Properties

Label 2320.2.a.p.1.2
Level $2320$
Weight $2$
Character 2320.1
Self dual yes
Analytic conductor $18.525$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,2,Mod(1,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5252932689\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1160)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.86081\) of defining polynomial
Character \(\chi\) \(=\) 2320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.462598 q^{3} -1.00000 q^{5} +2.86081 q^{7} -2.78600 q^{9} -5.72161 q^{11} +0.462598 q^{13} -0.462598 q^{15} +1.93561 q^{17} +8.36842 q^{19} +1.32340 q^{21} -8.18421 q^{23} +1.00000 q^{25} -2.67660 q^{27} -1.00000 q^{29} -3.78600 q^{31} -2.64681 q^{33} -2.86081 q^{35} +3.07480 q^{37} +0.213997 q^{39} +3.72161 q^{41} -9.78600 q^{43} +2.78600 q^{45} -8.64681 q^{47} +1.18421 q^{49} +0.895410 q^{51} -2.58242 q^{53} +5.72161 q^{55} +3.87122 q^{57} -11.7562 q^{59} -9.62743 q^{61} -7.97021 q^{63} -0.462598 q^{65} -13.2936 q^{67} -3.78600 q^{69} +5.29362 q^{71} +9.63640 q^{73} +0.462598 q^{75} -16.3684 q^{77} +5.90582 q^{79} +7.11982 q^{81} -4.92520 q^{83} -1.93561 q^{85} -0.462598 q^{87} -5.07480 q^{89} +1.32340 q^{91} -1.75140 q^{93} -8.36842 q^{95} -1.66618 q^{97} +15.9404 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} - 3 q^{5} + 3 q^{7} + 2 q^{9} - 6 q^{11} - q^{13} + q^{15} + 5 q^{17} - 2 q^{19} - 4 q^{21} - 11 q^{23} + 3 q^{25} - 16 q^{27} - 3 q^{29} - q^{31} + 8 q^{33} - 3 q^{35} + 14 q^{37} + 11 q^{39}+ \cdots - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.462598 0.267081 0.133541 0.991043i \(-0.457365\pi\)
0.133541 + 0.991043i \(0.457365\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 2.86081 1.08128 0.540641 0.841253i \(-0.318182\pi\)
0.540641 + 0.841253i \(0.318182\pi\)
\(8\) 0 0
\(9\) −2.78600 −0.928668
\(10\) 0 0
\(11\) −5.72161 −1.72513 −0.862565 0.505946i \(-0.831144\pi\)
−0.862565 + 0.505946i \(0.831144\pi\)
\(12\) 0 0
\(13\) 0.462598 0.128302 0.0641509 0.997940i \(-0.479566\pi\)
0.0641509 + 0.997940i \(0.479566\pi\)
\(14\) 0 0
\(15\) −0.462598 −0.119442
\(16\) 0 0
\(17\) 1.93561 0.469454 0.234727 0.972061i \(-0.424580\pi\)
0.234727 + 0.972061i \(0.424580\pi\)
\(18\) 0 0
\(19\) 8.36842 1.91985 0.959924 0.280262i \(-0.0904212\pi\)
0.959924 + 0.280262i \(0.0904212\pi\)
\(20\) 0 0
\(21\) 1.32340 0.288790
\(22\) 0 0
\(23\) −8.18421 −1.70653 −0.853263 0.521481i \(-0.825380\pi\)
−0.853263 + 0.521481i \(0.825380\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −2.67660 −0.515111
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −3.78600 −0.679986 −0.339993 0.940428i \(-0.610425\pi\)
−0.339993 + 0.940428i \(0.610425\pi\)
\(32\) 0 0
\(33\) −2.64681 −0.460750
\(34\) 0 0
\(35\) −2.86081 −0.483564
\(36\) 0 0
\(37\) 3.07480 0.505495 0.252747 0.967532i \(-0.418666\pi\)
0.252747 + 0.967532i \(0.418666\pi\)
\(38\) 0 0
\(39\) 0.213997 0.0342670
\(40\) 0 0
\(41\) 3.72161 0.581218 0.290609 0.956842i \(-0.406142\pi\)
0.290609 + 0.956842i \(0.406142\pi\)
\(42\) 0 0
\(43\) −9.78600 −1.49235 −0.746176 0.665749i \(-0.768112\pi\)
−0.746176 + 0.665749i \(0.768112\pi\)
\(44\) 0 0
\(45\) 2.78600 0.415313
\(46\) 0 0
\(47\) −8.64681 −1.26127 −0.630633 0.776081i \(-0.717205\pi\)
−0.630633 + 0.776081i \(0.717205\pi\)
\(48\) 0 0
\(49\) 1.18421 0.169173
\(50\) 0 0
\(51\) 0.895410 0.125382
\(52\) 0 0
\(53\) −2.58242 −0.354722 −0.177361 0.984146i \(-0.556756\pi\)
−0.177361 + 0.984146i \(0.556756\pi\)
\(54\) 0 0
\(55\) 5.72161 0.771502
\(56\) 0 0
\(57\) 3.87122 0.512755
\(58\) 0 0
\(59\) −11.7562 −1.53053 −0.765264 0.643716i \(-0.777392\pi\)
−0.765264 + 0.643716i \(0.777392\pi\)
\(60\) 0 0
\(61\) −9.62743 −1.23267 −0.616333 0.787485i \(-0.711383\pi\)
−0.616333 + 0.787485i \(0.711383\pi\)
\(62\) 0 0
\(63\) −7.97021 −1.00415
\(64\) 0 0
\(65\) −0.462598 −0.0573783
\(66\) 0 0
\(67\) −13.2936 −1.62407 −0.812037 0.583606i \(-0.801641\pi\)
−0.812037 + 0.583606i \(0.801641\pi\)
\(68\) 0 0
\(69\) −3.78600 −0.455781
