\) −3.38291 −0.122630 −0.0613151 0.998118i \(-0.519529\pi\)
−0.0613151 + 0.998118i \(0.519529\pi\)
\(762\) 0 0
\(763\) 29.5635i 1.07027i
\(764\) 0 0
\(765\) −5.11190 + 21.7695i −0.184821 + 0.787079i
\(766\) 0 0
\(767\) 56.2692i 2.03176i
\(768\) 0 0
\(769\) 7.41486 0.267387 0.133693 0.991023i \(-0.457316\pi\)
0.133693 + 0.991023i \(0.457316\pi\)
\(770\) 0 0
\(771\) −40.7901 −1.46902
\(772\) 0 0
\(773\) 33.2775i 1.19691i −0.801156 0.598455i \(-0.795782\pi\)
0.801156 0.598455i \(-0.204218\pi\)
\(774\) 0 0
\(775\) 2.92945 + 1.45607i 0.105229 + 0.0523036i
\(776\) 0 0
\(777\) 44.2460i 1.58732i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 5.30855 0.189955
\(782\) 0 0
\(783\) 6.80289i 0.243116i
\(784\) 0 0
\(785\) 2.10631 8.96994i 0.0751775 0.320151i
\(786\) 0 0
\(787\) 18.2878i 0.651890i 0.945389 + 0.325945i \(0.105682\pi\)
−0.945389 + 0.325945i \(0.894318\pi\)
\(788\) 0 0
\(789\) 20.1730 0.718179
\(790\) 0 0
\(791\) 73.1439 2.60070
\(792\) 0 0
\(793\) 26.4883i 0.940629i
\(794\) 0 0
\(795\) 48.2676 + 11.3341i 1.71187 + 0.401980i
\(796\) 0 0
\(797\) 44.5845i 1.57926i 0.613581 + 0.789632i \(0.289729\pi\)
−0.613581 + 0.789632i \(0.710271\pi\)
\(798\) 0 0
\(799\) 9.21821 0.326117
\(800\) 0 0
\(801\) 17.7130 0.625859
\(802\) 0 0
\(803\) 28.0341i 0.989302i
\(804\) 0 0
\(805\) 5.89369 + 1.38395i 0.207725 + 0.0487778i
\(806\) 0 0
\(807\) 21.0776i 0.741965i
\(808\) 0 0
\(809\) −14.1063 −0.495952 −0.247976 0.968766i \(-0.579765\pi\)
−0.247976 + 0.968766i \(0.579765\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 67.5218i 2.36809i
\(814\) 0 0
\(815\) −1.63448 + 6.96061i −0.0572535 + 0.243820i
\(816\) 0 0
\(817\) 18.2104i 0.637100i
\(818\) 0 0
\(819\) 117.867 4.11862
\(820\) 0 0
\(821\) 18.1571 0.633686 0.316843 0.948478i \(-0.397377\pi\)
0.316843 + 0.948478i \(0.397377\pi\)
\(822\) 0 0
\(823\) 3.25189i 0.113354i −0.998393 0.0566770i \(-0.981949\pi\)
0.998393 0.0566770i \(-0.0180505\pi\)
\(824\) 0 0
\(825\) −17.0729 + 34.3489i −0.594404 + 1.19588i
\(826\) 0 0
\(827\) 10.7155i 0.372615i 0.982492 + 0.186307i \(0.0596520\pi\)
−0.982492 + 0.186307i \(0.940348\pi\)
\(828\) 0 0
\(829\) −52.3461 −1.81805 −0.909027 0.416736i \(-0.863174\pi\)
−0.909027 + 0.416736i \(0.863174\pi\)
\(830\) 0 0
\(831\) 8.42045 0.292102
\(832\) 0 0
\(833\) 15.5199i 0.537733i
\(834\) 0 0
\(835\) 7.46561 31.7931i 0.258358 1.10024i
\(836\) 0 0
\(837\) 4.45095i 0.153847i
\(838\) 0 0
\(839\) 24.6703 0.851712 0.425856 0.904791i \(-0.359973\pi\)
0.425856 + 0.904791i \(0.359973\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 87.2085i 3.00362i
\(844\) 0 0
\(845\) −40.6251 9.53954i −1.39755 0.328170i
\(846\) 0 0
\(847\) 15.4737i 0.531684i
\(848\) 0 0
\(849\) 5.81933 0.199719
\(850\) 0 0
