Properties

Label 2320.2.d.f.929.1
Level $2320$
Weight $2$
Character 2320.929
Analytic conductor $18.525$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,2,Mod(929,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.929");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5252932689\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 929.1
Root \(0.517638i\) of defining polynomial
Character \(\chi\) \(=\) 2320.929
Dual form 2320.2.d.f.929.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{3} +(-1.73205 + 1.41421i) q^{5} -2.44949i q^{7} +1.00000 q^{9} +1.26795 q^{11} -1.79315i q^{13} +(2.00000 + 2.44949i) q^{15} -1.41421i q^{17} -3.26795 q^{19} -3.46410 q^{21} +6.31319i q^{23} +(1.00000 - 4.89898i) q^{25} -5.65685i q^{27} -1.00000 q^{29} +8.73205 q^{31} -1.79315i q^{33} +(3.46410 + 4.24264i) q^{35} -9.14162i q^{37} -2.53590 q^{39} -6.92820 q^{41} -9.14162i q^{43} +(-1.73205 + 1.41421i) q^{45} +1.41421i q^{47} +1.00000 q^{49} -2.00000 q^{51} +5.93426i q^{53} +(-2.19615 + 1.79315i) q^{55} +4.62158i q^{57} -10.3923 q^{59} +2.92820 q^{61} -2.44949i q^{63} +(2.53590 + 3.10583i) q^{65} +4.24264i q^{67} +8.92820 q^{69} -3.46410 q^{71} -7.34847i q^{73} +(-6.92820 - 1.41421i) q^{75} -3.10583i q^{77} -4.19615 q^{79} -5.00000 q^{81} -10.1769i q^{83} +(2.00000 + 2.44949i) q^{85} +1.41421i q^{87} -10.3923 q^{89} -4.39230 q^{91} -12.3490i q^{93} +(5.66025 - 4.62158i) q^{95} +10.9348i q^{97} +1.26795 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{9} + 12 q^{11} + 8 q^{15} - 20 q^{19} + 4 q^{25} - 4 q^{29} + 28 q^{31} - 24 q^{39} + 4 q^{49} - 8 q^{51} + 12 q^{55} - 16 q^{61} + 24 q^{65} + 8 q^{69} + 4 q^{79} - 20 q^{81} + 8 q^{85} + 24 q^{91}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2320\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(1857\) \(2031\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421i 0.816497i −0.912871 0.408248i \(-0.866140\pi\)
0.912871 0.408248i \(-0.133860\pi\)
\(4\) 0 0
\(5\) −1.73205 + 1.41421i −0.774597 + 0.632456i
\(6\) 0 0
\(7\) 2.44949i 0.925820i −0.886405 0.462910i \(-0.846805\pi\)
0.886405 0.462910i \(-0.153195\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.26795 0.382301 0.191151 0.981561i \(-0.438778\pi\)
0.191151 + 0.981561i \(0.438778\pi\)
\(12\) 0 0
\(13\) 1.79315i 0.497331i −0.968589 0.248665i \(-0.920008\pi\)
0.968589 0.248665i \(-0.0799919\pi\)
\(14\) 0 0
\(15\) 2.00000 + 2.44949i 0.516398 + 0.632456i
\(16\) 0 0
\(17\) 1.41421i 0.342997i −0.985184 0.171499i \(-0.945139\pi\)
0.985184 0.171499i \(-0.0548609\pi\)
\(18\) 0 0
\(19\) −3.26795 −0.749719 −0.374859 0.927082i \(-0.622309\pi\)
−0.374859 + 0.927082i \(0.622309\pi\)
\(20\) 0 0
\(21\) −3.46410 −0.755929
\(22\) 0 0
\(23\) 6.31319i 1.31639i 0.752847 + 0.658196i \(0.228680\pi\)
−0.752847 + 0.658196i \(0.771320\pi\)
\(24\) 0 0
\(25\) 1.00000 4.89898i 0.200000 0.979796i
\(26\) 0 0
\(27\) 5.65685i 1.08866i
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 8.73205 1.56832 0.784161 0.620557i \(-0.213093\pi\)
0.784161 + 0.620557i \(0.213093\pi\)
\(32\) 0 0
\(33\) 1.79315i 0.312148i
\(34\) 0 0
\(35\) 3.46410 + 4.24264i 0.585540 + 0.717137i
\(36\) 0 0
\(37\) 9.14162i 1.50287i −0.659805 0.751437i \(-0.729361\pi\)
0.659805 0.751437i \(-0.270639\pi\)
\(38\) 0 0
\(39\) −2.53590 −0.406069
\(40\) 0 0
\(41\) −6.92820 −1.08200 −0.541002 0.841021i \(-0.681955\pi\)
−0.541002 + 0.841021i \(0.681955\pi\)
\(42\) 0 0
\(43\) 9.14162i 1.39408i −0.717030 0.697042i \(-0.754499\pi\)
0.717030 0.697042i \(-0.245501\pi\)
\(44\) 0 0
\(45\) −1.73205 + 1.41421i −0.258199 + 0.210819i
\(46\) 0 0
\(47\) 1.41421i 0.206284i 0.994667 + 0.103142i \(0.0328896\pi\)
−0.994667 + 0.103142i \(0.967110\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 5.93426i 0.815133i 0.913176 + 0.407566i \(0.133622\pi\)
−0.913176 + 0.407566i \(0.866378\pi\)
\(54\) 0 0
\(55\) −2.19615 + 1.79315i −0.296129 + 0.241788i
\(56\) 0 0
\(57\) 4.62158i 0.612143i
\(58\) 0 0
\(59\) −10.3923 −1.35296 −0.676481 0.736460i \(-0.736496\pi\)
−0.676481 + 0.736460i \(0.736496\pi\)
\(60\) 0 0
\(61\) 2.92820 0.374918 0.187459 0.982272i \(-0.439975\pi\)
0.187459 + 0.982272i \(0.439975\pi\)
\(62\) 0 0
\(63\) 2.44949i 0.308607i
\(64\) 0 0
\(65\) 2.53590 + 3.10583i 0.314539 + 0.385231i
\(66\) 0 0
\(67\) 4.24264i 0.518321i 0.965834 + 0.259161i \(0.0834459\pi\)
−0.965834 + 0.259161i \(0.916554\pi\)
\(68\) 0 0
\(69\) 8.92820 1.07483
\(70\) 0 0
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) 0 0