\(70\) 0 0
\(71\) 5.29362 0.628237 0.314118 0.949384i \(-0.398291\pi\)
0.314118 + 0.949384i \(0.398291\pi\)
\(72\) 0 0
\(73\) 9.63640 1.12785 0.563927 0.825824i \(-0.309290\pi\)
0.563927 + 0.825824i \(0.309290\pi\)
\(74\) 0 0
\(75\) 0.462598 0.0534163
\(76\) 0 0
\(77\) −16.3684 −1.86535
\(78\) 0 0
\(79\) 5.90582 0.664457 0.332228 0.943199i \(-0.392200\pi\)
0.332228 + 0.943199i \(0.392200\pi\)
\(80\) 0 0
\(81\) 7.11982 0.791091
\(82\) 0 0
\(83\) −4.92520 −0.540611 −0.270305 0.962775i \(-0.587125\pi\)
−0.270305 + 0.962775i \(0.587125\pi\)
\(84\) 0 0
\(85\) −1.93561 −0.209946
\(86\) 0 0
\(87\) −0.462598 −0.0495958
\(88\) 0 0
\(89\) −5.07480 −0.537928 −0.268964 0.963150i \(-0.586681\pi\)
−0.268964 + 0.963150i \(0.586681\pi\)
\(90\) 0 0
\(91\) 1.32340 0.138730
\(92\) 0 0
\(93\) −1.75140 −0.181612
\(94\) 0 0
\(95\) −8.36842 −0.858582
\(96\) 0 0
\(97\) −1.66618 −0.169175 −0.0845877 0.996416i \(-0.526957\pi\)
−0.0845877 + 0.996416i \(0.526957\pi\)
\(98\) 0 0
\(99\) 15.9404 1.60207
\(100\) 0 0
\(101\) −13.2590 −1.31932 −0.659661 0.751564i \(-0.729300\pi\)
−0.659661 + 0.751564i \(0.729300\pi\)
\(102\) 0 0
\(103\) 14.8864 1.46681 0.733403 0.679795i \(-0.237931\pi\)
0.733403 + 0.679795i \(0.237931\pi\)
\(104\) 0 0
\(105\) −1.32340 −0.129151
\(106\) 0 0
\(107\) −1.48197 −0.143268 −0.0716339 0.997431i \(-0.522821\pi\)
−0.0716339 + 0.997431i \(0.522821\pi\)
\(108\) 0 0
\(109\) 17.0152 1.62976 0.814882 0.579627i \(-0.196802\pi\)
0.814882 + 0.579627i \(0.196802\pi\)
\(110\) 0 0
\(111\) 1.42240 0.135008
\(112\) 0 0
\(113\) −5.40862 −0.508800 −0.254400 0.967099i \(-0.581878\pi\)
−0.254400 + 0.967099i \(0.581878\pi\)
\(114\) 0 0
\(115\) 8.18421 0.763182
\(116\) 0 0
\(117\) −1.28880 −0.119150
\(118\) 0 0
\(119\) 5.53740 0.507613
\(120\) 0 0
\(121\) 21.7368 1.97608
\(122\) 0 0
\(123\) 1.72161 0.155232
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −12.0900 −1.07282 −0.536408 0.843959i \(-0.680219\pi\)
−0.536408 + 0.843959i \(0.680219\pi\)
\(128\) 0 0
\(129\) −4.52699 −0.398579
\(130\) 0 0
\(131\) −8.49720 −0.742404 −0.371202 0.928552i \(-0.621054\pi\)
−0.371202 + 0.928552i \(0.621054\pi\)
\(132\) 0 0
\(133\) 23.9404 2.07590
\(134\) 0 0
\(135\) 2.67660 0.230365
\(136\) 0 0
\(137\) −3.25901 −0.278436 −0.139218 0.990262i \(-0.544459\pi\)
−0.139218 + 0.990262i \(0.544459\pi\)
\(138\) 0 0
\(139\) −22.6724 −1.92305 −0.961526 0.274714i \(-0.911417\pi\)
−0.961526 + 0.274714i \(0.911417\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 0 0
\(143\) −2.64681 −0.221337
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) 0.547814 0.0451829
\(148\) 0 0
\(149\) 11.6620 0.955391 0.477696 0.878525i \(-0.341472\pi\)
0.477696 + 0.878525i \(0.341472\pi\)
\(150\) 0 0
\(151\) −4.66763 −0.379847 −0.189923 0.981799i \(-0.560824\pi\)
−0.189923 + 0.981799i \(0.560824\pi\)
\(152\) 0 0
\(153\) −5.39261 −0.435967
\(154\) 0 0
\(155\) 3.78600 0.304099
\(156\) 0 0
\(157\) −15.3836 −1.22775 −0.613874 0.789404i \(-0.710390\pi\)
−0.613874 + 0.789404i \(0.710390\pi\)
\(158\) 0 0
\(159\) −1.19462 −0.0947397
\(160\) 0 0
\(161\) −23.4134 −1.84524
\(162\) 0 0
\(163\) 0.646809 0.0506620 0.0253310 0.999679i \(-0.491936\pi\)
0.0253310 + 0.999679i \(0.491936\pi\)
\(164\) 0 0
\(165\) 2.64681 0.206054
\(166\) 0 0
\(167\) 14.5616 1.12681 0.563405 0.826181i \(-0.309491\pi\)
0.563405 + 0.826181i \(0.309491\pi\)
\(168\) 0 0
\(169\) −12.7860 −0.983539
\(170\) 0 0
\(171\) −23.3144 −1.78290
\(172\) 0 0
\(173\) 6.98062 0.530727 0.265364 0.964148i \(-0.414508\pi\)
0.265364 + 0.964148i \(0.414508\pi\)
\(174\) 0 0
\(175\) 2.86081 0.216257
\(176\) 0 0
\(177\) −5.43841 −0.408776
\(178\) 0 0
\(179\) 11.7562 0.878701 0.439350 0.898316i \(-0.355209\pi\)
0.439350 + 0.898316i \(0.355209\pi\)
\(180\) 0 0
\(181\) −5.57201 −0.414164 −0.207082 0.978324i \(-0.566397\pi\)
−0.207082 + 0.978324i \(0.566397\pi\)
\(182\) 0 0
\(183\) −4.45364 −0.329222
\(184\) 0 0
\(185\) −3.07480 −0.226064
\(186\) 0 0
\(187\) −11.0748 −0.809870
