Properties

Label 2320.2.d.f.929.4
Level $2320$
Weight $2$
Character 2320.929
Analytic conductor $18.525$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,2,Mod(929,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.929");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5252932689\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 929.4
Root \(1.93185i\) of defining polynomial
Character \(\chi\) \(=\) 2320.929
Dual form 2320.2.d.f.929.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{3} +(1.73205 - 1.41421i) q^{5} -2.44949i q^{7} +1.00000 q^{9} +4.73205 q^{11} +6.69213i q^{13} +(2.00000 + 2.44949i) q^{15} +1.41421i q^{17} -6.73205 q^{19} +3.46410 q^{21} +3.48477i q^{23} +(1.00000 - 4.89898i) q^{25} +5.65685i q^{27} -1.00000 q^{29} +5.26795 q^{31} +6.69213i q^{33} +(-3.46410 - 4.24264i) q^{35} -0.656339i q^{37} -9.46410 q^{39} +6.92820 q^{41} -0.656339i q^{43} +(1.73205 - 1.41421i) q^{45} -1.41421i q^{47} +1.00000 q^{49} -2.00000 q^{51} +8.76268i q^{53} +(8.19615 - 6.69213i) q^{55} -9.52056i q^{57} +10.3923 q^{59} -10.9282 q^{61} -2.44949i q^{63} +(9.46410 + 11.5911i) q^{65} -4.24264i q^{67} -4.92820 q^{69} +3.46410 q^{71} -7.34847i q^{73} +(6.92820 + 1.41421i) q^{75} -11.5911i q^{77} +6.19615 q^{79} -5.00000 q^{81} -4.52004i q^{83} +(2.00000 + 2.44949i) q^{85} -1.41421i q^{87} +10.3923 q^{89} +16.3923 q^{91} +7.45001i q^{93} +(-11.6603 + 9.52056i) q^{95} -6.03579i q^{97} +4.73205 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{9} + 12 q^{11} + 8 q^{15} - 20 q^{19} + 4 q^{25} - 4 q^{29} + 28 q^{31} - 24 q^{39} + 4 q^{49} - 8 q^{51} + 12 q^{55} - 16 q^{61} + 24 q^{65} + 8 q^{69} + 4 q^{79} - 20 q^{81} + 8 q^{85} + 24 q^{91}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2320\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(1857\) \(2031\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421i 0.816497i 0.912871 + 0.408248i \(0.133860\pi\)
−0.912871 + 0.408248i \(0.866140\pi\)
\(4\) 0 0
\(5\) 1.73205 1.41421i 0.774597 0.632456i
\(6\) 0 0
\(7\) 2.44949i 0.925820i −0.886405 0.462910i \(-0.846805\pi\)
0.886405 0.462910i \(-0.153195\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.73205 1.42677 0.713384 0.700774i \(-0.247162\pi\)
0.713384 + 0.700774i \(0.247162\pi\)
\(12\) 0 0
\(13\) 6.69213i 1.85606i 0.372502 + 0.928032i \(0.378500\pi\)
−0.372502 + 0.928032i \(0.621500\pi\)
\(14\) 0 0
\(15\) 2.00000 + 2.44949i 0.516398 + 0.632456i
\(16\) 0 0
\(17\) 1.41421i 0.342997i 0.985184 + 0.171499i \(0.0548609\pi\)
−0.985184 + 0.171499i \(0.945139\pi\)
\(18\) 0 0
\(19\) −6.73205 −1.54444 −0.772219 0.635356i \(-0.780853\pi\)
−0.772219 + 0.635356i \(0.780853\pi\)
\(20\) 0 0
\(21\) 3.46410 0.755929
\(22\) 0 0
\(23\) 3.48477i 0.726624i 0.931668 + 0.363312i \(0.118354\pi\)
−0.931668 + 0.363312i \(0.881646\pi\)
\(24\) 0 0
\(25\) 1.00000 4.89898i 0.200000 0.979796i
\(26\) 0 0
\(27\) 5.65685i 1.08866i
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 5.26795 0.946152 0.473076 0.881022i \(-0.343144\pi\)
0.473076 + 0.881022i \(0.343144\pi\)
\(32\) 0 0
\(33\) 6.69213i 1.16495i
\(34\) 0 0
\(35\) −3.46410 4.24264i −0.585540 0.717137i
\(36\) 0 0
\(37\) 0.656339i 0.107901i −0.998544 0.0539507i \(-0.982819\pi\)
0.998544 0.0539507i \(-0.0171814\pi\)
\(38\) 0 0
\(39\) −9.46410 −1.51547
\(40\) 0 0
\(41\) 6.92820 1.08200 0.541002 0.841021i \(-0.318045\pi\)
0.541002 + 0.841021i \(0.318045\pi\)
\(42\) 0 0
\(43\) 0.656339i 0.100091i −0.998747 0.0500454i \(-0.984063\pi\)
0.998747 0.0500454i \(-0.0159366\pi\)
\(44\) 0 0
\(45\) 1.73205 1.41421i 0.258199 0.210819i
\(46\) 0 0
\(47\) 1.41421i 0.206284i −0.994667 0.103142i \(-0.967110\pi\)
0.994667 0.103142i \(-0.0328896\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 8.76268i 1.20365i 0.798629 + 0.601824i \(0.205559\pi\)
−0.798629 + 0.601824i \(0.794441\pi\)
\(54\) 0 0
\(55\) 8.19615 6.69213i 1.10517 0.902367i
\(56\) 0 0
\(57\) 9.52056i 1.26103i
\(58\) 0 0
\(59\) 10.3923 1.35296 0.676481 0.736460i \(-0.263504\pi\)
0.676481 + 0.736460i \(0.263504\pi\)
\(60\) 0 0
\(61\) −10.9282 −1.39921 −0.699607 0.714528i \(-0.746641\pi\)
−0.699607 + 0.714528i \(0.746641\pi\)
\(62\) 0 0
\(63\) 2.44949i 0.308607i
\(64\) 0 0
\(65\) 9.46410 + 11.5911i 1.17388 + 1.43770i
\(66\) 0 0
\(67\) 4.24264i 0.518321i −0.965834 0.259161i \(-0.916554\pi\)
0.965834 0.259161i \(-0.0834459\pi\)
\(68\) 0 0
\(69\) −4.92820 −0.593286
\(70\) 0 0
\(71\) 3.46410 0.411113 0.205557 0.978645i \(-0.434100\pi\)