\(73\) 7.34847i 0.860073i −0.902811 0.430037i \(-0.858501\pi\)
0.902811 0.430037i \(-0.141499\pi\)
\(74\) 0 0
\(75\) −6.92820 1.41421i −0.800000 0.163299i
\(76\) 0 0
\(77\) 3.10583i 0.353942i
\(78\) 0 0
\(79\) −4.19615 −0.472104 −0.236052 0.971740i \(-0.575854\pi\)
−0.236052 + 0.971740i \(0.575854\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) 10.1769i 1.11706i −0.829484 0.558530i \(-0.811366\pi\)
0.829484 0.558530i \(-0.188634\pi\)
\(84\) 0 0
\(85\) 2.00000 + 2.44949i 0.216930 + 0.265684i
\(86\) 0 0
\(87\) 1.41421i 0.151620i
\(88\) 0 0
\(89\) −10.3923 −1.10158 −0.550791 0.834643i \(-0.685674\pi\)
−0.550791 + 0.834643i \(0.685674\pi\)
\(90\) 0 0
\(91\) −4.39230 −0.460439
\(92\) 0 0
\(93\) 12.3490i 1.28053i
\(94\) 0 0
\(95\) 5.66025 4.62158i 0.580730 0.474164i
\(96\) 0 0
\(97\) 10.9348i 1.11026i 0.831764 + 0.555129i \(0.187331\pi\)
−0.831764 + 0.555129i \(0.812669\pi\)
\(98\) 0 0
\(99\) 1.26795 0.127434
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 9.14162i 0.900751i −0.892839 0.450375i \(-0.851290\pi\)
0.892839 0.450375i \(-0.148710\pi\)
\(104\) 0 0
\(105\) 6.00000 4.89898i 0.585540 0.478091i
\(106\) 0 0
\(107\) 18.6622i 1.80414i −0.431589 0.902070i \(-0.642047\pi\)
0.431589 0.902070i \(-0.357953\pi\)
\(108\) 0 0
\(109\) −17.8564 −1.71033 −0.855167 0.518353i \(-0.826545\pi\)
−0.855167 + 0.518353i \(0.826545\pi\)
\(110\) 0 0
\(111\) −12.9282 −1.22709
\(112\) 0 0
\(113\) 13.0053i 1.22344i −0.791075 0.611719i \(-0.790478\pi\)
0.791075 0.611719i \(-0.209522\pi\)
\(114\) 0 0
\(115\) −8.92820 10.9348i −0.832559 1.01967i
\(116\) 0 0
\(117\) 1.79315i 0.165777i
\(118\) 0 0
\(119\) −3.46410 −0.317554
\(120\) 0 0
\(121\) −9.39230 −0.853846
\(122\) 0 0
\(123\) 9.79796i 0.883452i
\(124\) 0 0
\(125\) 5.19615 + 9.89949i 0.464758 + 0.885438i
\(126\) 0 0
\(127\) 4.24264i 0.376473i 0.982124 + 0.188237i \(0.0602772\pi\)
−0.982124 + 0.188237i \(0.939723\pi\)
\(128\) 0 0
\(129\) −12.9282 −1.13826
\(130\) 0 0
\(131\) 4.73205 0.413441 0.206721 0.978400i \(-0.433721\pi\)
0.206721 + 0.978400i \(0.433721\pi\)
\(132\) 0 0
\(133\) 8.00481i 0.694105i
\(134\) 0 0
\(135\) 8.00000 + 9.79796i 0.688530 + 0.843274i
\(136\) 0 0
\(137\) 14.7985i 1.26432i −0.774838 0.632159i \(-0.782169\pi\)
0.774838 0.632159i \(-0.217831\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) 2.00000 0.168430
\(142\) 0 0
\(143\) 2.27362i 0.190130i
\(144\) 0 0
\(145\) 1.73205 1.41421i 0.143839 0.117444i
\(146\) 0 0
\(147\) 1.41421i 0.116642i
\(148\) 0 0
\(149\) 0.928203 0.0760414 0.0380207 0.999277i \(-0.487895\pi\)
0.0380207 + 0.999277i \(0.487895\pi\)
\(150\) 0 0
\(151\) 18.7846 1.52867 0.764335 0.644819i \(-0.223067\pi\)
0.764335 + 0.644819i \(0.223067\pi\)
\(152\) 0 0
\(153\) 1.41421i 0.114332i
\(154\) 0 0
\(155\) −15.1244 + 12.3490i −1.21482 + 0.991894i
\(156\) 0 0
\(157\) 10.9348i 0.872690i −0.899780 0.436345i \(-0.856273\pi\)
0.899780 0.436345i \(-0.143727\pi\)
\(158\) 0 0
\(159\) 8.39230 0.665553
\(160\) 0 0
\(161\) 15.4641 1.21874
\(162\) 0 0
\(163\) 14.0406i 1.09974i −0.835249 0.549872i \(-0.814676\pi\)
0.835249 0.549872i \(-0.185324\pi\)
\(164\) 0 0
\(165\) 2.53590 + 3.10583i 0.197419 + 0.241788i
\(166\) 0 0
\(167\) 11.2122i 0.867624i 0.901003 + 0.433812i \(0.142832\pi\)
−0.901003 + 0.433812i \(0.857168\pi\)
\(168\) 0 0
\(169\) 9.78461 0.752662
\(170\) 0 0
\(171\) −3.26795 −0.249906
\(172\) 0 0
\(173\) 4.62158i 0.351372i 0.984446 + 0.175686i \(0.0562144\pi\)
−0.984446 + 0.175686i \(0.943786\pi\)
\(174\) 0 0
\(175\) −12.0000 2.44949i −0.907115 0.185164i
\(176\) 0 0
\(177\) 14.6969i 1.10469i
\(178\) 0 0
\(179\) 2.53590 0.189542 0.0947710 0.995499i \(-0.469788\pi\)
0.0947710 + 0.995499i \(0.469788\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) 0 0
\(183\) 4.14110i 0.306119i
\(184\) 0 0
\(185\) 12.9282 + 15.8338i 0.950500 + 1.16412i
\(186\) 0 0
\(187\) 1.79315i 0.131128i
\(188\) 0 0
\(189\) −13.8564 −1.00791
\(190\) 0 0
\(191\) −15.1244 −1.09436 −0.547180 0.837015i \(-0.684299\pi\)
−0.547180 + 0.837015i \(0.684299\pi\)
\(192\) 0 0
\(193\) 0.656339i 0.0472443i −0.999721 0.0236222i \(-0.992480\pi\)
0.999721 0.0236222i \(-0.00751986\pi\)
\(194\) 0 0
\(195\) 4.39230 3.58630i 0.314539 0.256820i
\(196\) 0 0
\(197\) 22.4243i 1.59767i 0.601551 + 0.798834i \(0.294550\pi\)
−0.601551 + 0.798834i \(0.705450\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) 6.00000 0.423207
\(202\) 0 0
\(203\) 2.44949i 0.171920i
\(204\) 0 0
\(205\) 12.0000 9.79796i 0.838116 0.684319i