\(188\) 0 0
\(189\) −7.65722 −0.556981
\(190\) 0 0
\(191\) 13.0796 0.946408 0.473204 0.880953i \(-0.343097\pi\)
0.473204 + 0.880953i \(0.343097\pi\)
\(192\) 0 0
\(193\) −4.18421 −0.301186 −0.150593 0.988596i \(-0.548118\pi\)
−0.150593 + 0.988596i \(0.548118\pi\)
\(194\) 0 0
\(195\) −0.213997 −0.0153247
\(196\) 0 0
\(197\) −1.28880 −0.0918232 −0.0459116 0.998946i \(-0.514619\pi\)
−0.0459116 + 0.998946i \(0.514619\pi\)
\(198\) 0 0
\(199\) −3.87122 −0.274423 −0.137212 0.990542i \(-0.543814\pi\)
−0.137212 + 0.990542i \(0.543814\pi\)
\(200\) 0 0
\(201\) −6.14961 −0.433760
\(202\) 0 0
\(203\) −2.86081 −0.200789
\(204\) 0 0
\(205\) −3.72161 −0.259929
\(206\) 0 0
\(207\) 22.8012 1.58480
\(208\) 0 0
\(209\) −47.8809 −3.31199
\(210\) 0 0
\(211\) −25.1648 −1.73242 −0.866209 0.499681i \(-0.833450\pi\)
−0.866209 + 0.499681i \(0.833450\pi\)
\(212\) 0 0
\(213\) 2.44882 0.167790
\(214\) 0 0
\(215\) 9.78600 0.667400
\(216\) 0 0
\(217\) −10.8310 −0.735257
\(218\) 0 0
\(219\) 4.45778 0.301229
\(220\) 0 0
\(221\) 0.895410 0.0602318
\(222\) 0 0
\(223\) 5.96540 0.399472 0.199736 0.979850i \(-0.435991\pi\)
0.199736 + 0.979850i \(0.435991\pi\)
\(224\) 0 0
\(225\) −2.78600 −0.185734
\(226\) 0 0
\(227\) −12.7964 −0.849328 −0.424664 0.905351i \(-0.639608\pi\)
−0.424664 + 0.905351i \(0.639608\pi\)
\(228\) 0 0
\(229\) −11.3788 −0.751934 −0.375967 0.926633i \(-0.622689\pi\)
−0.375967 + 0.926633i \(0.622689\pi\)
\(230\) 0 0
\(231\) −7.57201 −0.498201
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 8.64681 0.564056
\(236\) 0 0
\(237\) 2.73202 0.177464
\(238\) 0 0
\(239\) 8.79641 0.568993 0.284496 0.958677i \(-0.408174\pi\)
0.284496 + 0.958677i \(0.408174\pi\)
\(240\) 0 0
\(241\) −5.62743 −0.362495 −0.181247 0.983438i \(-0.558013\pi\)
−0.181247 + 0.983438i \(0.558013\pi\)
\(242\) 0 0
\(243\) 11.3234 0.726397
\(244\) 0 0
\(245\) −1.18421 −0.0756564
\(246\) 0 0
\(247\) 3.87122 0.246320
\(248\) 0 0
\(249\) −2.27839 −0.144387
\(250\) 0 0
\(251\) 11.0748 0.699035 0.349518 0.936930i \(-0.386345\pi\)
0.349518 + 0.936930i \(0.386345\pi\)
\(252\) 0 0
\(253\) 46.8269 2.94398
\(254\) 0 0
\(255\) −0.895410 −0.0560727
\(256\) 0 0
\(257\) −13.8712 −0.865263 −0.432631 0.901571i \(-0.642415\pi\)
−0.432631 + 0.901571i \(0.642415\pi\)
\(258\) 0 0
\(259\) 8.79641 0.546583
\(260\) 0 0
\(261\) 2.78600 0.172449
\(262\) 0 0
\(263\) 8.09003 0.498853 0.249426 0.968394i \(-0.419758\pi\)
0.249426 + 0.968394i \(0.419758\pi\)
\(264\) 0 0
\(265\) 2.58242 0.158637
\(266\) 0 0
\(267\) −2.34760 −0.143671
\(268\) 0 0
\(269\) 4.80123 0.292736 0.146368 0.989230i \(-0.453242\pi\)
0.146368 + 0.989230i \(0.453242\pi\)
\(270\) 0 0
\(271\) 25.0361 1.52083 0.760416 0.649436i \(-0.224995\pi\)
0.760416 + 0.649436i \(0.224995\pi\)
\(272\) 0 0
\(273\) 0.612205 0.0370523
\(274\) 0 0
\(275\) −5.72161 −0.345026
\(276\) 0 0
\(277\) 22.1801 1.33267 0.666335 0.745652i \(-0.267862\pi\)
0.666335 + 0.745652i \(0.267862\pi\)
\(278\) 0 0
\(279\) 10.5478 0.631481
\(280\) 0 0
\(281\) −3.80683 −0.227096 −0.113548 0.993532i \(-0.536222\pi\)
−0.113548 + 0.993532i \(0.536222\pi\)
\(282\) 0 0
\(283\) 4.92520 0.292773 0.146386 0.989228i \(-0.453236\pi\)
0.146386 + 0.989228i \(0.453236\pi\)
\(284\) 0 0
\(285\) −3.87122 −0.229311
\(286\) 0 0
\(287\) 10.6468 0.628461
\(288\) 0 0
\(289\) −13.2534 −0.779613
\(290\) 0 0
\(291\) −0.770774 −0.0451836
\(292\) 0 0
\(293\) 22.2188 1.29804 0.649018 0.760773i \(-0.275180\pi\)
0.649018 + 0.760773i \(0.275180\pi\)
\(294\) 0 0
\(295\) 11.7562 0.684473
\(296\) 0 0
\(297\) 15.3144 0.888634
\(298\) 0 0
\(299\) −3.78600 −0.218950
\(300\) 0 0
\(301\) −27.9959 −1.61365
\(302\) 0 0
\(303\) −6.13360 −0.352366
\(304\) 0 0
\(305\) 9.62743 0.551265
\(306\) 0 0
\(307\) 21.9404 1.25221 0.626103 0.779740i \(-0.284649\pi\)
0.626103 + 0.779740i \(0.284649\pi\)
\(308\) 0 0
\(309\) 6.88645 0.391756
\(310\) 0 0
\(311\) −19.1994 −1.08870 −0.544350 0.838858i \(-0.683224\pi\)
−0.544350 + 0.838858i \(0.683224\pi\)
\(312\) 0 0