0.205557 + 0.978645i \(0.434100\pi\)
\(72\) 0 0
\(73\) 7.34847i 0.860073i −0.902811 0.430037i \(-0.858501\pi\)
0.902811 0.430037i \(-0.141499\pi\)
\(74\) 0 0
\(75\) 6.92820 + 1.41421i 0.800000 + 0.163299i
\(76\) 0 0
\(77\) 11.5911i 1.32093i
\(78\) 0 0
\(79\) 6.19615 0.697122 0.348561 0.937286i \(-0.386670\pi\)
0.348561 + 0.937286i \(0.386670\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) 4.52004i 0.496139i −0.968742 0.248070i \(-0.920204\pi\)
0.968742 0.248070i \(-0.0797961\pi\)
\(84\) 0 0
\(85\) 2.00000 + 2.44949i 0.216930 + 0.265684i
\(86\) 0 0
\(87\) 1.41421i 0.151620i
\(88\) 0 0
\(89\) 10.3923 1.10158 0.550791 0.834643i \(-0.314326\pi\)
0.550791 + 0.834643i \(0.314326\pi\)
\(90\) 0 0
\(91\) 16.3923 1.71838
\(92\) 0 0
\(93\) 7.45001i 0.772530i
\(94\) 0 0
\(95\) −11.6603 + 9.52056i −1.19632 + 0.976789i
\(96\) 0 0
\(97\) 6.03579i 0.612842i −0.951896 0.306421i \(-0.900869\pi\)
0.951896 0.306421i \(-0.0991315\pi\)
\(98\) 0 0
\(99\) 4.73205 0.475589
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 0.656339i 0.0646710i −0.999477 0.0323355i \(-0.989705\pi\)
0.999477 0.0323355i \(-0.0102945\pi\)
\(104\) 0 0
\(105\) 6.00000 4.89898i 0.585540 0.478091i
\(106\) 0 0
\(107\) 3.96524i 0.383334i 0.981460 + 0.191667i \(0.0613894\pi\)
−0.981460 + 0.191667i \(0.938611\pi\)
\(108\) 0 0
\(109\) 9.85641 0.944073 0.472036 0.881579i \(-0.343519\pi\)
0.472036 + 0.881579i \(0.343519\pi\)
\(110\) 0 0
\(111\) 0.928203 0.0881012
\(112\) 0 0
\(113\) 1.69161i 0.159134i −0.996830 0.0795669i \(-0.974646\pi\)
0.996830 0.0795669i \(-0.0253537\pi\)
\(114\) 0 0
\(115\) 4.92820 + 6.03579i 0.459557 + 0.562840i
\(116\) 0 0
\(117\) 6.69213i 0.618688i
\(118\) 0 0
\(119\) 3.46410 0.317554
\(120\) 0 0
\(121\) 11.3923 1.03566
\(122\) 0 0
\(123\) 9.79796i 0.883452i
\(124\) 0 0
\(125\) −5.19615 9.89949i −0.464758 0.885438i
\(126\) 0 0
\(127\) 4.24264i 0.376473i −0.982124 0.188237i \(-0.939723\pi\)
0.982124 0.188237i \(-0.0602772\pi\)
\(128\) 0 0
\(129\) 0.928203 0.0817237
\(130\) 0 0
\(131\) 1.26795 0.110781 0.0553906 0.998465i \(-0.482360\pi\)
0.0553906 + 0.998465i \(0.482360\pi\)
\(132\) 0 0
\(133\) 16.4901i 1.42987i
\(134\) 0 0
\(135\) 8.00000 + 9.79796i 0.688530 + 0.843274i
\(136\) 0 0
\(137\) 5.00052i 0.427223i 0.976919 + 0.213611i \(0.0685226\pi\)
−0.976919 + 0.213611i \(0.931477\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) 2.00000 0.168430
\(142\) 0 0
\(143\) 31.6675i 2.64817i
\(144\) 0 0
\(145\) −1.73205 + 1.41421i −0.143839 + 0.117444i
\(146\) 0 0
\(147\) 1.41421i 0.116642i
\(148\) 0 0
\(149\) −12.9282 −1.05912 −0.529560 0.848273i \(-0.677643\pi\)
−0.529560 + 0.848273i \(0.677643\pi\)
\(150\) 0 0
\(151\) −22.7846 −1.85419 −0.927093 0.374832i \(-0.877700\pi\)
−0.927093 + 0.374832i \(0.877700\pi\)
\(152\) 0 0
\(153\) 1.41421i 0.114332i
\(154\) 0 0
\(155\) 9.12436 7.45001i 0.732886 0.598399i
\(156\) 0 0
\(157\) 6.03579i 0.481709i 0.970561 + 0.240854i \(0.0774276\pi\)
−0.970561 + 0.240854i \(0.922572\pi\)
\(158\) 0 0
\(159\) −12.3923 −0.982774
\(160\) 0 0
\(161\) 8.53590 0.672723
\(162\) 0 0
\(163\) 5.55532i 0.435126i −0.976046 0.217563i \(-0.930189\pi\)
0.976046 0.217563i \(-0.0698108\pi\)
\(164\) 0 0
\(165\) 9.46410 + 11.5911i 0.736779 + 0.902367i
\(166\) 0 0
\(167\) 8.38375i 0.648754i 0.945928 + 0.324377i \(0.105155\pi\)
−0.945928 + 0.324377i \(0.894845\pi\)
\(168\) 0 0
\(169\) −31.7846 −2.44497
\(170\) 0 0
\(171\) −6.73205 −0.514813
\(172\) 0 0
\(173\) 9.52056i 0.723835i −0.932210 0.361917i \(-0.882122\pi\)
0.932210 0.361917i \(-0.117878\pi\)
\(174\) 0 0
\(175\) −12.0000 2.44949i −0.907115 0.185164i
\(176\) 0 0
\(177\) 14.6969i 1.10469i
\(178\) 0 0
\(179\) 9.46410 0.707380 0.353690 0.935363i \(-0.384927\pi\)
0.353690 + 0.935363i \(0.384927\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) 0 0
\(183\) 15.4548i 1.14245i
\(184\) 0 0
\(185\) −0.928203 1.13681i −0.0682429 0.0835801i
\(186\) 0 0
\(187\) 6.69213i 0.489377i
\(188\) 0 0
\(189\) 13.8564 1.00791
\(190\) 0 0
\(191\) 9.12436 0.660215 0.330108 0.943943i \(-0.392915\pi\)
0.330108 + 0.943943i \(0.392915\pi\)
\(192\) 0 0
\(193\) 9.14162i 0.658028i −0.944325 0.329014i \(-0.893284\pi\)
0.944325 0.329014i \(-0.106716\pi\)
\(194\) 0 0
\(195\) −16.3923 + 13.3843i −1.17388 + 0.958467i
\(196\) 0 0
\(197\) 16.7675i 1.19463i 0.802005 + 0.597317i \(0.203767\pi\)
−0.802005 + 0.597317i \(0.796233\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) 6.00000 0.423207
\(202\) 0 0
\(203\) 2.44949i 0.171920i
\(204\) 0 0