\(851\) 2.70743 0.0928095
\(852\) 0 0
\(853\) 28.1115i 0.962520i −0.876578 0.481260i \(-0.840179\pi\)
0.876578 0.481260i \(-0.159821\pi\)
\(854\) 0 0
\(855\) −19.8058 4.65077i −0.677342 0.159053i
\(856\) 0 0
\(857\) 8.39482i 0.286762i −0.989668 0.143381i \(-0.954203\pi\)
0.989668 0.143381i \(-0.0457974\pi\)
\(858\) 0 0
\(859\) 17.8405 0.608711 0.304356 0.952559i \(-0.401559\pi\)
0.304356 + 0.952559i \(0.401559\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.48249i 0.0845049i 0.999107 + 0.0422524i \(0.0134534\pi\)
−0.999107 + 0.0422524i \(0.986547\pi\)
\(864\) 0 0
\(865\) −4.60112 + 19.5943i −0.156443 + 0.666227i
\(866\) 0 0
\(867\) 39.0499i 1.32621i
\(868\) 0 0
\(869\) 5.44964 0.184866
\(870\) 0 0
\(871\) −36.4204 −1.23406
\(872\) 0 0
\(873\) 2.05959i 0.0697066i
\(874\) 0 0
\(875\) 27.9097 33.6841i 0.943519 1.13873i
\(876\) 0 0
\(877\) 25.9813i 0.877325i 0.898652 + 0.438662i \(0.144548\pi\)
−0.898652 + 0.438662i \(0.855452\pi\)
\(878\) 0 0
\(879\) −31.4149 −1.05960
\(880\) 0 0
\(881\) 25.1279 0.846580 0.423290 0.905994i \(-0.360875\pi\)
0.423290 + 0.905994i \(0.360875\pi\)
\(882\) 0 0
\(883\) 10.9684i 0.369117i −0.982822 0.184559i \(-0.940914\pi\)
0.982822 0.184559i \(-0.0590856\pi\)
\(884\) 0 0
\(885\) 14.7742 62.9173i 0.496628 2.11494i
\(886\) 0 0
\(887\) 2.99897i 0.100695i 0.998732 + 0.0503477i \(0.0160330\pi\)
−0.998732 + 0.0503477i \(0.983967\pi\)
\(888\) 0 0
\(889\) −19.5212 −0.654719
\(890\) 0 0
\(891\) −9.55835 −0.320217
\(892\) 0 0
\(893\) 8.38665i 0.280649i
\(894\) 0 0
\(895\) −46.3857 10.8922i −1.55050 0.364087i
\(896\) 0 0
\(897\) 11.2538i 0.375755i
\(898\) 0 0
\(899\) 0.654273 0.0218212
\(900\) 0 0
\(901\) 14.3301 0.477405
\(902\) 0 0
\(903\) 121.177i 4.03251i
\(904\) 0 0
\(905\) −36.9430 8.67492i −1.22803 0.288364i
\(906\) 0 0
\(907\) 50.5567i 1.67871i 0.543585 + 0.839354i \(0.317066\pi\)
−0.543585 + 0.839354i \(0.682934\pi\)
\(908\) 0 0
\(909\) −63.7609 −2.11482
\(910\) 0 0
\(911\) −35.9044 −1.18957 −0.594784 0.803886i \(-0.702762\pi\)
−0.594784 + 0.803886i \(0.702762\pi\)
\(912\) 0 0
\(913\) 4.95804i 0.164087i
\(914\) 0 0
\(915\) −6.95483 + 29.6179i −0.229920 + 0.979136i
\(916\) 0 0
\(917\) 77.1388i 2.54735i
\(918\) 0 0
\(919\) 15.2022 0.501475 0.250738 0.968055i \(-0.419327\pi\)
0.250738 + 0.968055i \(0.419327\pi\)
\(920\) 0 0
\(921\) −26.0827 −0.859454
\(922\) 0 0
\(923\) 11.2538i 0.370425i
\(924\) 0 0
\(925\) 8.70743 17.5184i 0.286299 0.576001i
\(926\) 0 0
\(927\) 80.0834i 2.63029i
\(928\) 0 0
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) −14.1199 −0.462761
\(932\) 0 0
\(933\) 32.1234i 1.05167i
\(934\) 0 0
\(935\) −2.53439 + 10.7929i −0.0828833 + 0.352967i
\(936\) 0 0
\(937\) 32.1859i 1.05147i 0.850649 + 0.525734i \(0.176209\pi\)