\(313\) −8.88645 −0.502292 −0.251146 0.967949i \(-0.580807\pi\)
−0.251146 + 0.967949i \(0.580807\pi\)
\(314\) 0 0
\(315\) 7.97021 0.449071
\(316\) 0 0
\(317\) 3.87122 0.217429 0.108715 0.994073i \(-0.465327\pi\)
0.108715 + 0.994073i \(0.465327\pi\)
\(318\) 0 0
\(319\) 5.72161 0.320349
\(320\) 0 0
\(321\) −0.685559 −0.0382641
\(322\) 0 0
\(323\) 16.1980 0.901280
\(324\) 0 0
\(325\) 0.462598 0.0256603
\(326\) 0 0
\(327\) 7.87122 0.435279
\(328\) 0 0
\(329\) −24.7368 −1.36379
\(330\) 0 0
\(331\) −21.4224 −1.17748 −0.588741 0.808322i \(-0.700376\pi\)
−0.588741 + 0.808322i \(0.700376\pi\)
\(332\) 0 0
\(333\) −8.56641 −0.469436
\(334\) 0 0
\(335\) 13.2936 0.726308
\(336\) 0 0
\(337\) 27.1004 1.47626 0.738128 0.674661i \(-0.235710\pi\)
0.738128 + 0.674661i \(0.235710\pi\)
\(338\) 0 0
\(339\) −2.50202 −0.135891
\(340\) 0 0
\(341\) 21.6620 1.17307
\(342\) 0 0
\(343\) −16.6378 −0.898359
\(344\) 0 0
\(345\) 3.78600 0.203832
\(346\) 0 0
\(347\) −26.5180 −1.42356 −0.711781 0.702401i \(-0.752111\pi\)
−0.711781 + 0.702401i \(0.752111\pi\)
\(348\) 0 0
\(349\) −27.2340 −1.45780 −0.728902 0.684618i \(-0.759969\pi\)
−0.728902 + 0.684618i \(0.759969\pi\)
\(350\) 0 0
\(351\) −1.23819 −0.0660896
\(352\) 0 0
\(353\) 34.6773 1.84568 0.922842 0.385178i \(-0.125860\pi\)
0.922842 + 0.385178i \(0.125860\pi\)
\(354\) 0 0
\(355\) −5.29362 −0.280956
\(356\) 0 0
\(357\) 2.56159 0.135574
\(358\) 0 0
\(359\) 20.9806 1.10732 0.553658 0.832744i \(-0.313232\pi\)
0.553658 + 0.832744i \(0.313232\pi\)
\(360\) 0 0
\(361\) 51.0305 2.68581
\(362\) 0 0
\(363\) 10.0554 0.527773
\(364\) 0 0
\(365\) −9.63640 −0.504392
\(366\) 0 0
\(367\) 3.97918 0.207711 0.103856 0.994592i \(-0.466882\pi\)
0.103856 + 0.994592i \(0.466882\pi\)
\(368\) 0 0
\(369\) −10.3684 −0.539758
\(370\) 0 0
\(371\) −7.38780 −0.383555
\(372\) 0 0
\(373\) −17.1697 −0.889011 −0.444505 0.895776i \(-0.646621\pi\)
−0.444505 + 0.895776i \(0.646621\pi\)
\(374\) 0 0
\(375\) −0.462598 −0.0238885
\(376\) 0 0
\(377\) −0.462598 −0.0238250
\(378\) 0 0
\(379\) −7.27279 −0.373578 −0.186789 0.982400i \(-0.559808\pi\)
−0.186789 + 0.982400i \(0.559808\pi\)
\(380\) 0 0
\(381\) −5.59283 −0.286529
\(382\) 0 0
\(383\) 18.5616 0.948453 0.474227 0.880403i \(-0.342728\pi\)
0.474227 + 0.880403i \(0.342728\pi\)
\(384\) 0 0
\(385\) 16.3684 0.834212
\(386\) 0 0
\(387\) 27.2638 1.38590
\(388\) 0 0
\(389\) 4.40717 0.223452 0.111726 0.993739i \(-0.464362\pi\)
0.111726 + 0.993739i \(0.464362\pi\)
\(390\) 0 0
\(391\) −15.8414 −0.801136
\(392\) 0 0
\(393\) −3.93079 −0.198282
\(394\) 0 0
\(395\) −5.90582 −0.297154
\(396\) 0 0
\(397\) 29.1697 1.46398 0.731991 0.681314i \(-0.238591\pi\)
0.731991 + 0.681314i \(0.238591\pi\)
\(398\) 0 0
\(399\) 11.0748 0.554434
\(400\) 0 0
\(401\) −24.3338 −1.21517 −0.607586 0.794254i \(-0.707862\pi\)
−0.607586 + 0.794254i \(0.707862\pi\)
\(402\) 0 0
\(403\) −1.75140 −0.0872434
\(404\) 0 0
\(405\) −7.11982 −0.353787
\(406\) 0 0
\(407\) −17.5928 −0.872044
\(408\) 0 0
\(409\) 12.9044 0.638080 0.319040 0.947741i \(-0.396640\pi\)
0.319040 + 0.947741i \(0.396640\pi\)
\(410\) 0 0
\(411\) −1.50761 −0.0743651
\(412\) 0 0
\(413\) −33.6323 −1.65493
\(414\) 0 0
\(415\) 4.92520 0.241768
\(416\) 0 0
\(417\) −10.4882 −0.513611
\(418\) 0 0
\(419\) 10.3732 0.506766 0.253383 0.967366i \(-0.418457\pi\)
0.253383 + 0.967366i \(0.418457\pi\)
\(420\) 0 0
\(421\) −5.74244 −0.279869 −0.139935 0.990161i \(-0.544689\pi\)
−0.139935 + 0.990161i \(0.544689\pi\)
\(422\) 0 0
\(423\) 24.0900 1.17130
\(424\) 0 0
\(425\) 1.93561 0.0938908
\(426\) 0 0
\(427\) −27.5422 −1.33286
\(428\) 0 0
\(429\) −1.22441 −0.0591150
\(430\) 0 0
\(431\) 2.81724 0.135702 0.0678508 0.997695i \(-0.478386\pi\)
0.0678508 + 0.997695i \(0.478386\pi\)
\(432\) 0 0
\(433\) 18.6468 0.896108 0.448054 0.894006i \(-0.352117\pi\)
0.448054 + 0.894006i \(0.352117\pi\)
\(434\) 0 0
\(435\) 0.462598 0.0221799
\(436\) 0 0
\(437\) −68.4889 −3.27627
\(438\) 0 0
\(439\) −40.4197 −1.92913 −0.964564 0.263851i \(-0.915007\pi\)