\(205\) 12.0000 9.79796i 0.838116 0.684319i
\(206\) 0 0
\(207\) 3.48477i 0.242208i
\(208\) 0 0
\(209\) −31.8564 −2.20355
\(210\) 0 0
\(211\) 11.2679 0.775718 0.387859 0.921719i \(-0.373215\pi\)
0.387859 + 0.921719i \(0.373215\pi\)
\(212\) 0 0
\(213\) 4.89898i 0.335673i
\(214\) 0 0
\(215\) −0.928203 1.13681i −0.0633029 0.0775299i
\(216\) 0 0
\(217\) 12.9038i 0.875966i
\(218\) 0 0
\(219\) 10.3923 0.702247
\(220\) 0 0
\(221\) −9.46410 −0.636624
\(222\) 0 0
\(223\) 23.8386i 1.59635i 0.602427 + 0.798174i \(0.294200\pi\)
−0.602427 + 0.798174i \(0.705800\pi\)
\(224\) 0 0
\(225\) 1.00000 4.89898i 0.0666667 0.326599i
\(226\) 0 0
\(227\) 10.6574i 0.707354i 0.935368 + 0.353677i \(0.115069\pi\)
−0.935368 + 0.353677i \(0.884931\pi\)
\(228\) 0 0
\(229\) 22.7846 1.50565 0.752825 0.658221i \(-0.228691\pi\)
0.752825 + 0.658221i \(0.228691\pi\)
\(230\) 0 0
\(231\) 16.3923 1.07853
\(232\) 0 0
\(233\) 26.0106i 1.70401i −0.523530 0.852007i \(-0.675385\pi\)
0.523530 0.852007i \(-0.324615\pi\)
\(234\) 0 0
\(235\) −2.00000 2.44949i −0.130466 0.159787i
\(236\) 0 0
\(237\) 8.76268i 0.569197i
\(238\) 0 0
\(239\) −10.3923 −0.672222 −0.336111 0.941822i \(-0.609112\pi\)
−0.336111 + 0.941822i \(0.609112\pi\)
\(240\) 0 0
\(241\) 4.53590 0.292183 0.146091 0.989271i \(-0.453331\pi\)
0.146091 + 0.989271i \(0.453331\pi\)
\(242\) 0 0
\(243\) 9.89949i 0.635053i
\(244\) 0 0
\(245\) 1.73205 1.41421i 0.110657 0.0903508i
\(246\) 0 0
\(247\) 45.0518i 2.86657i
\(248\) 0 0
\(249\) 6.39230 0.405096
\(250\) 0 0
\(251\) 9.12436 0.575924 0.287962 0.957642i \(-0.407022\pi\)
0.287962 + 0.957642i \(0.407022\pi\)
\(252\) 0 0
\(253\) 16.4901i 1.03672i
\(254\) 0 0
\(255\) −3.46410 + 2.82843i −0.216930 + 0.177123i
\(256\) 0 0
\(257\) 4.62158i 0.288286i −0.989557 0.144143i \(-0.953957\pi\)
0.989557 0.144143i \(-0.0460425\pi\)
\(258\) 0 0
\(259\) −1.60770 −0.0998973
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) 0 0
\(263\) 24.5964i 1.51668i −0.651859 0.758341i \(-0.726010\pi\)
0.651859 0.758341i \(-0.273990\pi\)
\(264\) 0 0
\(265\) 12.3923 + 15.1774i 0.761253 + 0.932341i
\(266\) 0 0
\(267\) 14.6969i 0.899438i
\(268\) 0 0
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) 23.2679 1.41343 0.706714 0.707500i \(-0.250177\pi\)
0.706714 + 0.707500i \(0.250177\pi\)
\(272\) 0 0
\(273\) 23.1822i 1.40305i
\(274\) 0 0
\(275\) 4.73205 23.1822i 0.285353 1.39794i
\(276\) 0 0
\(277\) 23.6627i 1.42175i 0.703317 + 0.710877i \(0.251702\pi\)
−0.703317 + 0.710877i \(0.748298\pi\)
\(278\) 0 0
\(279\) 5.26795 0.315384
\(280\) 0 0
\(281\) −8.78461 −0.524046 −0.262023 0.965062i \(-0.584390\pi\)
−0.262023 + 0.965062i \(0.584390\pi\)
\(282\) 0 0
\(283\) 1.96902i 0.117046i 0.998286 + 0.0585229i \(0.0186391\pi\)
−0.998286 + 0.0585229i \(0.981361\pi\)
\(284\) 0 0
\(285\) −13.4641 16.4901i −0.797545 0.976789i
\(286\) 0 0
\(287\) 16.9706i 1.00174i
\(288\) 0 0
\(289\) 15.0000 0.882353
\(290\) 0 0
\(291\) 8.53590 0.500383
\(292\) 0 0
\(293\) 25.8348i 1.50928i −0.656137 0.754642i \(-0.727811\pi\)
0.656137 0.754642i \(-0.272189\pi\)
\(294\) 0 0
\(295\) 18.0000 14.6969i 1.04800 0.855689i
\(296\) 0 0
\(297\) 26.7685i 1.55327i
\(298\) 0 0
\(299\) −23.3205 −1.34866
\(300\) 0 0
\(301\) −1.60770 −0.0926660
\(302\) 0 0
\(303\) 8.48528i 0.487467i
\(304\) 0 0
\(305\) −18.9282 + 15.4548i −1.08383 + 0.884940i
\(306\) 0 0
\(307\) 18.9396i 1.08094i 0.841364 + 0.540469i \(0.181753\pi\)
−0.841364 + 0.540469i \(0.818247\pi\)
\(308\) 0 0
\(309\) 0.928203 0.0528036
\(310\) 0 0
\(311\) −24.5885 −1.39428 −0.697142 0.716933i \(-0.745545\pi\)
−0.697142 + 0.716933i \(0.745545\pi\)
\(312\) 0 0
\(313\) 18.7637i 1.06059i 0.847814 + 0.530294i \(0.177918\pi\)
−0.847814 + 0.530294i \(0.822082\pi\)
\(314\) 0 0
\(315\) −3.46410 4.24264i −0.195180 0.239046i
\(316\) 0 0
\(317\) 25.3543i 1.42404i −0.702159 0.712020i \(-0.747781\pi\)
0.702159 0.712020i \(-0.252219\pi\)
\(318\) 0 0
\(319\) −4.73205 −0.264944
\(320\) 0 0
\(321\) −5.60770 −0.312991
\(322\) 0 0
\(323\) 9.52056i 0.529738i
\(324\) 0 0
\(325\) 32.7846 + 6.69213i 1.81856 + 0.371213i
\(326\) 0 0
\(327\) 13.9391i 0.770832i
\(328\) 0 0
\(329\) −3.46410 −0.190982
\(330\) 0 0
\(331\) 7.80385 0.428938 0.214469 0.976731i \(-0.431198\pi\)
0.214469 + 0.976731i \(0.431198\pi\)
\(332\) 0 0
\(333\) 0.656339i 0.0359671i
\(334\) 0 0
\(335\) −6.00000 7.34847i −0.327815 0.401490i
\(336\) 0 0
\(337\) 23.0064i 1.25324i −0.779327 0.626618i \(-0.784439\pi\)
0.779327 0.626618i \(-0.215561\pi\)
\(338\) 0 0