\(206\) 0 0
\(207\) 6.31319i 0.438797i
\(208\) 0 0
\(209\) −4.14359 −0.286618
\(210\) 0 0
\(211\) 14.7321 1.01420 0.507098 0.861888i \(-0.330718\pi\)
0.507098 + 0.861888i \(0.330718\pi\)
\(212\) 0 0
\(213\) 4.89898i 0.335673i
\(214\) 0 0
\(215\) 12.9282 + 15.8338i 0.881696 + 1.07985i
\(216\) 0 0
\(217\) 21.3891i 1.45198i
\(218\) 0 0
\(219\) −10.3923 −0.702247
\(220\) 0 0
\(221\) −2.53590 −0.170583
\(222\) 0 0
\(223\) 15.3533i 1.02813i 0.857751 + 0.514066i \(0.171861\pi\)
−0.857751 + 0.514066i \(0.828139\pi\)
\(224\) 0 0
\(225\) 1.00000 4.89898i 0.0666667 0.326599i
\(226\) 0 0
\(227\) 20.4553i 1.35767i −0.734292 0.678834i \(-0.762486\pi\)
0.734292 0.678834i \(-0.237514\pi\)
\(228\) 0 0
\(229\) −18.7846 −1.24132 −0.620661 0.784079i \(-0.713136\pi\)
−0.620661 + 0.784079i \(0.713136\pi\)
\(230\) 0 0
\(231\) −4.39230 −0.288992
\(232\) 0 0
\(233\) 3.38323i 0.221643i −0.993840 0.110821i \(-0.964652\pi\)
0.993840 0.110821i \(-0.0353481\pi\)
\(234\) 0 0
\(235\) −2.00000 2.44949i −0.130466 0.159787i
\(236\) 0 0
\(237\) 5.93426i 0.385471i
\(238\) 0 0
\(239\) 10.3923 0.672222 0.336111 0.941822i \(-0.390888\pi\)
0.336111 + 0.941822i \(0.390888\pi\)
\(240\) 0 0
\(241\) 11.4641 0.738468 0.369234 0.929337i \(-0.379620\pi\)
0.369234 + 0.929337i \(0.379620\pi\)
\(242\) 0 0
\(243\) 9.89949i 0.635053i
\(244\) 0 0
\(245\) −1.73205 + 1.41421i −0.110657 + 0.0903508i
\(246\) 0 0
\(247\) 5.85993i 0.372858i
\(248\) 0 0
\(249\) −14.3923 −0.912075
\(250\) 0 0
\(251\) −15.1244 −0.954641 −0.477320 0.878729i \(-0.658392\pi\)
−0.477320 + 0.878729i \(0.658392\pi\)
\(252\) 0 0
\(253\) 8.00481i 0.503258i
\(254\) 0 0
\(255\) 3.46410 2.82843i 0.216930 0.177123i
\(256\) 0 0
\(257\) 9.52056i 0.593876i 0.954897 + 0.296938i \(0.0959655\pi\)
−0.954897 + 0.296938i \(0.904035\pi\)
\(258\) 0 0
\(259\) −22.3923 −1.39139
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) 0 0
\(263\) 4.79744i 0.295823i −0.989001 0.147912i \(-0.952745\pi\)
0.989001 0.147912i \(-0.0472551\pi\)
\(264\) 0 0
\(265\) −8.39230 10.2784i −0.515535 0.631399i
\(266\) 0 0
\(267\) 14.6969i 0.899438i
\(268\) 0 0
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) 26.7321 1.62386 0.811928 0.583757i \(-0.198418\pi\)
0.811928 + 0.583757i \(0.198418\pi\)
\(272\) 0 0
\(273\) 6.21166i 0.375947i
\(274\) 0 0
\(275\) 1.26795 6.21166i 0.0764602 0.374577i
\(276\) 0 0
\(277\) 18.7637i 1.12740i −0.825979 0.563701i \(-0.809377\pi\)
0.825979 0.563701i \(-0.190623\pi\)
\(278\) 0 0
\(279\) 8.73205 0.522774
\(280\) 0 0
\(281\) 32.7846 1.95577 0.977883 0.209153i \(-0.0670707\pi\)
0.977883 + 0.209153i \(0.0670707\pi\)
\(282\) 0 0
\(283\) 27.4249i 1.63024i 0.579293 + 0.815119i \(0.303329\pi\)
−0.579293 + 0.815119i \(0.696671\pi\)
\(284\) 0 0
\(285\) −6.53590 8.00481i −0.387153 0.474164i
\(286\) 0 0
\(287\) 16.9706i 1.00174i
\(288\) 0 0
\(289\) 15.0000 0.882353
\(290\) 0 0
\(291\) 15.4641 0.906522
\(292\) 0 0
\(293\) 30.7338i 1.79549i 0.440520 + 0.897743i \(0.354794\pi\)
−0.440520 + 0.897743i \(0.645206\pi\)
\(294\) 0 0
\(295\) 18.0000 14.6969i 1.04800 0.855689i
\(296\) 0 0
\(297\) 7.17260i 0.416197i
\(298\) 0 0
\(299\) 11.3205 0.654682
\(300\) 0 0
\(301\) −22.3923 −1.29067
\(302\) 0 0
\(303\) 8.48528i 0.487467i
\(304\) 0 0
\(305\) −5.07180 + 4.14110i −0.290410 + 0.237119i
\(306\) 0 0
\(307\) 10.4543i 0.596658i 0.954463 + 0.298329i \(0.0964293\pi\)
−0.954463 + 0.298329i \(0.903571\pi\)
\(308\) 0 0
\(309\) −12.9282 −0.735460
\(310\) 0 0
\(311\) 6.58846 0.373597 0.186799 0.982398i \(-0.440189\pi\)
0.186799 + 0.982398i \(0.440189\pi\)
\(312\) 0 0
\(313\) 23.6627i 1.33749i −0.743490 0.668747i \(-0.766831\pi\)
0.743490 0.668747i \(-0.233169\pi\)
\(314\) 0 0
\(315\) 3.46410 + 4.24264i 0.195180 + 0.239046i
\(316\) 0 0
\(317\) 5.75839i 0.323423i 0.986838 + 0.161712i \(0.0517015\pi\)
−0.986838 + 0.161712i \(0.948299\pi\)
\(318\) 0 0
\(319\) −1.26795 −0.0709915
\(320\) 0 0
\(321\) −26.3923 −1.47307
\(322\) 0 0
\(323\) 4.62158i 0.257151i
\(324\) 0 0
\(325\) −8.78461 1.79315i −0.487282 0.0994661i
\(326\) 0 0
\(327\) 25.2528i 1.39648i
\(328\) 0 0
\(329\) 3.46410 0.190982
\(330\) 0 0
\(331\) 18.1962 1.00015 0.500075 0.865982i \(-0.333306\pi\)
0.500075 + 0.865982i \(0.333306\pi\)
\(332\) 0 0
\(333\) 9.14162i 0.500958i
\(334\) 0 0
\(335\) −6.00000 7.34847i −0.327815 0.401490i
\(336\) 0 0
\(337\) 27.9053i 1.52010i 0.649864 + 0.760050i \(0.274826\pi\)
−0.649864 + 0.760050i \(0.725174\pi\)
\(338\) 0 0
\(339\) −18.3923 −0.998933