−0.964564 + 0.263851i \(0.915007\pi\)
\(440\) 0 0
\(441\) −3.29921 −0.157105
\(442\) 0 0
\(443\) 39.1607 1.86058 0.930290 0.366824i \(-0.119555\pi\)
0.930290 + 0.366824i \(0.119555\pi\)
\(444\) 0 0
\(445\) 5.07480 0.240569
\(446\) 0 0
\(447\) 5.39484 0.255167
\(448\) 0 0
\(449\) 5.61365 0.264925 0.132462 0.991188i \(-0.457712\pi\)
0.132462 + 0.991188i \(0.457712\pi\)
\(450\) 0 0
\(451\) −21.2936 −1.00268
\(452\) 0 0
\(453\) −2.15924 −0.101450
\(454\) 0 0
\(455\) −1.32340 −0.0620421
\(456\) 0 0
\(457\) −8.32967 −0.389646 −0.194823 0.980838i \(-0.562413\pi\)
−0.194823 + 0.980838i \(0.562413\pi\)
\(458\) 0 0
\(459\) −5.18084 −0.241821
\(460\) 0 0
\(461\) 30.1365 1.40360 0.701798 0.712376i \(-0.252381\pi\)
0.701798 + 0.712376i \(0.252381\pi\)
\(462\) 0 0
\(463\) 15.1857 0.705737 0.352869 0.935673i \(-0.385206\pi\)
0.352869 + 0.935673i \(0.385206\pi\)
\(464\) 0 0
\(465\) 1.75140 0.0812192
\(466\) 0 0
\(467\) −13.7860 −0.637940 −0.318970 0.947765i \(-0.603337\pi\)
−0.318970 + 0.947765i \(0.603337\pi\)
\(468\) 0 0
\(469\) −38.0305 −1.75608
\(470\) 0 0
\(471\) −7.11645 −0.327909
\(472\) 0 0
\(473\) 55.9917 2.57450
\(474\) 0 0
\(475\) 8.36842 0.383969
\(476\) 0 0
\(477\) 7.19462 0.329419
\(478\) 0 0
\(479\) −17.7652 −0.811712 −0.405856 0.913937i \(-0.633027\pi\)
−0.405856 + 0.913937i \(0.633027\pi\)
\(480\) 0 0
\(481\) 1.42240 0.0648558
\(482\) 0 0
\(483\) −10.8310 −0.492828
\(484\) 0 0
\(485\) 1.66618 0.0756575
\(486\) 0 0
\(487\) 7.62743 0.345632 0.172816 0.984954i \(-0.444713\pi\)
0.172816 + 0.984954i \(0.444713\pi\)
\(488\) 0 0
\(489\) 0.299213 0.0135309
\(490\) 0 0
\(491\) 16.1801 0.730196 0.365098 0.930969i \(-0.381035\pi\)
0.365098 + 0.930969i \(0.381035\pi\)
\(492\) 0 0
\(493\) −1.93561 −0.0871754
\(494\) 0 0
\(495\) −15.9404 −0.716469
\(496\) 0 0
\(497\) 15.1440 0.679302
\(498\) 0 0
\(499\) 33.3074 1.49104 0.745522 0.666481i \(-0.232200\pi\)
0.745522 + 0.666481i \(0.232200\pi\)
\(500\) 0 0
\(501\) 6.73617 0.300950
\(502\) 0 0
\(503\) −28.2701 −1.26050 −0.630251 0.776392i \(-0.717048\pi\)
−0.630251 + 0.776392i \(0.717048\pi\)
\(504\) 0 0
\(505\) 13.2590 0.590018
\(506\) 0 0
\(507\) −5.91478 −0.262685
\(508\) 0 0
\(509\) 12.7160 0.563628 0.281814 0.959469i \(-0.409064\pi\)
0.281814 + 0.959469i \(0.409064\pi\)
\(510\) 0 0
\(511\) 27.5679 1.21953
\(512\) 0 0
\(513\) −22.3989 −0.988935
\(514\) 0 0
\(515\) −14.8864 −0.655975
\(516\) 0 0
\(517\) 49.4737 2.17585
\(518\) 0 0
\(519\) 3.22923 0.141747
\(520\) 0 0
\(521\) −11.2084 −0.491049 −0.245524 0.969390i \(-0.578960\pi\)
−0.245524 + 0.969390i \(0.578960\pi\)
\(522\) 0 0
\(523\) −39.5541 −1.72958 −0.864790 0.502134i \(-0.832548\pi\)
−0.864790 + 0.502134i \(0.832548\pi\)
\(524\) 0 0
\(525\) 1.32340 0.0577581
\(526\) 0 0
\(527\) −7.32822 −0.319222
\(528\) 0 0
\(529\) 43.9813 1.91223
\(530\) 0 0
\(531\) 32.7528 1.42135
\(532\) 0 0
\(533\) 1.72161 0.0745713
\(534\) 0 0
\(535\) 1.48197 0.0640713
\(536\) 0 0
\(537\) 5.43841 0.234685
\(538\) 0 0
\(539\) −6.77559 −0.291845
\(540\) 0 0
\(541\) 30.1365 1.29567 0.647835 0.761781i \(-0.275675\pi\)
0.647835 + 0.761781i \(0.275675\pi\)
\(542\) 0 0
\(543\) −2.57760 −0.110615
\(544\) 0 0
\(545\) −17.0152 −0.728852
\(546\) 0 0
\(547\) −44.5485 −1.90476 −0.952378 0.304920i \(-0.901370\pi\)
−0.952378 + 0.304920i \(0.901370\pi\)
\(548\) 0 0
\(549\) 26.8221 1.14474
\(550\) 0 0
\(551\) −8.36842 −0.356507
\(552\) 0 0
\(553\) 16.8954 0.718466
\(554\) 0 0
\(555\) −1.42240 −0.0603775
\(556\) 0 0
\(557\) −23.3490 −0.989331 −0.494665 0.869084i \(-0.664709\pi\)
−0.494665 + 0.869084i \(0.664709\pi\)
\(558\) 0 0
\(559\) −4.52699 −0.191471
\(560\) 0 0
\(561\) −5.12319 −0.216301
\(562\) 0 0
\(563\) −39.1607 −1.65043 −0.825213 0.564821i \(-0.808945\pi\)
−0.825213 + 0.564821i \(0.808945\pi\)
\(564\) 0 0
\(565\) 5.40862 0.227542
\(566\) 0 0
\(567\) 20.3684 0.855393
\(568\) 0 0
\(569\) 47.2340 1.98015 0.990077 0.140526i \(-0.0448792\pi\)
0.990077 + 0.140526i \(0.0448792\pi\)
\(570\) 0 0