−0.850649 + 0.525734i \(0.823791\pi\)
\(938\) 0 0
\(939\) −74.3857 −2.42748
\(940\) 0 0
\(941\) 22.3697 0.729231 0.364616 0.931158i \(-0.381200\pi\)
0.364616 + 0.931158i \(0.381200\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 57.9416 + 13.6058i 1.88484 + 0.442596i
\(946\) 0 0
\(947\) 0.122381i 0.00397684i 0.999998 + 0.00198842i \(0.000632935\pi\)
−0.999998 + 0.00198842i \(0.999367\pi\)
\(948\) 0 0
\(949\) −59.4308 −1.92921
\(950\) 0 0
\(951\) −2.42045 −0.0784884
\(952\) 0 0
\(953\) 55.4917i 1.79755i −0.438409 0.898776i \(-0.644458\pi\)
0.438409 0.898776i \(-0.355542\pi\)
\(954\) 0 0
\(955\) 18.3006 + 4.29732i 0.592192 + 0.139058i
\(956\) 0 0
\(957\) 7.67159i 0.247987i
\(958\) 0 0
\(959\) −24.5108 −0.791494
\(960\) 0 0
\(961\) −30.5719 −0.986191
\(962\) 0 0
\(963\) 20.9470i 0.675008i
\(964\) 0 0
\(965\) 0.404470 1.72248i 0.0130203 0.0554485i
\(966\) 0 0
\(967\) 49.0722i 1.57806i 0.614357 + 0.789028i \(0.289416\pi\)
−0.614357 + 0.789028i \(0.710584\pi\)
\(968\) 0 0
\(969\) −9.17508 −0.294746
\(970\) 0 0
\(971\) −2.08793 −0.0670050 −0.0335025 0.999439i \(-0.510666\pi\)
−0.0335025 + 0.999439i \(0.510666\pi\)
\(972\) 0 0
\(973\) 85.7241i 2.74819i
\(974\) 0 0
\(975\) −72.8179 36.1938i −2.33204 1.15913i
\(976\) 0 0
\(977\) 36.5119i 1.16812i 0.811711 + 0.584059i \(0.198536\pi\)
−0.811711 + 0.584059i \(0.801464\pi\)
\(978\) 0 0
\(979\) 8.78179 0.280667
\(980\) 0 0
\(981\) −40.4524 −1.29155
\(982\) 0 0
\(983\) 32.8698i 1.04838i −0.851601 0.524191i \(-0.824368\pi\)
0.851601 0.524191i \(-0.175632\pi\)
\(984\) 0 0
\(985\) −12.5268 + 53.3465i −0.399136 + 1.69976i
\(986\) 0 0
\(987\) 55.8071i 1.77636i
\(988\) 0 0
\(989\) −7.41486 −0.235779
\(990\) 0 0
\(991\) 36.0160 1.14409 0.572043 0.820224i \(-0.306151\pi\)
0.572043 + 0.820224i \(0.306151\pi\)
\(992\) 0 0
\(993\) 63.7860i 2.02419i
\(994\) 0 0
\(995\) 42.0320 + 9.86990i 1.33250 + 0.312897i
\(996\) 0 0
\(997\) 56.8063i 1.79907i 0.436844 + 0.899537i \(0.356096\pi\)
−0.436844 + 0.899537i \(0.643904\pi\)
\(998\) 0 0
\(999\) 26.6171 0.842128
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.2.d.g.929.1 6
4.3 odd 2 145.2.b.c.59.2 6
5.4 even 2 inner 2320.2.d.g.929.6 6
12.11 even 2 1305.2.c.h.784.5 6
20.3 even 4 725.2.a.l.1.2 6
20.7 even 4 725.2.a.l.1.5 6
20.19 odd 2 145.2.b.c.59.5 yes 6
60.23 odd 4 6525.2.a.bt.1.5 6
60.47 odd 4 6525.2.a.bt.1.2 6
60.59 even 2 1305.2.c.h.784.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.c.59.2 6 4.3 odd 2
145.2.b.c.59.5 yes 6 20.19 odd 2
725.2.a.l.1.2 6 20.3 even 4
725.2.a.l.1.5 6 20.7 even 4
1305.2.c.h.784.2 6 60.59 even 2
1305.2.c.h.784.5 6 12.11 even 2
2320.2.d.g.929.1 6 1.1 even 1 trivial
2320.2.d.g.929.6 6 5.4 even 2 inner
6525.2.a.bt.1.2 6 60.47 odd 4
6525.2.a.bt.1.5 6 60.23 odd 4