\(339\) 2.39230 0.129932
\(340\) 0 0
\(341\) 24.9282 1.34994
\(342\) 0 0
\(343\) 19.5959i 1.05808i
\(344\) 0 0
\(345\) −8.53590 + 6.96953i −0.459557 + 0.375227i
\(346\) 0 0
\(347\) 6.79367i 0.364703i −0.983233 0.182352i \(-0.941629\pi\)
0.983233 0.182352i \(-0.0583709\pi\)
\(348\) 0 0
\(349\) −18.7846 −1.00552 −0.502759 0.864427i \(-0.667682\pi\)
−0.502759 + 0.864427i \(0.667682\pi\)
\(350\) 0 0
\(351\) −37.8564 −2.02063
\(352\) 0 0
\(353\) 12.1459i 0.646462i −0.946320 0.323231i \(-0.895231\pi\)
0.946320 0.323231i \(-0.104769\pi\)
\(354\) 0 0
\(355\) 6.00000 4.89898i 0.318447 0.260011i
\(356\) 0 0
\(357\) 4.89898i 0.259281i
\(358\) 0 0
\(359\) −10.7321 −0.566416 −0.283208 0.959059i \(-0.591399\pi\)
−0.283208 + 0.959059i \(0.591399\pi\)
\(360\) 0 0
\(361\) 26.3205 1.38529
\(362\) 0 0
\(363\) 16.1112i 0.845616i
\(364\) 0 0
\(365\) −10.3923 12.7279i −0.543958 0.666210i
\(366\) 0 0
\(367\) 25.1512i 1.31288i −0.754377 0.656442i \(-0.772061\pi\)
0.754377 0.656442i \(-0.227939\pi\)
\(368\) 0 0
\(369\) 6.92820 0.360668
\(370\) 0 0
\(371\) 21.4641 1.11436
\(372\) 0 0
\(373\) 19.5959i 1.01464i −0.861758 0.507319i \(-0.830637\pi\)
0.861758 0.507319i \(-0.169363\pi\)
\(374\) 0 0
\(375\) 14.0000 7.34847i 0.722957 0.379473i
\(376\) 0 0
\(377\) 6.69213i 0.344662i
\(378\) 0 0
\(379\) −5.80385 −0.298124 −0.149062 0.988828i \(-0.547625\pi\)
−0.149062 + 0.988828i \(0.547625\pi\)
\(380\) 0 0
\(381\) 6.00000 0.307389
\(382\) 0 0
\(383\) 23.5612i 1.20392i 0.798527 + 0.601959i \(0.205613\pi\)
−0.798527 + 0.601959i \(0.794387\pi\)
\(384\) 0 0
\(385\) −16.3923 20.0764i −0.835429 1.02319i
\(386\) 0 0
\(387\) 0.656339i 0.0333636i
\(388\) 0 0
\(389\) −20.7846 −1.05382 −0.526911 0.849921i \(-0.676650\pi\)
−0.526911 + 0.849921i \(0.676650\pi\)
\(390\) 0 0
\(391\) −4.92820 −0.249230
\(392\) 0 0
\(393\) 1.79315i 0.0904525i
\(394\) 0 0
\(395\) 10.7321 8.76268i 0.539988 0.440898i
\(396\) 0 0
\(397\) 4.89898i 0.245873i −0.992415 0.122936i \(-0.960769\pi\)
0.992415 0.122936i \(-0.0392311\pi\)
\(398\) 0 0
\(399\) −23.3205 −1.16749
\(400\) 0 0
\(401\) 10.1436 0.506547 0.253273 0.967395i \(-0.418493\pi\)
0.253273 + 0.967395i \(0.418493\pi\)
\(402\) 0 0
\(403\) 35.2538i 1.75612i
\(404\) 0 0
\(405\) −8.66025 + 7.07107i −0.430331 + 0.351364i
\(406\) 0 0
\(407\) 3.10583i 0.153950i
\(408\) 0 0
\(409\) −22.9282 −1.13373 −0.566863 0.823812i \(-0.691843\pi\)
−0.566863 + 0.823812i \(0.691843\pi\)
\(410\) 0 0
\(411\) −7.07180 −0.348826
\(412\) 0 0
\(413\) 25.4558i 1.25260i
\(414\) 0 0
\(415\) −6.39230 7.82894i −0.313786 0.384308i
\(416\) 0 0
\(417\) 11.3137i 0.554035i
\(418\) 0 0
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) −1.46410 −0.0713559 −0.0356780 0.999363i \(-0.511359\pi\)
−0.0356780 + 0.999363i \(0.511359\pi\)
\(422\) 0 0
\(423\) 1.41421i 0.0687614i
\(424\) 0 0
\(425\) 6.92820 + 1.41421i 0.336067 + 0.0685994i
\(426\) 0 0
\(427\) 26.7685i 1.29542i
\(428\) 0 0
\(429\) −44.7846 −2.16222
\(430\) 0 0
\(431\) −25.1769 −1.21273 −0.606365 0.795187i \(-0.707373\pi\)
−0.606365 + 0.795187i \(0.707373\pi\)
\(432\) 0 0
\(433\) 22.5259i 1.08252i 0.840854 + 0.541262i \(0.182053\pi\)
−0.840854 + 0.541262i \(0.817947\pi\)
\(434\) 0 0
\(435\) −2.00000 2.44949i −0.0958927 0.117444i
\(436\) 0 0
\(437\) 23.4596i 1.12223i
\(438\) 0 0
\(439\) −20.9282 −0.998849 −0.499424 0.866358i \(-0.666455\pi\)
−0.499424 + 0.866358i \(0.666455\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 21.0101i 0.998221i −0.866538 0.499111i \(-0.833660\pi\)
0.866538 0.499111i \(-0.166340\pi\)
\(444\) 0 0
\(445\) 18.0000 14.6969i 0.853282 0.696702i
\(446\) 0 0
\(447\) 18.2832i 0.864768i
\(448\) 0 0
\(449\) −1.85641 −0.0876092 −0.0438046 0.999040i \(-0.513948\pi\)
−0.0438046 + 0.999040i \(0.513948\pi\)
\(450\) 0 0
\(451\) 32.7846 1.54377
\(452\) 0 0
\(453\) 32.2223i 1.51394i
\(454\) 0 0
\(455\) 28.3923 23.1822i 1.33105 1.08680i
\(456\) 0 0
\(457\) 18.7637i 0.877730i −0.898553 0.438865i \(-0.855381\pi\)
0.898553 0.438865i \(-0.144619\pi\)
\(458\) 0 0
\(459\) −8.00000 −0.373408
\(460\) 0 0
\(461\) 11.0718 0.515665 0.257832 0.966190i \(-0.416992\pi\)
0.257832 + 0.966190i \(0.416992\pi\)
\(462\) 0 0
\(463\) 32.3238i 1.50222i −0.660179 0.751108i \(-0.729520\pi\)
0.660179 0.751108i \(-0.270480\pi\)
\(464\) 0 0
\(465\) 10.5359 + 12.9038i 0.488591 + 0.598399i
\(466\) 0 0
\(467\) 18.1817i 0.841349i 0.907212 + 0.420674i \(0.138207\pi\)
−0.907212 + 0.420674i \(0.861793\pi\)
\(468\) 0 0
\(469\) −10.3923 −0.479872
\(470\) 0 0