\(571\) 27.3795 1.14580 0.572898 0.819626i \(-0.305819\pi\)
0.572898 + 0.819626i \(0.305819\pi\)
\(572\) 0 0
\(573\) 6.05061 0.252768
\(574\) 0 0
\(575\) −8.18421 −0.341305
\(576\) 0 0
\(577\) −19.6572 −0.818341 −0.409170 0.912458i \(-0.634182\pi\)
−0.409170 + 0.912458i \(0.634182\pi\)
\(578\) 0 0
\(579\) −1.93561 −0.0804412
\(580\) 0 0
\(581\) −14.0900 −0.584553
\(582\) 0 0
\(583\) 14.7756 0.611942
\(584\) 0 0
\(585\) 1.28880 0.0532853
\(586\) 0 0
\(587\) −26.9460 −1.11218 −0.556091 0.831122i \(-0.687699\pi\)
−0.556091 + 0.831122i \(0.687699\pi\)
\(588\) 0 0
\(589\) −31.6829 −1.30547
\(590\) 0 0
\(591\) −0.596197 −0.0245243
\(592\) 0 0
\(593\) 3.73954 0.153564 0.0767822 0.997048i \(-0.475535\pi\)
0.0767822 + 0.997048i \(0.475535\pi\)
\(594\) 0 0
\(595\) −5.53740 −0.227011
\(596\) 0 0
\(597\) −1.79082 −0.0732934
\(598\) 0 0
\(599\) 21.2084 0.866552 0.433276 0.901261i \(-0.357358\pi\)
0.433276 + 0.901261i \(0.357358\pi\)
\(600\) 0 0
\(601\) −32.1413 −1.31107 −0.655536 0.755164i \(-0.727557\pi\)
−0.655536 + 0.755164i \(0.727557\pi\)
\(602\) 0 0
\(603\) 37.0361 1.50822
\(604\) 0 0
\(605\) −21.7368 −0.883728
\(606\) 0 0
\(607\) 5.76036 0.233806 0.116903 0.993143i \(-0.462703\pi\)
0.116903 + 0.993143i \(0.462703\pi\)
\(608\) 0 0
\(609\) −1.32340 −0.0536270
\(610\) 0 0
\(611\) −4.00000 −0.161823
\(612\) 0 0
\(613\) −26.4633 −1.06884 −0.534421 0.845219i \(-0.679470\pi\)
−0.534421 + 0.845219i \(0.679470\pi\)
\(614\) 0 0
\(615\) −1.72161 −0.0694221
\(616\) 0 0
\(617\) −16.8221 −0.677230 −0.338615 0.940925i \(-0.609958\pi\)
−0.338615 + 0.940925i \(0.609958\pi\)
\(618\) 0 0
\(619\) 25.8325 1.03829 0.519147 0.854685i \(-0.326250\pi\)
0.519147 + 0.854685i \(0.326250\pi\)
\(620\) 0 0
\(621\) 21.9058 0.879050
\(622\) 0 0
\(623\) −14.5180 −0.581652
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −22.1496 −0.884570
\(628\) 0 0
\(629\) 5.95162 0.237306
\(630\) 0 0
\(631\) −38.0900 −1.51634 −0.758170 0.652057i \(-0.773906\pi\)
−0.758170 + 0.652057i \(0.773906\pi\)
\(632\) 0 0
\(633\) −11.6412 −0.462697
\(634\) 0 0
\(635\) 12.0900 0.479778
\(636\) 0 0
\(637\) 0.547814 0.0217052
\(638\) 0 0
\(639\) −14.7480 −0.583423
\(640\) 0 0
\(641\) 14.5664 0.575339 0.287669 0.957730i \(-0.407120\pi\)
0.287669 + 0.957730i \(0.407120\pi\)
\(642\) 0 0
\(643\) 40.5664 1.59978 0.799892 0.600145i \(-0.204890\pi\)
0.799892 + 0.600145i \(0.204890\pi\)
\(644\) 0 0
\(645\) 4.52699 0.178250
\(646\) 0 0
\(647\) 40.7368 1.60153 0.800765 0.598978i \(-0.204426\pi\)
0.800765 + 0.598978i \(0.204426\pi\)
\(648\) 0 0
\(649\) 67.2645 2.64036
\(650\) 0 0
\(651\) −5.01041 −0.196374
\(652\) 0 0
\(653\) 33.1648 1.29784 0.648920 0.760857i \(-0.275221\pi\)
0.648920 + 0.760857i \(0.275221\pi\)
\(654\) 0 0
\(655\) 8.49720 0.332013
\(656\) 0 0
\(657\) −26.8470 −1.04740
\(658\) 0 0
\(659\) −4.12878 −0.160835 −0.0804173 0.996761i \(-0.525625\pi\)
−0.0804173 + 0.996761i \(0.525625\pi\)
\(660\) 0 0
\(661\) 6.66763 0.259341 0.129670 0.991557i \(-0.458608\pi\)
0.129670 + 0.991557i \(0.458608\pi\)
\(662\) 0 0
\(663\) 0.414215 0.0160868
\(664\) 0 0
\(665\) −23.9404 −0.928370
\(666\) 0 0
\(667\) 8.18421 0.316894
\(668\) 0 0
\(669\) 2.75958 0.106692
\(670\) 0 0
\(671\) 55.0844 2.12651
\(672\) 0 0
\(673\) −10.4280 −0.401970 −0.200985 0.979594i \(-0.564414\pi\)
−0.200985 + 0.979594i \(0.564414\pi\)
\(674\) 0 0
\(675\) −2.67660 −0.103022
\(676\) 0 0
\(677\) 43.3657 1.66668 0.833340 0.552761i \(-0.186426\pi\)
0.833340 + 0.552761i \(0.186426\pi\)
\(678\) 0 0
\(679\) −4.76663 −0.182926
\(680\) 0 0
\(681\) −5.91960 −0.226840
\(682\) 0 0
\(683\) 6.81724 0.260854 0.130427 0.991458i \(-0.458365\pi\)
0.130427 + 0.991458i \(0.458365\pi\)
\(684\) 0 0
\(685\) 3.25901 0.124520
\(686\) 0 0
\(687\) −5.26383 −0.200828
\(688\) 0 0
\(689\) −1.19462 −0.0455115
\(690\) 0 0
\(691\) 0.950838 0.0361716 0.0180858 0.999836i \(-0.494243\pi\)
0.0180858 + 0.999836i \(0.494243\pi\)
\(692\) 0 0
\(693\) 45.6025 1.73229
\(694\) 0 0
\(695\) 22.6724 0.860015
\(696\) 0 0