\(340\) 0 0
\(341\) 11.0718 0.599571
\(342\) 0 0
\(343\) 19.5959i 1.05808i
\(344\) 0 0
\(345\) −15.4641 + 12.6264i −0.832559 + 0.679782i
\(346\) 0 0
\(347\) 21.4906i 1.15368i 0.816859 + 0.576838i \(0.195714\pi\)
−0.816859 + 0.576838i \(0.804286\pi\)
\(348\) 0 0
\(349\) 22.7846 1.21963 0.609816 0.792543i \(-0.291243\pi\)
0.609816 + 0.792543i \(0.291243\pi\)
\(350\) 0 0
\(351\) −10.1436 −0.541425
\(352\) 0 0
\(353\) 31.9449i 1.70026i −0.526576 0.850128i \(-0.676525\pi\)
0.526576 0.850128i \(-0.323475\pi\)
\(354\) 0 0
\(355\) 6.00000 4.89898i 0.318447 0.260011i
\(356\) 0 0
\(357\) 4.89898i 0.259281i
\(358\) 0 0
\(359\) −7.26795 −0.383588 −0.191794 0.981435i \(-0.561430\pi\)
−0.191794 + 0.981435i \(0.561430\pi\)
\(360\) 0 0
\(361\) −8.32051 −0.437921
\(362\) 0 0
\(363\) 13.2827i 0.697162i
\(364\) 0 0
\(365\) 10.3923 + 12.7279i 0.543958 + 0.666210i
\(366\) 0 0
\(367\) 33.6365i 1.75581i −0.478833 0.877906i \(-0.658940\pi\)
0.478833 0.877906i \(-0.341060\pi\)
\(368\) 0 0
\(369\) −6.92820 −0.360668
\(370\) 0 0
\(371\) 14.5359 0.754666
\(372\) 0 0
\(373\) 19.5959i 1.01464i −0.861758 0.507319i \(-0.830637\pi\)
0.861758 0.507319i \(-0.169363\pi\)
\(374\) 0 0
\(375\) 14.0000 7.34847i 0.722957 0.379473i
\(376\) 0 0
\(377\) 1.79315i 0.0923520i
\(378\) 0 0
\(379\) −16.1962 −0.831940 −0.415970 0.909378i \(-0.636558\pi\)
−0.415970 + 0.909378i \(0.636558\pi\)
\(380\) 0 0
\(381\) 6.00000 0.307389
\(382\) 0 0
\(383\) 0.933740i 0.0477119i 0.999715 + 0.0238559i \(0.00759430\pi\)
−0.999715 + 0.0238559i \(0.992406\pi\)
\(384\) 0 0
\(385\) 4.39230 + 5.37945i 0.223853 + 0.274162i
\(386\) 0 0
\(387\) 9.14162i 0.464695i
\(388\) 0 0
\(389\) 20.7846 1.05382 0.526911 0.849921i \(-0.323350\pi\)
0.526911 + 0.849921i \(0.323350\pi\)
\(390\) 0 0
\(391\) 8.92820 0.451519
\(392\) 0 0
\(393\) 6.69213i 0.337573i
\(394\) 0 0
\(395\) 7.26795 5.93426i 0.365690 0.298585i
\(396\) 0 0
\(397\) 4.89898i 0.245873i −0.992415 0.122936i \(-0.960769\pi\)
0.992415 0.122936i \(-0.0392311\pi\)
\(398\) 0 0
\(399\) 11.3205 0.566734
\(400\) 0 0
\(401\) 37.8564 1.89046 0.945229 0.326407i \(-0.105838\pi\)
0.945229 + 0.326407i \(0.105838\pi\)
\(402\) 0 0
\(403\) 15.6579i 0.779975i
\(404\) 0 0
\(405\) 8.66025 7.07107i 0.430331 0.351364i
\(406\) 0 0
\(407\) 11.5911i 0.574550i
\(408\) 0 0
\(409\) −9.07180 −0.448571 −0.224286 0.974523i \(-0.572005\pi\)
−0.224286 + 0.974523i \(0.572005\pi\)
\(410\) 0 0
\(411\) −20.9282 −1.03231
\(412\) 0 0
\(413\) 25.4558i 1.25260i
\(414\) 0 0
\(415\) 14.3923 + 17.6269i 0.706490 + 0.865271i
\(416\) 0 0
\(417\) 11.3137i 0.554035i
\(418\) 0 0
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) 5.46410 0.266304 0.133152 0.991096i \(-0.457490\pi\)
0.133152 + 0.991096i \(0.457490\pi\)
\(422\) 0 0
\(423\) 1.41421i 0.0687614i
\(424\) 0 0
\(425\) −6.92820 1.41421i −0.336067 0.0685994i
\(426\) 0 0
\(427\) 7.17260i 0.347107i
\(428\) 0 0
\(429\) −3.21539 −0.155241
\(430\) 0 0
\(431\) 37.1769 1.79075 0.895374 0.445314i \(-0.146908\pi\)
0.895374 + 0.445314i \(0.146908\pi\)
\(432\) 0 0
\(433\) 2.92996i 0.140805i −0.997519 0.0704025i \(-0.977572\pi\)
0.997519 0.0704025i \(-0.0224284\pi\)
\(434\) 0 0
\(435\) −2.00000 2.44949i −0.0958927 0.117444i
\(436\) 0 0
\(437\) 20.6312i 0.986924i
\(438\) 0 0
\(439\) −7.07180 −0.337518 −0.168759 0.985657i \(-0.553976\pi\)
−0.168759 + 0.985657i \(0.553976\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 18.1817i 0.863839i −0.901912 0.431919i \(-0.857836\pi\)
0.901912 0.431919i \(-0.142164\pi\)
\(444\) 0 0
\(445\) 18.0000 14.6969i 0.853282 0.696702i
\(446\) 0 0
\(447\) 1.31268i 0.0620875i
\(448\) 0 0
\(449\) 25.8564 1.22024 0.610120 0.792309i \(-0.291121\pi\)
0.610120 + 0.792309i \(0.291121\pi\)
\(450\) 0 0
\(451\) −8.78461 −0.413651
\(452\) 0 0
\(453\) 26.5654i 1.24815i
\(454\) 0 0
\(455\) 7.60770 6.21166i 0.356654 0.291207i
\(456\) 0 0
\(457\) 23.6627i 1.10689i 0.832884 + 0.553447i \(0.186688\pi\)
−0.832884 + 0.553447i \(0.813312\pi\)
\(458\) 0 0
\(459\) −8.00000 −0.373408
\(460\) 0 0
\(461\) 24.9282 1.16102 0.580511 0.814252i \(-0.302853\pi\)
0.580511 + 0.814252i \(0.302853\pi\)
\(462\) 0 0
\(463\) 6.86800i 0.319183i −0.987183 0.159591i \(-0.948982\pi\)
0.987183 0.159591i \(-0.0510177\pi\)
\(464\) 0 0
\(465\) 17.4641 + 21.3891i 0.809878 + 0.991894i
\(466\) 0 0
\(467\) 21.0101i 0.972233i 0.873894 + 0.486116i \(0.161587\pi\)
−0.873894 + 0.486116i \(0.838413\pi\)
\(468\) 0 0
\(469\) 10.3923 0.479872
\(470\) 0 0
\(471\) −15.4641 −0.712548