\(471\) −8.53590 −0.393313
\(472\) 0 0
\(473\) 3.10583i 0.142806i
\(474\) 0 0
\(475\) −6.73205 + 32.9802i −0.308888 + 1.51323i
\(476\) 0 0
\(477\) 8.76268i 0.401216i
\(478\) 0 0
\(479\) −11.6603 −0.532771 −0.266385 0.963867i \(-0.585829\pi\)
−0.266385 + 0.963867i \(0.585829\pi\)
\(480\) 0 0
\(481\) 4.39230 0.200272
\(482\) 0 0
\(483\) 12.0716i 0.549276i
\(484\) 0 0
\(485\) −8.53590 10.4543i −0.387595 0.474705i
\(486\) 0 0
\(487\) 6.03579i 0.273508i 0.990605 + 0.136754i \(0.0436670\pi\)
−0.990605 + 0.136754i \(0.956333\pi\)
\(488\) 0 0
\(489\) 7.85641 0.355279
\(490\) 0 0
\(491\) −10.7321 −0.484331 −0.242165 0.970235i \(-0.577858\pi\)
−0.242165 + 0.970235i \(0.577858\pi\)
\(492\) 0 0
\(493\) 1.41421i 0.0636930i
\(494\) 0 0
\(495\) 8.19615 6.69213i 0.368390 0.300789i
\(496\) 0 0
\(497\) 8.48528i 0.380617i
\(498\) 0 0
\(499\) −14.9282 −0.668278 −0.334139 0.942524i \(-0.608446\pi\)
−0.334139 + 0.942524i \(0.608446\pi\)
\(500\) 0 0
\(501\) −11.8564 −0.529705
\(502\) 0 0
\(503\) 41.5670i 1.85338i −0.375826 0.926690i \(-0.622641\pi\)
0.375826 0.926690i \(-0.377359\pi\)
\(504\) 0 0
\(505\) −10.3923 + 8.48528i −0.462451 + 0.377590i
\(506\) 0 0
\(507\) 44.9502i 1.99631i
\(508\) 0 0
\(509\) −26.5359 −1.17618 −0.588092 0.808794i \(-0.700121\pi\)
−0.588092 + 0.808794i \(0.700121\pi\)
\(510\) 0 0
\(511\) −18.0000 −0.796273
\(512\) 0 0
\(513\) 38.0822i 1.68137i
\(514\) 0 0
\(515\) −0.928203 1.13681i −0.0409015 0.0500939i
\(516\) 0 0
\(517\) 6.69213i 0.294320i
\(518\) 0 0
\(519\) 13.4641 0.591008
\(520\) 0 0
\(521\) −16.3923 −0.718160 −0.359080 0.933307i \(-0.616909\pi\)
−0.359080 + 0.933307i \(0.616909\pi\)
\(522\) 0 0
\(523\) 40.8091i 1.78446i 0.451583 + 0.892229i \(0.350860\pi\)
−0.451583 + 0.892229i \(0.649140\pi\)
\(524\) 0 0
\(525\) 3.46410 16.9706i 0.151186 0.740656i
\(526\) 0 0
\(527\) 7.45001i 0.324527i
\(528\) 0 0
\(529\) 10.8564 0.472018
\(530\) 0 0
\(531\) 10.3923 0.450988
\(532\) 0 0
\(533\) 46.3644i 2.00827i
\(534\) 0 0
\(535\) 5.60770 + 6.86800i 0.242442 + 0.296929i
\(536\) 0 0
\(537\) 13.3843i 0.577573i
\(538\) 0 0
\(539\) 4.73205 0.203824
\(540\) 0 0
\(541\) 21.6077 0.928987 0.464494 0.885576i \(-0.346236\pi\)
0.464494 + 0.885576i \(0.346236\pi\)
\(542\) 0 0
\(543\) 22.6274i 0.971035i
\(544\) 0 0
\(545\) 17.0718 13.9391i 0.731275 0.597084i
\(546\) 0 0
\(547\) 2.44949i 0.104733i −0.998628 0.0523663i \(-0.983324\pi\)
0.998628 0.0523663i \(-0.0166763\pi\)
\(548\) 0 0
\(549\) −10.9282 −0.466404
\(550\) 0 0
\(551\) 6.73205 0.286795
\(552\) 0 0
\(553\) 15.1774i 0.645409i
\(554\) 0 0
\(555\) 1.60770 1.31268i 0.0682429 0.0557201i
\(556\) 0 0
\(557\) 28.8391i 1.22195i 0.791650 + 0.610975i \(0.209223\pi\)
−0.791650 + 0.610975i \(0.790777\pi\)
\(558\) 0 0
\(559\) 4.39230 0.185775
\(560\) 0 0
\(561\) −9.46410 −0.399575
\(562\) 0 0
\(563\) 16.1112i 0.679004i −0.940605 0.339502i \(-0.889741\pi\)
0.940605 0.339502i \(-0.110259\pi\)
\(564\) 0 0
\(565\) −2.39230 2.92996i −0.100645 0.123264i
\(566\) 0 0
\(567\) 12.2474i 0.514344i
\(568\) 0 0
\(569\) −14.5359 −0.609377 −0.304688 0.952452i \(-0.598552\pi\)
−0.304688 + 0.952452i \(0.598552\pi\)
\(570\) 0 0
\(571\) 4.67949 0.195831 0.0979153 0.995195i \(-0.468783\pi\)
0.0979153 + 0.995195i \(0.468783\pi\)
\(572\) 0 0
\(573\) 12.9038i 0.539063i
\(574\) 0 0
\(575\) 17.0718 + 3.48477i 0.711943 + 0.145325i
\(576\) 0 0
\(577\) 0.656339i 0.0273237i −0.999907 0.0136619i \(-0.995651\pi\)
0.999907 0.0136619i \(-0.00434884\pi\)
\(578\) 0 0
\(579\) 12.9282 0.537278
\(580\) 0 0
\(581\) −11.0718 −0.459336
\(582\) 0 0
\(583\) 41.4655i 1.71732i
\(584\) 0 0
\(585\) 9.46410 + 11.5911i 0.391292 + 0.479233i
\(586\) 0 0
\(587\) 15.5563i 0.642079i 0.947066 + 0.321040i \(0.104032\pi\)
−0.947066 + 0.321040i \(0.895968\pi\)
\(588\) 0 0
\(589\) −35.4641 −1.46127
\(590\) 0 0
\(591\) −23.7128 −0.975415
\(592\) 0 0
\(593\) 28.3586i 1.16455i 0.812993 + 0.582274i \(0.197837\pi\)
−0.812993 + 0.582274i \(0.802163\pi\)
\(594\) 0 0
\(595\) 6.00000 4.89898i 0.245976 0.200839i
\(596\) 0 0
\(597\) 19.7990i 0.810319i
\(598\) 0 0
\(599\) 4.73205 0.193346 0.0966732 0.995316i \(-0.469180\pi\)
0.0966732 + 0.995316i \(0.469180\pi\)
\(600\) 0 0
\(601\) −24.7846 −1.01099 −0.505493 0.862831i \(-0.668689\pi\)
−0.505493 + 0.862831i \(0.668689\pi\)
\(602\) 0 0
\(603\) 4.24264i 0.172774i
\(604\) 0 0
\(605\) 19.7321 16.1112i 0.802222 0.655011i
\(606\) 0 0
\(607\) 26.1122i 1.05986i −0.848041 0.529930i \(-0.822218\pi\)
0.848041 0.529930i \(-0.177782\pi\)
\(608\) 0 0