\(697\) 7.20359 0.272855
\(698\) 0 0
\(699\) 8.32677 0.314947
\(700\) 0 0
\(701\) −49.2132 −1.85876 −0.929379 0.369127i \(-0.879657\pi\)
−0.929379 + 0.369127i \(0.879657\pi\)
\(702\) 0 0
\(703\) 25.7312 0.970472
\(704\) 0 0
\(705\) 4.00000 0.150649
\(706\) 0 0
\(707\) −37.9315 −1.42656
\(708\) 0 0
\(709\) 39.6204 1.48797 0.743987 0.668194i \(-0.232932\pi\)
0.743987 + 0.668194i \(0.232932\pi\)
\(710\) 0 0
\(711\) −16.4536 −0.617060
\(712\) 0 0
\(713\) 30.9854 1.16041
\(714\) 0 0
\(715\) 2.64681 0.0989850
\(716\) 0 0
\(717\) 4.06921 0.151967
\(718\) 0 0
\(719\) −3.33237 −0.124276 −0.0621382 0.998068i \(-0.519792\pi\)
−0.0621382 + 0.998068i \(0.519792\pi\)
\(720\) 0 0
\(721\) 42.5872 1.58603
\(722\) 0 0
\(723\) −2.60324 −0.0968156
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) −2.36842 −0.0878398 −0.0439199 0.999035i \(-0.513985\pi\)
−0.0439199 + 0.999035i \(0.513985\pi\)
\(728\) 0 0
\(729\) −16.1213 −0.597084
\(730\) 0 0
\(731\) −18.9419 −0.700591
\(732\) 0 0
\(733\) 30.3297 1.12025 0.560126 0.828407i \(-0.310753\pi\)
0.560126 + 0.828407i \(0.310753\pi\)
\(734\) 0 0
\(735\) −0.547814 −0.0202064
\(736\) 0 0
\(737\) 76.0609 2.80174
\(738\) 0 0
\(739\) −33.5928 −1.23573 −0.617866 0.786283i \(-0.712003\pi\)
−0.617866 + 0.786283i \(0.712003\pi\)
\(740\) 0 0
\(741\) 1.79082 0.0657874
\(742\) 0 0
\(743\) 21.9404 0.804916 0.402458 0.915438i \(-0.368156\pi\)
0.402458 + 0.915438i \(0.368156\pi\)
\(744\) 0 0
\(745\) −11.6620 −0.427264
\(746\) 0 0
\(747\) 13.7216 0.502048
\(748\) 0 0
\(749\) −4.23964 −0.154913
\(750\) 0 0
\(751\) −40.9944 −1.49591 −0.747954 0.663751i \(-0.768963\pi\)
−0.747954 + 0.663751i \(0.768963\pi\)
\(752\) 0 0
\(753\) 5.12319 0.186699
\(754\) 0 0
\(755\) 4.66763 0.169873
\(756\) 0 0
\(757\) 14.0388 0.510247 0.255124 0.966908i \(-0.417884\pi\)
0.255124 + 0.966908i \(0.417884\pi\)
\(758\) 0 0
\(759\) 21.6620 0.786282
\(760\) 0 0
\(761\) −28.9300 −1.04871 −0.524356 0.851499i \(-0.675694\pi\)
−0.524356 + 0.851499i \(0.675694\pi\)
\(762\) 0 0
\(763\) 48.6773 1.76224
\(764\) 0 0
\(765\) 5.39261 0.194970
\(766\) 0 0
\(767\) −5.43841 −0.196369
\(768\) 0 0
\(769\) −16.7756 −0.604943 −0.302472 0.953158i \(-0.597812\pi\)
−0.302472 + 0.953158i \(0.597812\pi\)
\(770\) 0 0
\(771\) −6.41680 −0.231096
\(772\) 0 0
\(773\) −8.05957 −0.289883 −0.144941 0.989440i \(-0.546299\pi\)
−0.144941 + 0.989440i \(0.546299\pi\)
\(774\) 0 0
\(775\) −3.78600 −0.135997
\(776\) 0 0
\(777\) 4.06921 0.145982
\(778\) 0 0
\(779\) 31.1440 1.11585
\(780\) 0 0
\(781\) −30.2880 −1.08379
\(782\) 0 0
\(783\) 2.67660 0.0956537
\(784\) 0 0
\(785\) 15.3836 0.549066
\(786\) 0 0
\(787\) 33.0636 1.17859 0.589295 0.807918i \(-0.299405\pi\)
0.589295 + 0.807918i \(0.299405\pi\)
\(788\) 0 0
\(789\) 3.74244 0.133234
\(790\) 0 0
\(791\) −15.4730 −0.550157
\(792\) 0 0
\(793\) −4.45364 −0.158153
\(794\) 0 0
\(795\) 1.19462 0.0423689
\(796\) 0 0
\(797\) 21.2936 0.754259 0.377129 0.926161i \(-0.376911\pi\)
0.377129 + 0.926161i \(0.376911\pi\)
\(798\) 0 0
\(799\) −16.7368 −0.592107
\(800\) 0 0
\(801\) 14.1384 0.499556
\(802\) 0 0
\(803\) −55.1357 −1.94570
\(804\) 0 0
\(805\) 23.4134 0.825215
\(806\) 0 0
\(807\) 2.22104 0.0781844
\(808\) 0 0
\(809\) 11.3532 0.399157 0.199578 0.979882i \(-0.436043\pi\)
0.199578 + 0.979882i \(0.436043\pi\)
\(810\) 0 0
\(811\) −14.2445 −0.500190 −0.250095 0.968221i \(-0.580462\pi\)
−0.250095 + 0.968221i \(0.580462\pi\)
\(812\) 0 0
\(813\) 11.5816 0.406186
\(814\) 0 0
\(815\) −0.646809 −0.0226567
\(816\) 0 0
\(817\) −81.8934 −2.86509
\(818\) 0 0
\(819\) −3.68701 −0.128834
\(820\) 0 0
\(821\) −20.2188 −0.705641 −0.352821 0.935691i \(-0.614777\pi\)
−0.352821 + 0.935691i \(0.614777\pi\)
\(822\) 0 0
\(823\) 2.00000 0.0697156 0.0348578 0.999392i \(-0.488902\pi\)
0.0348578 + 0.999392i \(0.488902\pi\)
\(824\) 0 0
\(825\) −2.64681 −0.0921500
\(826\) 0 0
\(827\) 15.5589 0.541036 0.270518 0.962715i \(-0.412805\pi\)
0.270518 + 0.962715i \(0.412805\pi\)
\(828\) 0 0