\(472\) 0 0
\(473\) 11.5911i 0.532960i
\(474\) 0 0
\(475\) −3.26795 + 16.0096i −0.149944 + 0.734572i
\(476\) 0 0
\(477\) 5.93426i 0.271711i
\(478\) 0 0
\(479\) 5.66025 0.258624 0.129312 0.991604i \(-0.458723\pi\)
0.129312 + 0.991604i \(0.458723\pi\)
\(480\) 0 0
\(481\) −16.3923 −0.747425
\(482\) 0 0
\(483\) 21.8695i 0.995099i
\(484\) 0 0
\(485\) −15.4641 18.9396i −0.702189 0.860002i
\(486\) 0 0
\(487\) 10.9348i 0.495502i −0.968824 0.247751i \(-0.920309\pi\)
0.968824 0.247751i \(-0.0796915\pi\)
\(488\) 0 0
\(489\) −19.8564 −0.897938
\(490\) 0 0
\(491\) −7.26795 −0.327998 −0.163999 0.986461i \(-0.552439\pi\)
−0.163999 + 0.986461i \(0.552439\pi\)
\(492\) 0 0
\(493\) 1.41421i 0.0636930i
\(494\) 0 0
\(495\) −2.19615 + 1.79315i −0.0987097 + 0.0805961i
\(496\) 0 0
\(497\) 8.48528i 0.380617i
\(498\) 0 0
\(499\) −1.07180 −0.0479802 −0.0239901 0.999712i \(-0.507637\pi\)
−0.0239901 + 0.999712i \(0.507637\pi\)
\(500\) 0 0
\(501\) 15.8564 0.708412
\(502\) 0 0
\(503\) 12.1731i 0.542773i 0.962471 + 0.271386i \(0.0874821\pi\)
−0.962471 + 0.271386i \(0.912518\pi\)
\(504\) 0 0
\(505\) 10.3923 8.48528i 0.462451 0.377590i
\(506\) 0 0
\(507\) 13.8375i 0.614546i
\(508\) 0 0
\(509\) −33.4641 −1.48327 −0.741635 0.670804i \(-0.765949\pi\)
−0.741635 + 0.670804i \(0.765949\pi\)
\(510\) 0 0
\(511\) −18.0000 −0.796273
\(512\) 0 0
\(513\) 18.4863i 0.816191i
\(514\) 0 0
\(515\) 12.9282 + 15.8338i 0.569685 + 0.697718i
\(516\) 0 0
\(517\) 1.79315i 0.0788627i
\(518\) 0 0
\(519\) 6.53590 0.286894
\(520\) 0 0
\(521\) 4.39230 0.192430 0.0962152 0.995361i \(-0.469326\pi\)
0.0962152 + 0.995361i \(0.469326\pi\)
\(522\) 0 0
\(523\) 1.61729i 0.0707190i −0.999375 0.0353595i \(-0.988742\pi\)
0.999375 0.0353595i \(-0.0112576\pi\)
\(524\) 0 0
\(525\) −3.46410 + 16.9706i −0.151186 + 0.740656i
\(526\) 0 0
\(527\) 12.3490i 0.537930i
\(528\) 0 0
\(529\) −16.8564 −0.732887
\(530\) 0 0
\(531\) −10.3923 −0.450988
\(532\) 0 0
\(533\) 12.4233i 0.538113i
\(534\) 0 0
\(535\) 26.3923 + 32.3238i 1.14104 + 1.39748i
\(536\) 0 0
\(537\) 3.58630i 0.154760i
\(538\) 0 0
\(539\) 1.26795 0.0546144
\(540\) 0 0
\(541\) 42.3923 1.82259 0.911294 0.411757i \(-0.135085\pi\)
0.911294 + 0.411757i \(0.135085\pi\)
\(542\) 0 0
\(543\) 22.6274i 0.971035i
\(544\) 0 0
\(545\) 30.9282 25.2528i 1.32482 1.08171i
\(546\) 0 0
\(547\) 2.44949i 0.104733i −0.998628 0.0523663i \(-0.983324\pi\)
0.998628 0.0523663i \(-0.0166763\pi\)
\(548\) 0 0
\(549\) 2.92820 0.124973
\(550\) 0 0
\(551\) 3.26795 0.139219
\(552\) 0 0
\(553\) 10.2784i 0.437083i
\(554\) 0 0
\(555\) 22.3923 18.2832i 0.950500 0.776080i
\(556\) 0 0
\(557\) 0.554803i 0.0235078i 0.999931 + 0.0117539i \(0.00374146\pi\)
−0.999931 + 0.0117539i \(0.996259\pi\)
\(558\) 0 0
\(559\) −16.3923 −0.693321
\(560\) 0 0
\(561\) −2.53590 −0.107066
\(562\) 0 0
\(563\) 13.2827i 0.559800i −0.960029 0.279900i \(-0.909699\pi\)
0.960029 0.279900i \(-0.0903013\pi\)
\(564\) 0 0
\(565\) 18.3923 + 22.5259i 0.773770 + 0.947671i
\(566\) 0 0
\(567\) 12.2474i 0.514344i
\(568\) 0 0
\(569\) −21.4641 −0.899822 −0.449911 0.893073i \(-0.648544\pi\)
−0.449911 + 0.893073i \(0.648544\pi\)
\(570\) 0 0
\(571\) 39.3205 1.64551 0.822756 0.568395i \(-0.192435\pi\)
0.822756 + 0.568395i \(0.192435\pi\)
\(572\) 0 0
\(573\) 21.3891i 0.893541i
\(574\) 0 0
\(575\) 30.9282 + 6.31319i 1.28980 + 0.263278i
\(576\) 0 0
\(577\) 9.14162i 0.380571i −0.981729 0.190285i \(-0.939059\pi\)
0.981729 0.190285i \(-0.0609413\pi\)
\(578\) 0 0
\(579\) −0.928203 −0.0385748
\(580\) 0 0
\(581\) −24.9282 −1.03420
\(582\) 0 0
\(583\) 7.52433i 0.311626i
\(584\) 0 0
\(585\) 2.53590 + 3.10583i 0.104846 + 0.128410i
\(586\) 0 0
\(587\) 15.5563i 0.642079i −0.947066 0.321040i \(-0.895968\pi\)
0.947066 0.321040i \(-0.104032\pi\)
\(588\) 0 0
\(589\) −28.5359 −1.17580
\(590\) 0 0
\(591\) 31.7128 1.30449
\(592\) 0 0
\(593\) 25.5302i 1.04840i 0.851596 + 0.524199i \(0.175635\pi\)
−0.851596 + 0.524199i \(0.824365\pi\)
\(594\) 0 0
\(595\) 6.00000 4.89898i 0.245976 0.200839i
\(596\) 0 0
\(597\) 19.7990i 0.810319i
\(598\) 0 0
\(599\) 1.26795 0.0518070 0.0259035 0.999664i \(-0.491754\pi\)
0.0259035 + 0.999664i \(0.491754\pi\)
\(600\) 0 0
\(601\) 16.7846 0.684659 0.342329 0.939580i \(-0.388784\pi\)
0.342329 + 0.939580i \(0.388784\pi\)
\(602\) 0 0
\(603\) 4.24264i 0.172774i
\(604\) 0 0
\(605\) 16.2679 13.2827i 0.661386 0.540020i
\(606\) 0 0
\(607\) 16.3142i 0.662174i 0.943600 + 0.331087i \(0.107415\pi\)
−0.943600 + 0.331087i \(0.892585\pi\)
\(608\) 0 0