\(609\) −3.46410 −0.140372
\(610\) 0 0
\(611\) 9.46410 0.382877
\(612\) 0 0
\(613\) 1.31268i 0.0530185i 0.999649 + 0.0265093i \(0.00843915\pi\)
−0.999649 + 0.0265093i \(0.991561\pi\)
\(614\) 0 0
\(615\) 13.8564 + 16.9706i 0.558744 + 0.684319i
\(616\) 0 0
\(617\) 7.55154i 0.304014i −0.988379 0.152007i \(-0.951426\pi\)
0.988379 0.152007i \(-0.0485736\pi\)
\(618\) 0 0
\(619\) −34.1962 −1.37446 −0.687230 0.726440i \(-0.741173\pi\)
−0.687230 + 0.726440i \(0.741173\pi\)
\(620\) 0 0
\(621\) −19.7128 −0.791048
\(622\) 0 0
\(623\) 25.4558i 1.01987i
\(624\) 0 0
\(625\) −23.0000 9.79796i −0.920000 0.391918i
\(626\) 0 0
\(627\) 45.0518i 1.79919i
\(628\) 0 0
\(629\) 0.928203 0.0370099
\(630\) 0 0
\(631\) −36.3923 −1.44875 −0.724377 0.689404i \(-0.757873\pi\)
−0.724377 + 0.689404i \(0.757873\pi\)
\(632\) 0 0
\(633\) 15.9353i 0.633371i
\(634\) 0 0
\(635\) −6.00000 7.34847i −0.238103 0.291615i
\(636\) 0 0
\(637\) 6.69213i 0.265152i
\(638\) 0 0
\(639\) 3.46410 0.137038
\(640\) 0 0
\(641\) −34.6410 −1.36824 −0.684119 0.729370i \(-0.739813\pi\)
−0.684119 + 0.729370i \(0.739813\pi\)
\(642\) 0 0
\(643\) 18.9396i 0.746904i 0.927649 + 0.373452i \(0.121826\pi\)
−0.927649 + 0.373452i \(0.878174\pi\)
\(644\) 0 0
\(645\) 1.60770 1.31268i 0.0633029 0.0516866i
\(646\) 0 0
\(647\) 19.9749i 0.785293i 0.919690 + 0.392646i \(0.128440\pi\)
−0.919690 + 0.392646i \(0.871560\pi\)
\(648\) 0 0
\(649\) 49.1769 1.93036
\(650\) 0 0
\(651\) 18.2487 0.715223
\(652\) 0 0
\(653\) 1.69161i 0.0661980i −0.999452 0.0330990i \(-0.989462\pi\)
0.999452 0.0330990i \(-0.0105377\pi\)
\(654\) 0 0
\(655\) 2.19615 1.79315i 0.0858108 0.0700642i
\(656\) 0 0
\(657\) 7.34847i 0.286691i
\(658\) 0 0
\(659\) −26.4449 −1.03015 −0.515073 0.857146i \(-0.672235\pi\)
−0.515073 + 0.857146i \(0.672235\pi\)
\(660\) 0 0
\(661\) 40.7846 1.58634 0.793169 0.609002i \(-0.208430\pi\)
0.793169 + 0.609002i \(0.208430\pi\)
\(662\) 0 0
\(663\) 13.3843i 0.519802i
\(664\) 0 0
\(665\) 23.3205 + 28.5617i 0.904331 + 1.10757i
\(666\) 0 0
\(667\) 3.48477i 0.134931i
\(668\) 0 0
\(669\) −33.7128 −1.30341
\(670\) 0 0
\(671\) −51.7128 −1.99635
\(672\) 0 0
\(673\) 12.4233i 0.478884i 0.970911 + 0.239442i \(0.0769644\pi\)
−0.970911 + 0.239442i \(0.923036\pi\)
\(674\) 0 0
\(675\) 27.7128 + 5.65685i 1.06667 + 0.217732i
\(676\) 0 0
\(677\) 46.9464i 1.80430i 0.431424 + 0.902149i \(0.358011\pi\)
−0.431424 + 0.902149i \(0.641989\pi\)
\(678\) 0 0
\(679\) −14.7846 −0.567381
\(680\) 0 0
\(681\) −15.0718 −0.577553
\(682\) 0 0
\(683\) 31.7690i 1.21561i −0.794087 0.607804i \(-0.792051\pi\)
0.794087 0.607804i \(-0.207949\pi\)
\(684\) 0 0
\(685\) 7.07180 + 8.66115i 0.270199 + 0.330925i
\(686\) 0 0
\(687\) 32.2223i 1.22936i
\(688\) 0 0
\(689\) −58.6410 −2.23404
\(690\) 0 0
\(691\) 13.7128 0.521660 0.260830 0.965385i \(-0.416004\pi\)
0.260830 + 0.965385i \(0.416004\pi\)
\(692\) 0 0
\(693\) 11.5911i 0.440310i
\(694\) 0 0
\(695\) −13.8564 + 11.3137i −0.525603 + 0.429153i
\(696\) 0 0
\(697\) 9.79796i 0.371124i
\(698\) 0 0
\(699\) 36.7846 1.39132
\(700\) 0 0
\(701\) −27.7128 −1.04670 −0.523349 0.852118i \(-0.675318\pi\)
−0.523349 + 0.852118i \(0.675318\pi\)
\(702\) 0 0
\(703\) 4.41851i 0.166647i
\(704\) 0 0
\(705\) 3.46410 2.82843i 0.130466 0.106525i
\(706\) 0 0
\(707\) 14.6969i 0.552735i
\(708\) 0 0
\(709\) 0.392305 0.0147333 0.00736666 0.999973i \(-0.497655\pi\)
0.00736666 + 0.999973i \(0.497655\pi\)
\(710\) 0 0
\(711\) 6.19615 0.232374
\(712\) 0 0
\(713\) 18.3576i 0.687496i
\(714\) 0 0
\(715\) 44.7846 + 54.8497i 1.67485 + 2.05126i
\(716\) 0 0
\(717\) 14.6969i 0.548867i
\(718\) 0 0
\(719\) 7.85641 0.292995 0.146497 0.989211i \(-0.453200\pi\)
0.146497 + 0.989211i \(0.453200\pi\)
\(720\) 0 0
\(721\) −1.60770 −0.0598737
\(722\) 0 0
\(723\) 6.41473i 0.238566i
\(724\) 0 0
\(725\) −1.00000 + 4.89898i −0.0371391 + 0.181944i
\(726\) 0 0
\(727\) 46.6690i 1.73086i 0.501031 + 0.865430i \(0.332954\pi\)
−0.501031 + 0.865430i \(0.667046\pi\)
\(728\) 0 0
\(729\) −29.0000 −1.07407
\(730\) 0 0
\(731\) 0.928203 0.0343308
\(732\) 0 0
\(733\) 12.7279i 0.470117i −0.971981 0.235058i \(-0.924472\pi\)
0.971981 0.235058i \(-0.0755281\pi\)
\(734\) 0 0
\(735\) 2.00000 + 2.44949i 0.0737711 + 0.0903508i
\(736\) 0 0
\(737\) 20.0764i 0.739523i
\(738\) 0 0
\(739\) 32.9808 1.21322 0.606608 0.795001i \(-0.292530\pi\)
0.606608 + 0.795001i \(0.292530\pi\)
\(740\) 0 0
\(741\) 63.7128 2.34055
\(742\) 0 0
\(743\) 9.89949i 0.363177i −0.983375 0.181589i \(-0.941876\pi\)
0.983375 0.181589i \(-0.0581239\pi\)