\(609\) 3.46410 0.140372
\(610\) 0 0
\(611\) 2.53590 0.102591
\(612\) 0 0
\(613\) 18.2832i 0.738453i 0.929339 + 0.369227i \(0.120377\pi\)
−0.929339 + 0.369227i \(0.879623\pi\)
\(614\) 0 0
\(615\) −13.8564 16.9706i −0.558744 0.684319i
\(616\) 0 0
\(617\) 32.0464i 1.29014i 0.764123 + 0.645071i \(0.223172\pi\)
−0.764123 + 0.645071i \(0.776828\pi\)
\(618\) 0 0
\(619\) −23.8038 −0.956757 −0.478379 0.878154i \(-0.658775\pi\)
−0.478379 + 0.878154i \(0.658775\pi\)
\(620\) 0 0
\(621\) 35.7128 1.43311
\(622\) 0 0
\(623\) 25.4558i 1.01987i
\(624\) 0 0
\(625\) −23.0000 9.79796i −0.920000 0.391918i
\(626\) 0 0
\(627\) 5.85993i 0.234023i
\(628\) 0 0
\(629\) −12.9282 −0.515481
\(630\) 0 0
\(631\) −15.6077 −0.621333 −0.310666 0.950519i \(-0.600552\pi\)
−0.310666 + 0.950519i \(0.600552\pi\)
\(632\) 0 0
\(633\) 20.8343i 0.828088i
\(634\) 0 0
\(635\) −6.00000 7.34847i −0.238103 0.291615i
\(636\) 0 0
\(637\) 1.79315i 0.0710472i
\(638\) 0 0
\(639\) −3.46410 −0.137038
\(640\) 0 0
\(641\) 34.6410 1.36824 0.684119 0.729370i \(-0.260187\pi\)
0.684119 + 0.729370i \(0.260187\pi\)
\(642\) 0 0
\(643\) 10.4543i 0.412277i 0.978523 + 0.206139i \(0.0660898\pi\)
−0.978523 + 0.206139i \(0.933910\pi\)
\(644\) 0 0
\(645\) 22.3923 18.2832i 0.881696 0.719902i
\(646\) 0 0
\(647\) 14.3180i 0.562899i 0.959576 + 0.281449i \(0.0908151\pi\)
−0.959576 + 0.281449i \(0.909185\pi\)
\(648\) 0 0
\(649\) −13.1769 −0.517239
\(650\) 0 0
\(651\) −30.2487 −1.18554
\(652\) 0 0
\(653\) 13.0053i 0.508938i −0.967081 0.254469i \(-0.918099\pi\)
0.967081 0.254469i \(-0.0819006\pi\)
\(654\) 0 0
\(655\) −8.19615 + 6.69213i −0.320250 + 0.261483i
\(656\) 0 0
\(657\) 7.34847i 0.286691i
\(658\) 0 0
\(659\) 32.4449 1.26387 0.631936 0.775020i \(-0.282260\pi\)
0.631936 + 0.775020i \(0.282260\pi\)
\(660\) 0 0
\(661\) −0.784610 −0.0305178 −0.0152589 0.999884i \(-0.504857\pi\)
−0.0152589 + 0.999884i \(0.504857\pi\)
\(662\) 0 0
\(663\) 3.58630i 0.139280i
\(664\) 0 0
\(665\) −11.3205 13.8647i −0.438990 0.537651i
\(666\) 0 0
\(667\) 6.31319i 0.244448i
\(668\) 0 0
\(669\) 21.7128 0.839466
\(670\) 0 0
\(671\) 3.71281 0.143332
\(672\) 0 0
\(673\) 46.3644i 1.78722i 0.448846 + 0.893609i \(0.351835\pi\)
−0.448846 + 0.893609i \(0.648165\pi\)
\(674\) 0 0
\(675\) −27.7128 5.65685i −1.06667 0.217732i
\(676\) 0 0
\(677\) 32.2495i 1.23945i −0.784819 0.619725i \(-0.787244\pi\)
0.784819 0.619725i \(-0.212756\pi\)
\(678\) 0 0
\(679\) 26.7846 1.02790
\(680\) 0 0
\(681\) −28.9282 −1.10853
\(682\) 0 0
\(683\) 21.9711i 0.840700i 0.907362 + 0.420350i \(0.138093\pi\)
−0.907362 + 0.420350i \(0.861907\pi\)
\(684\) 0 0
\(685\) 20.9282 + 25.6317i 0.799626 + 0.979337i
\(686\) 0 0
\(687\) 26.5654i 1.01354i
\(688\) 0 0
\(689\) 10.6410 0.405390
\(690\) 0 0
\(691\) −41.7128 −1.58683 −0.793415 0.608681i \(-0.791699\pi\)
−0.793415 + 0.608681i \(0.791699\pi\)
\(692\) 0 0
\(693\) 3.10583i 0.117981i
\(694\) 0 0
\(695\) 13.8564 11.3137i 0.525603 0.429153i
\(696\) 0 0
\(697\) 9.79796i 0.371124i
\(698\) 0 0
\(699\) −4.78461 −0.180971
\(700\) 0 0
\(701\) 27.7128 1.04670 0.523349 0.852118i \(-0.324682\pi\)
0.523349 + 0.852118i \(0.324682\pi\)
\(702\) 0 0
\(703\) 29.8744i 1.12673i
\(704\) 0 0
\(705\) −3.46410 + 2.82843i −0.130466 + 0.106525i
\(706\) 0 0
\(707\) 14.6969i 0.552735i
\(708\) 0 0
\(709\) −20.3923 −0.765849 −0.382925 0.923780i \(-0.625083\pi\)
−0.382925 + 0.923780i \(0.625083\pi\)
\(710\) 0 0
\(711\) −4.19615 −0.157368
\(712\) 0 0
\(713\) 55.1271i 2.06453i
\(714\) 0 0
\(715\) 3.21539 + 3.93803i 0.120249 + 0.147274i
\(716\) 0 0
\(717\) 14.6969i 0.548867i
\(718\) 0 0
\(719\) −19.8564 −0.740519 −0.370260 0.928928i \(-0.620731\pi\)
−0.370260 + 0.928928i \(0.620731\pi\)
\(720\) 0 0
\(721\) −22.3923 −0.833933
\(722\) 0 0
\(723\) 16.2127i 0.602956i
\(724\) 0 0
\(725\) −1.00000 + 4.89898i −0.0371391 + 0.181944i
\(726\) 0 0
\(727\) 46.6690i 1.73086i −0.501031 0.865430i \(-0.667046\pi\)
0.501031 0.865430i \(-0.332954\pi\)
\(728\) 0 0
\(729\) −29.0000 −1.07407
\(730\) 0 0
\(731\) −12.9282 −0.478167
\(732\) 0 0
\(733\) 12.7279i 0.470117i 0.971981 + 0.235058i \(0.0755281\pi\)
−0.971981 + 0.235058i \(0.924472\pi\)
\(734\) 0 0
\(735\) 2.00000 + 2.44949i 0.0737711 + 0.0903508i
\(736\) 0 0
\(737\) 5.37945i 0.198155i
\(738\) 0 0
\(739\) −18.9808 −0.698219 −0.349109 0.937082i \(-0.613516\pi\)
−0.349109 + 0.937082i \(0.613516\pi\)
\(740\) 0 0
\(741\) 8.28719 0.304437
\(742\) 0 0
\(743\) 9.89949i 0.363177i 0.983375 + 0.181589i \(0.0581239\pi\)