\(744\) 0 0
\(745\) −22.3923 + 18.2832i −0.820391 + 0.669846i
\(746\) 0 0
\(747\) 4.52004i 0.165380i
\(748\) 0 0
\(749\) 9.71281 0.354898
\(750\) 0 0
\(751\) 15.9090 0.580526 0.290263 0.956947i \(-0.406257\pi\)
0.290263 + 0.956947i \(0.406257\pi\)
\(752\) 0 0
\(753\) 12.9038i 0.470240i
\(754\) 0 0
\(755\) −39.4641 + 32.2223i −1.43625 + 1.17269i
\(756\) 0 0
\(757\) 6.03579i 0.219375i 0.993966 + 0.109687i \(0.0349849\pi\)
−0.993966 + 0.109687i \(0.965015\pi\)
\(758\) 0 0
\(759\) −23.3205 −0.846481
\(760\) 0 0
\(761\) 47.5692 1.72438 0.862191 0.506583i \(-0.169091\pi\)
0.862191 + 0.506583i \(0.169091\pi\)
\(762\) 0 0
\(763\) 24.1432i 0.874041i
\(764\) 0 0
\(765\) 2.00000 + 2.44949i 0.0723102 + 0.0885615i
\(766\) 0 0
\(767\) 69.5467i 2.51118i
\(768\) 0 0
\(769\) 32.9282 1.18742 0.593711 0.804679i \(-0.297662\pi\)
0.593711 + 0.804679i \(0.297662\pi\)
\(770\) 0 0
\(771\) 6.53590 0.235385
\(772\) 0 0
\(773\) 8.38375i 0.301542i −0.988569 0.150771i \(-0.951824\pi\)
0.988569 0.150771i \(-0.0481757\pi\)
\(774\) 0 0
\(775\) 5.26795 25.8076i 0.189230 0.927035i
\(776\) 0 0
\(777\) 2.27362i 0.0815658i
\(778\) 0 0
\(779\) −46.6410 −1.67109
\(780\) 0 0
\(781\) 16.3923 0.586563
\(782\) 0 0
\(783\) 5.65685i 0.202159i
\(784\) 0 0
\(785\) 8.53590 + 10.4543i 0.304659 + 0.373130i
\(786\) 0 0
\(787\) 49.7749i 1.77428i −0.461498 0.887141i \(-0.652688\pi\)
0.461498 0.887141i \(-0.347312\pi\)
\(788\) 0 0
\(789\) 34.7846 1.23836
\(790\) 0 0
\(791\) −4.14359 −0.147329
\(792\) 0 0
\(793\) 73.1330i 2.59703i
\(794\) 0 0
\(795\) −21.4641 + 17.5254i −0.761253 + 0.621561i
\(796\) 0 0
\(797\) 34.6718i 1.22814i −0.789252 0.614069i \(-0.789532\pi\)
0.789252 0.614069i \(-0.210468\pi\)
\(798\) 0 0
\(799\) 2.00000 0.0707549
\(800\) 0 0
\(801\) 10.3923 0.367194
\(802\) 0 0
\(803\) 34.7733i 1.22712i
\(804\) 0 0
\(805\) 14.7846 12.0716i 0.521089 0.425467i
\(806\) 0 0
\(807\) 16.9706i 0.597392i
\(808\) 0 0
\(809\) −34.3923 −1.20917 −0.604585 0.796541i \(-0.706661\pi\)
−0.604585 + 0.796541i \(0.706661\pi\)
\(810\) 0 0
\(811\) −4.78461 −0.168010 −0.0840052 0.996465i \(-0.526771\pi\)
−0.0840052 + 0.996465i \(0.526771\pi\)
\(812\) 0 0
\(813\) 32.9058i 1.15406i
\(814\) 0 0
\(815\) −7.85641 9.62209i −0.275198 0.337047i
\(816\) 0 0
\(817\) 4.41851i 0.154584i
\(818\) 0 0
\(819\) 16.3923 0.572793
\(820\) 0 0
\(821\) 50.7846 1.77240 0.886198 0.463308i \(-0.153337\pi\)
0.886198 + 0.463308i \(0.153337\pi\)
\(822\) 0 0
\(823\) 1.61729i 0.0563750i −0.999603 0.0281875i \(-0.991026\pi\)
0.999603 0.0281875i \(-0.00897355\pi\)
\(824\) 0 0
\(825\) 32.7846 + 6.69213i 1.14141 + 0.232990i
\(826\) 0 0
\(827\) 33.0817i 1.15036i −0.818025 0.575182i \(-0.804931\pi\)
0.818025 0.575182i \(-0.195069\pi\)
\(828\) 0 0
\(829\) −24.7846 −0.860805 −0.430403 0.902637i \(-0.641628\pi\)
−0.430403 + 0.902637i \(0.641628\pi\)
\(830\) 0 0
\(831\) −33.4641 −1.16086
\(832\) 0 0
\(833\) 1.41421i 0.0489996i
\(834\) 0 0
\(835\) 11.8564 + 14.5211i 0.410308 + 0.502522i
\(836\) 0 0
\(837\) 29.8000i 1.03004i
\(838\) 0 0
\(839\) −10.9808 −0.379098 −0.189549 0.981871i \(-0.560703\pi\)
−0.189549 + 0.981871i \(0.560703\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 12.4233i 0.427882i
\(844\) 0 0
\(845\) −55.0526 + 44.9502i −1.89387 + 1.54633i
\(846\) 0 0
\(847\) 27.9053i 0.958839i
\(848\) 0 0
\(849\) −2.78461 −0.0955676
\(850\) 0 0
\(851\) 2.28719 0.0784038
\(852\) 0 0
\(853\) 6.86800i 0.235156i 0.993064 + 0.117578i \(0.0375130\pi\)
−0.993064 + 0.117578i \(0.962487\pi\)
\(854\) 0 0
\(855\) −11.6603 + 9.52056i −0.398772 + 0.325596i
\(856\) 0 0
\(857\) 30.4292i 1.03944i −0.854337 0.519720i \(-0.826036\pi\)
0.854337 0.519720i \(-0.173964\pi\)
\(858\) 0 0
\(859\) −15.2679 −0.520936 −0.260468 0.965483i \(-0.583877\pi\)
−0.260468 + 0.965483i \(0.583877\pi\)
\(860\) 0 0
\(861\) 24.0000 0.817918
\(862\) 0 0
\(863\) 13.0053i 0.442706i −0.975194 0.221353i \(-0.928953\pi\)
0.975194 0.221353i \(-0.0710474\pi\)
\(864\) 0 0
\(865\) −13.4641 16.4901i −0.457793 0.560680i
\(866\) 0 0
\(867\) 21.2132i 0.720438i
\(868\) 0 0
\(869\) 29.3205 0.994630
\(870\) 0 0
\(871\) 28.3923 0.962037
\(872\) 0 0
\(873\) 6.03579i 0.204281i
\(874\) 0 0
\(875\) −24.2487 + 12.7279i −0.819756 + 0.430282i
\(876\) 0 0
\(877\) 0.480473i 0.0162244i 0.999967 + 0.00811222i \(0.00258223\pi\)
−0.999967 + 0.00811222i \(0.997418\pi\)
\(878\) 0 0
\(879\) 36.5359 1.23233
\(880\) 0 0
\(881\) −57.4641 −1.93601 −0.968007 0.250922i \(-0.919266\pi\)