−0.983375 + 0.181589i \(0.941876\pi\)
\(744\) 0 0
\(745\) −1.60770 + 1.31268i −0.0589014 + 0.0480928i
\(746\) 0 0
\(747\) 10.1769i 0.372353i
\(748\) 0 0
\(749\) −45.7128 −1.67031
\(750\) 0 0
\(751\) −49.9090 −1.82120 −0.910602 0.413284i \(-0.864382\pi\)
−0.910602 + 0.413284i \(0.864382\pi\)
\(752\) 0 0
\(753\) 21.3891i 0.779461i
\(754\) 0 0
\(755\) −32.5359 + 26.5654i −1.18410 + 0.966816i
\(756\) 0 0
\(757\) 10.9348i 0.397431i −0.980057 0.198716i \(-0.936323\pi\)
0.980057 0.198716i \(-0.0636770\pi\)
\(758\) 0 0
\(759\) 11.3205 0.410908
\(760\) 0 0
\(761\) −35.5692 −1.28938 −0.644692 0.764443i \(-0.723014\pi\)
−0.644692 + 0.764443i \(0.723014\pi\)
\(762\) 0 0
\(763\) 43.7391i 1.58346i
\(764\) 0 0
\(765\) 2.00000 + 2.44949i 0.0723102 + 0.0885615i
\(766\) 0 0
\(767\) 18.6350i 0.672870i
\(768\) 0 0
\(769\) 19.0718 0.687747 0.343873 0.939016i \(-0.388261\pi\)
0.343873 + 0.939016i \(0.388261\pi\)
\(770\) 0 0
\(771\) 13.4641 0.484898
\(772\) 0 0
\(773\) 11.2122i 0.403274i −0.979460 0.201637i \(-0.935374\pi\)
0.979460 0.201637i \(-0.0646261\pi\)
\(774\) 0 0
\(775\) 8.73205 42.7781i 0.313665 1.53664i
\(776\) 0 0
\(777\) 31.6675i 1.13607i
\(778\) 0 0
\(779\) 22.6410 0.811199
\(780\) 0 0
\(781\) −4.39230 −0.157169
\(782\) 0 0
\(783\) 5.65685i 0.202159i
\(784\) 0 0
\(785\) 15.4641 + 18.9396i 0.551937 + 0.675983i
\(786\) 0 0
\(787\) 35.0779i 1.25039i 0.780467 + 0.625197i \(0.214981\pi\)
−0.780467 + 0.625197i \(0.785019\pi\)
\(788\) 0 0
\(789\) −6.78461 −0.241539
\(790\) 0 0
\(791\) −31.8564 −1.13268
\(792\) 0 0
\(793\) 5.25071i 0.186458i
\(794\) 0 0
\(795\) −14.5359 + 11.8685i −0.515535 + 0.420933i
\(796\) 0 0
\(797\) 29.0149i 1.02776i −0.857862 0.513881i \(-0.828207\pi\)
0.857862 0.513881i \(-0.171793\pi\)
\(798\) 0 0
\(799\) 2.00000 0.0707549
\(800\) 0 0
\(801\) −10.3923 −0.367194
\(802\) 0 0
\(803\) 9.31749i 0.328807i
\(804\) 0 0
\(805\) −26.7846 + 21.8695i −0.944033 + 0.770800i
\(806\) 0 0
\(807\) 16.9706i 0.597392i
\(808\) 0 0
\(809\) −13.6077 −0.478421 −0.239211 0.970968i \(-0.576889\pi\)
−0.239211 + 0.970968i \(0.576889\pi\)
\(810\) 0 0
\(811\) 36.7846 1.29168 0.645841 0.763472i \(-0.276507\pi\)
0.645841 + 0.763472i \(0.276507\pi\)
\(812\) 0 0
\(813\) 37.8048i 1.32587i
\(814\) 0 0
\(815\) 19.8564 + 24.3190i 0.695540 + 0.851859i
\(816\) 0 0
\(817\) 29.8744i 1.04517i
\(818\) 0 0
\(819\) −4.39230 −0.153480
\(820\) 0 0
\(821\) 9.21539 0.321619 0.160810 0.986985i \(-0.448589\pi\)
0.160810 + 0.986985i \(0.448589\pi\)
\(822\) 0 0
\(823\) 40.8091i 1.42252i 0.702931 + 0.711258i \(0.251874\pi\)
−0.702931 + 0.711258i \(0.748126\pi\)
\(824\) 0 0
\(825\) −8.78461 1.79315i −0.305841 0.0624295i
\(826\) 0 0
\(827\) 3.68784i 0.128239i 0.997942 + 0.0641193i \(0.0204238\pi\)
−0.997942 + 0.0641193i \(0.979576\pi\)
\(828\) 0 0
\(829\) 16.7846 0.582954 0.291477 0.956578i \(-0.405853\pi\)
0.291477 + 0.956578i \(0.405853\pi\)
\(830\) 0 0
\(831\) −26.5359 −0.920520
\(832\) 0 0
\(833\) 1.41421i 0.0489996i
\(834\) 0 0
\(835\) −15.8564 19.4201i −0.548734 0.672059i
\(836\) 0 0
\(837\) 49.3959i 1.70737i
\(838\) 0 0
\(839\) 40.9808 1.41481 0.707407 0.706807i \(-0.249865\pi\)
0.707407 + 0.706807i \(0.249865\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 46.3644i 1.59688i
\(844\) 0 0
\(845\) −16.9474 + 13.8375i −0.583010 + 0.476025i
\(846\) 0 0
\(847\) 23.0064i 0.790508i
\(848\) 0 0
\(849\) 38.7846 1.33108
\(850\) 0 0
\(851\) 57.7128 1.97837
\(852\) 0 0
\(853\) 32.3238i 1.10675i 0.832933 + 0.553374i \(0.186660\pi\)
−0.832933 + 0.553374i \(0.813340\pi\)
\(854\) 0 0
\(855\) 5.66025 4.62158i 0.193577 0.158055i
\(856\) 0 0
\(857\) 33.2576i 1.13606i −0.823009 0.568029i \(-0.807706\pi\)
0.823009 0.568029i \(-0.192294\pi\)
\(858\) 0 0
\(859\) −18.7321 −0.639129 −0.319565 0.947564i \(-0.603537\pi\)
−0.319565 + 0.947564i \(0.603537\pi\)
\(860\) 0 0
\(861\) 24.0000 0.817918
\(862\) 0 0
\(863\) 1.69161i 0.0575832i −0.999585 0.0287916i \(-0.990834\pi\)
0.999585 0.0287916i \(-0.00916592\pi\)
\(864\) 0 0
\(865\) −6.53590 8.00481i −0.222227 0.272172i
\(866\) 0 0
\(867\) 21.2132i 0.720438i
\(868\) 0 0
\(869\) −5.32051 −0.180486
\(870\) 0 0
\(871\) 7.60770 0.257777
\(872\) 0 0
\(873\) 10.9348i 0.370086i
\(874\) 0 0
\(875\) 24.2487 12.7279i 0.819756 0.430282i
\(876\) 0 0
\(877\) 24.9754i 0.843358i −0.906745 0.421679i \(-0.861441\pi\)
0.906745 0.421679i \(-0.138559\pi\)
\(878\) 0 0
\(879\) 43.4641 1.46601
\(880\) 0 0
\(881\) −50.5359 −1.70260 −0.851299 0.524681i \(-0.824185\pi\)