−0.968007 + 0.250922i \(0.919266\pi\)
\(882\) 0 0
\(883\) 52.4002i 1.76341i −0.471803 0.881704i \(-0.656397\pi\)
0.471803 0.881704i \(-0.343603\pi\)
\(884\) 0 0
\(885\) 20.7846 + 25.4558i 0.698667 + 0.855689i
\(886\) 0 0
\(887\) 18.1817i 0.610482i 0.952275 + 0.305241i \(0.0987370\pi\)
−0.952275 + 0.305241i \(0.901263\pi\)
\(888\) 0 0
\(889\) −10.3923 −0.348547
\(890\) 0 0
\(891\) −23.6603 −0.792648
\(892\) 0 0
\(893\) 9.52056i 0.318593i
\(894\) 0 0
\(895\) 16.3923 13.3843i 0.547934 0.447386i
\(896\) 0 0
\(897\) 32.9802i 1.10118i
\(898\) 0 0
\(899\) −5.26795 −0.175696
\(900\) 0 0
\(901\) −12.3923 −0.412848
\(902\) 0 0
\(903\) 2.27362i 0.0756615i
\(904\) 0 0
\(905\) −27.7128 + 22.6274i −0.921205 + 0.752161i
\(906\) 0 0
\(907\) 3.28169i 0.108967i −0.998515 0.0544834i \(-0.982649\pi\)
0.998515 0.0544834i \(-0.0173512\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 20.1962 0.669128 0.334564 0.942373i \(-0.391411\pi\)
0.334564 + 0.942373i \(0.391411\pi\)
\(912\) 0 0
\(913\) 21.3891i 0.707875i
\(914\) 0 0
\(915\) −21.8564 26.7685i −0.722551 0.884940i
\(916\) 0 0
\(917\) 3.10583i 0.102563i
\(918\) 0 0
\(919\) −59.9615 −1.97795 −0.988974 0.148089i \(-0.952688\pi\)
−0.988974 + 0.148089i \(0.952688\pi\)
\(920\) 0 0
\(921\) −26.7846 −0.882583
\(922\) 0 0
\(923\) 23.1822i 0.763052i
\(924\) 0 0
\(925\) −3.21539 0.656339i −0.105721 0.0215803i
\(926\) 0 0
\(927\) 0.656339i 0.0215570i
\(928\) 0 0
\(929\) −28.1436 −0.923361 −0.461681 0.887046i \(-0.652753\pi\)
−0.461681 + 0.887046i \(0.652753\pi\)
\(930\) 0 0
\(931\) −6.73205 −0.220634
\(932\) 0 0
\(933\) 34.7733i 1.13843i
\(934\) 0 0
\(935\) 9.46410 + 11.5911i 0.309509 + 0.379070i
\(936\) 0 0
\(937\) 56.6429i 1.85044i 0.379429 + 0.925221i \(0.376121\pi\)
−0.379429 + 0.925221i \(0.623879\pi\)
\(938\) 0 0
\(939\) −26.5359 −0.865966
\(940\) 0 0
\(941\) 19.8564 0.647300 0.323650 0.946177i \(-0.395090\pi\)
0.323650 + 0.946177i \(0.395090\pi\)
\(942\) 0 0
\(943\) 24.1432i 0.786210i
\(944\) 0 0
\(945\) 24.0000 19.5959i 0.780720 0.637455i
\(946\) 0 0
\(947\) 30.8081i 1.00113i −0.865699 0.500564i \(-0.833126\pi\)
0.865699 0.500564i \(-0.166874\pi\)
\(948\) 0 0
\(949\) 49.1769 1.59635
\(950\) 0 0
\(951\) 35.8564 1.16272
\(952\) 0 0
\(953\) 5.65685i 0.183243i 0.995794 + 0.0916217i \(0.0292051\pi\)
−0.995794 + 0.0916217i \(0.970795\pi\)
\(954\) 0 0
\(955\) 15.8038 12.9038i 0.511400 0.417557i
\(956\) 0 0
\(957\) 6.69213i 0.216326i
\(958\) 0 0
\(959\) 12.2487 0.395532
\(960\) 0 0
\(961\) −3.24871 −0.104797
\(962\) 0 0
\(963\) 3.96524i 0.127778i
\(964\) 0 0
\(965\) −12.9282 15.8338i −0.416174 0.509706i
\(966\) 0 0
\(967\) 27.4249i 0.881924i −0.897526 0.440962i \(-0.854637\pi\)
0.897526 0.440962i \(-0.145363\pi\)
\(968\) 0 0
\(969\) 13.4641 0.432529
\(970\) 0 0
\(971\) 4.48334 0.143877 0.0719386 0.997409i \(-0.477081\pi\)
0.0719386 + 0.997409i \(0.477081\pi\)
\(972\) 0 0
\(973\) 19.5959i 0.628216i
\(974\) 0 0
\(975\) −9.46410 + 46.3644i −0.303094 + 1.48485i
\(976\) 0 0
\(977\) 8.20788i 0.262593i −0.991343 0.131297i \(-0.958086\pi\)
0.991343 0.131297i \(-0.0419140\pi\)
\(978\) 0 0
\(979\) 49.1769 1.57170
\(980\) 0 0
\(981\) 9.85641 0.314691
\(982\) 0 0
\(983\) 0.859411i 0.0274109i 0.999906 + 0.0137055i \(0.00436272\pi\)
−0.999906 + 0.0137055i \(0.995637\pi\)
\(984\) 0 0
\(985\) 23.7128 + 29.0421i 0.755553 + 0.925360i
\(986\) 0 0
\(987\) 4.89898i 0.155936i
\(988\) 0 0
\(989\) 2.28719 0.0727283
\(990\) 0 0
\(991\) 6.78461 0.215520 0.107760 0.994177i \(-0.465632\pi\)
0.107760 + 0.994177i \(0.465632\pi\)
\(992\) 0 0
\(993\) 11.0363i 0.350227i
\(994\) 0 0
\(995\) −24.2487 + 19.7990i −0.768736 + 0.627670i
\(996\) 0 0
\(997\) 41.2896i 1.30765i 0.756644 + 0.653827i \(0.226838\pi\)
−0.756644 + 0.653827i \(0.773162\pi\)
\(998\) 0 0
\(999\) 3.71281 0.117468
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.2.d.f.929.4 4
4.3 odd 2 145.2.b.b.59.1 4
5.4 even 2 inner 2320.2.d.f.929.2 4
12.11 even 2 1305.2.c.f.784.4 4
20.3 even 4 725.2.a.f.1.1 4
20.7 even 4 725.2.a.f.1.4 4
20.19 odd 2 145.2.b.b.59.4 yes 4
60.23 odd 4 6525.2.a.bj.1.4 4
60.47 odd 4 6525.2.a.bj.1.1 4
60.59 even 2 1305.2.c.f.784.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.b.59.1 4 4.3 odd 2
145.2.b.b.59.4 yes 4 20.19 odd 2
725.2.a.f.1.1 4 20.3 even 4
725.2.a.f.1.4 4 20.7 even 4
1305.2.c.f.784.1 4 60.59 even 2
1305.2.c.f.784.4 4 12.11 even 2
2320.2.d.f.929.2 4 5.4 even 2 inner
2320.2.d.f.929.4 4 1.1 even 1 trivial
6525.2.a.bj.1.1 4 60.47 odd 4
6525.2.a.bj.1.4 4 60.23 odd 4