−0.851299 + 0.524681i \(0.824185\pi\)
\(882\) 0 0
\(883\) 1.48854i 0.0500935i −0.999686 0.0250467i \(-0.992027\pi\)
0.999686 0.0250467i \(-0.00797346\pi\)
\(884\) 0 0
\(885\) −20.7846 25.4558i −0.698667 0.855689i
\(886\) 0 0
\(887\) 21.0101i 0.705451i 0.935727 + 0.352726i \(0.114745\pi\)
−0.935727 + 0.352726i \(0.885255\pi\)
\(888\) 0 0
\(889\) 10.3923 0.348547
\(890\) 0 0
\(891\) −6.33975 −0.212389
\(892\) 0 0
\(893\) 4.62158i 0.154655i
\(894\) 0 0
\(895\) −4.39230 + 3.58630i −0.146819 + 0.119877i
\(896\) 0 0
\(897\) 16.0096i 0.534546i
\(898\) 0 0
\(899\) −8.73205 −0.291230
\(900\) 0 0
\(901\) 8.39230 0.279588
\(902\) 0 0
\(903\) 31.6675i 1.05383i
\(904\) 0 0
\(905\) 27.7128 22.6274i 0.921205 0.752161i
\(906\) 0 0
\(907\) 45.7081i 1.51771i −0.651258 0.758856i \(-0.725758\pi\)
0.651258 0.758856i \(-0.274242\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 9.80385 0.324816 0.162408 0.986724i \(-0.448074\pi\)
0.162408 + 0.986724i \(0.448074\pi\)
\(912\) 0 0
\(913\) 12.9038i 0.427053i
\(914\) 0 0
\(915\) 5.85641 + 7.17260i 0.193607 + 0.237119i
\(916\) 0 0
\(917\) 11.5911i 0.382772i
\(918\) 0 0
\(919\) 43.9615 1.45016 0.725078 0.688666i \(-0.241803\pi\)
0.725078 + 0.688666i \(0.241803\pi\)
\(920\) 0 0
\(921\) 14.7846 0.487169
\(922\) 0 0
\(923\) 6.21166i 0.204459i
\(924\) 0 0
\(925\) −44.7846 9.14162i −1.47251 0.300575i
\(926\) 0 0
\(927\) 9.14162i 0.300250i
\(928\) 0 0
\(929\) −55.8564 −1.83259 −0.916295 0.400505i \(-0.868835\pi\)
−0.916295 + 0.400505i \(0.868835\pi\)
\(930\) 0 0
\(931\) −3.26795 −0.107103
\(932\) 0 0
\(933\) 9.31749i 0.305041i
\(934\) 0 0
\(935\) 2.53590 + 3.10583i 0.0829327 + 0.101571i
\(936\) 0 0
\(937\) 2.75410i 0.0899724i −0.998988 0.0449862i \(-0.985676\pi\)
0.998988 0.0449862i \(-0.0143244\pi\)
\(938\) 0 0
\(939\) −33.4641 −1.09206
\(940\) 0 0
\(941\) −7.85641 −0.256112 −0.128056 0.991767i \(-0.540874\pi\)
−0.128056 + 0.991767i \(0.540874\pi\)
\(942\) 0 0
\(943\) 43.7391i 1.42434i
\(944\) 0 0
\(945\) 24.0000 19.5959i 0.780720 0.637455i
\(946\) 0 0
\(947\) 27.9797i 0.909217i −0.890691 0.454608i \(-0.849779\pi\)
0.890691 0.454608i \(-0.150221\pi\)
\(948\) 0 0
\(949\) −13.1769 −0.427741
\(950\) 0 0
\(951\) 8.14359 0.264074
\(952\) 0 0
\(953\) 5.65685i 0.183243i −0.995794 0.0916217i \(-0.970795\pi\)
0.995794 0.0916217i \(-0.0292051\pi\)
\(954\) 0 0
\(955\) 26.1962 21.3891i 0.847688 0.692134i
\(956\) 0 0
\(957\) 1.79315i 0.0579643i
\(958\) 0 0
\(959\) −36.2487 −1.17053
\(960\) 0 0
\(961\) 45.2487 1.45964
\(962\) 0 0
\(963\) 18.6622i 0.601380i
\(964\) 0 0
\(965\) 0.928203 + 1.13681i 0.0298799 + 0.0365953i
\(966\) 0 0
\(967\) 1.96902i 0.0633193i −0.999499 0.0316596i \(-0.989921\pi\)
0.999499 0.0316596i \(-0.0100793\pi\)
\(968\) 0 0
\(969\) 6.53590 0.209963
\(970\) 0 0
\(971\) 49.5167 1.58907 0.794533 0.607221i \(-0.207716\pi\)
0.794533 + 0.607221i \(0.207716\pi\)
\(972\) 0 0
\(973\) 19.5959i 0.628216i
\(974\) 0 0
\(975\) −2.53590 + 12.4233i −0.0812137 + 0.397864i
\(976\) 0 0
\(977\) 22.9048i 0.732790i 0.930459 + 0.366395i \(0.119408\pi\)
−0.930459 + 0.366395i \(0.880592\pi\)
\(978\) 0 0
\(979\) −13.1769 −0.421136
\(980\) 0 0
\(981\) −17.8564 −0.570111
\(982\) 0 0
\(983\) 30.2533i 0.964930i −0.875915 0.482465i \(-0.839742\pi\)
0.875915 0.482465i \(-0.160258\pi\)
\(984\) 0 0
\(985\) −31.7128 38.8401i −1.01045 1.23755i
\(986\) 0 0
\(987\) 4.89898i 0.155936i
\(988\) 0 0
\(989\) 57.7128 1.83516
\(990\) 0 0
\(991\) −34.7846 −1.10497 −0.552485 0.833523i \(-0.686320\pi\)
−0.552485 + 0.833523i \(0.686320\pi\)
\(992\) 0 0
\(993\) 25.7332i 0.816620i
\(994\) 0 0
\(995\) 24.2487 19.7990i 0.768736 0.627670i
\(996\) 0 0
\(997\) 26.5927i 0.842198i −0.907015 0.421099i \(-0.861645\pi\)
0.907015 0.421099i \(-0.138355\pi\)
\(998\) 0 0
\(999\) −51.7128 −1.63612
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.2.d.f.929.1 4
4.3 odd 2 145.2.b.b.59.2 4
5.4 even 2 inner 2320.2.d.f.929.3 4
12.11 even 2 1305.2.c.f.784.3 4
20.3 even 4 725.2.a.f.1.2 4
20.7 even 4 725.2.a.f.1.3 4
20.19 odd 2 145.2.b.b.59.3 yes 4
60.23 odd 4 6525.2.a.bj.1.3 4
60.47 odd 4 6525.2.a.bj.1.2 4
60.59 even 2 1305.2.c.f.784.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.b.59.2 4 4.3 odd 2
145.2.b.b.59.3 yes 4 20.19 odd 2
725.2.a.f.1.2 4 20.3 even 4
725.2.a.f.1.3 4 20.7 even 4
1305.2.c.f.784.2 4 60.59 even 2
1305.2.c.f.784.3 4 12.11 even 2
2320.2.d.f.929.1 4 1.1 even 1 trivial
2320.2.d.f.929.3 4 5.4 even 2 inner
6525.2.a.bj.1.2 4 60.47 odd 4
6525.2.a.bj.1.3 4 60.23 odd 4