\(829\) −27.5589 −0.957160 −0.478580 0.878044i \(-0.658848\pi\)
−0.478580 + 0.878044i \(0.658848\pi\)
\(830\) 0 0
\(831\) 10.2605 0.355932
\(832\) 0 0
\(833\) 2.29217 0.0794189
\(834\) 0 0
\(835\) −14.5616 −0.503925
\(836\) 0 0
\(837\) 10.1336 0.350268
\(838\) 0 0
\(839\) −3.95835 −0.136657 −0.0683287 0.997663i \(-0.521767\pi\)
−0.0683287 + 0.997663i \(0.521767\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −1.76103 −0.0606532
\(844\) 0 0
\(845\) 12.7860 0.439852
\(846\) 0 0
\(847\) 62.1849 2.13670
\(848\) 0 0
\(849\) 2.27839 0.0781941
\(850\) 0 0
\(851\) −25.1648 −0.862639
\(852\) 0 0
\(853\) 3.63158 0.124343 0.0621715 0.998065i \(-0.480197\pi\)
0.0621715 + 0.998065i \(0.480197\pi\)
\(854\) 0 0
\(855\) 23.3144 0.797337
\(856\) 0 0
\(857\) −39.9196 −1.36363 −0.681814 0.731526i \(-0.738809\pi\)
−0.681814 + 0.731526i \(0.738809\pi\)
\(858\) 0 0
\(859\) −26.1772 −0.893153 −0.446577 0.894745i \(-0.647357\pi\)
−0.446577 + 0.894745i \(0.647357\pi\)
\(860\) 0 0
\(861\) 4.92520 0.167850
\(862\) 0 0
\(863\) 24.9211 0.848322 0.424161 0.905587i \(-0.360569\pi\)
0.424161 + 0.905587i \(0.360569\pi\)
\(864\) 0 0
\(865\) −6.98062 −0.237348
\(866\) 0 0
\(867\) −6.13101 −0.208220
\(868\) 0 0
\(869\) −33.7908 −1.14628
\(870\) 0 0
\(871\) −6.14961 −0.208371
\(872\) 0 0
\(873\) 4.64199 0.157108
\(874\) 0 0
\(875\) −2.86081 −0.0967129
\(876\) 0 0
\(877\) −45.6371 −1.54105 −0.770527 0.637407i \(-0.780007\pi\)
−0.770527 + 0.637407i \(0.780007\pi\)
\(878\) 0 0
\(879\) 10.2784 0.346681
\(880\) 0 0
\(881\) −39.7216 −1.33826 −0.669128 0.743148i \(-0.733332\pi\)
−0.669128 + 0.743148i \(0.733332\pi\)
\(882\) 0 0
\(883\) −55.2132 −1.85807 −0.929036 0.369988i \(-0.879362\pi\)
−0.929036 + 0.369988i \(0.879362\pi\)
\(884\) 0 0
\(885\) 5.43841 0.182810
\(886\) 0 0
\(887\) −8.13168 −0.273035 −0.136518 0.990638i \(-0.543591\pi\)
−0.136518 + 0.990638i \(0.543591\pi\)
\(888\) 0 0
\(889\) −34.5872 −1.16002
\(890\) 0 0
\(891\) −40.7368 −1.36474
\(892\) 0 0
\(893\) −72.3601 −2.42144
\(894\) 0 0
\(895\) −11.7562 −0.392967
\(896\) 0 0
\(897\) −1.75140 −0.0584775
\(898\) 0 0
\(899\) 3.78600 0.126270
\(900\) 0 0
\(901\) −4.99855 −0.166526
\(902\) 0 0
\(903\) −12.9508 −0.430977
\(904\) 0 0
\(905\) 5.57201 0.185220
\(906\) 0 0
\(907\) 9.78600 0.324939 0.162469 0.986714i \(-0.448054\pi\)
0.162469 + 0.986714i \(0.448054\pi\)
\(908\) 0 0
\(909\) 36.9396 1.22521
\(910\) 0 0
\(911\) −39.3795 −1.30470 −0.652351 0.757917i \(-0.726217\pi\)
−0.652351 + 0.757917i \(0.726217\pi\)
\(912\) 0 0
\(913\) 28.1801 0.932624
\(914\) 0 0
\(915\) 4.45364 0.147233
\(916\) 0 0
\(917\) −24.3088 −0.802749
\(918\) 0 0
\(919\) 0.994404 0.0328024 0.0164012 0.999865i \(-0.494779\pi\)
0.0164012 + 0.999865i \(0.494779\pi\)
\(920\) 0 0
\(921\) 10.1496 0.334441
\(922\) 0 0
\(923\) 2.44882 0.0806039
\(924\) 0 0
\(925\) 3.07480 0.101099
\(926\) 0 0
\(927\) −41.4737 −1.36217
\(928\) 0 0
\(929\) 22.6933 0.744542 0.372271 0.928124i \(-0.378579\pi\)
0.372271 + 0.928124i \(0.378579\pi\)
\(930\) 0 0
\(931\) 9.90997 0.324786
\(932\) 0 0
\(933\) −8.88163 −0.290772
\(934\) 0 0
\(935\) 11.0748 0.362185
\(936\) 0 0
\(937\) −34.0096 −1.11105 −0.555523 0.831501i \(-0.687482\pi\)
−0.555523 + 0.831501i \(0.687482\pi\)
\(938\) 0 0
\(939\) −4.11086 −0.134153
\(940\) 0 0
\(941\) −31.3532 −1.02208 −0.511042 0.859555i \(-0.670740\pi\)
−0.511042 + 0.859555i \(0.670740\pi\)
\(942\) 0 0
\(943\) −30.4585 −0.991864
\(944\) 0 0
\(945\) 7.65722 0.249089
\(946\) 0 0
\(947\) −2.24378 −0.0729132 −0.0364566 0.999335i \(-0.511607\pi\)
−0.0364566 + 0.999335i \(0.511607\pi\)
\(948\) 0 0
\(949\) 4.45778 0.144706
\(950\) 0 0
\(951\) 1.79082 0.0580713
\(952\) 0 0
\(953\) −1.56237 −0.0506102 −0.0253051 0.999680i \(-0.508056\pi\)
−0.0253051 + 0.999680i \(0.508056\pi\)
\(954\) 0 0
\(955\) −13.0796 −0.423247
\(956\) 0 0
\(957\) 2.64681 0.0855592
\(958\) 0 0
\(959\) −9.32340 −0.301068
\(960\) 0 0
\(961\) −16.6662 −0.537619
\(962\) 0 0
\(963\) 4.12878 0.133048
\(964\) 0 0
\(965\) 4.18421 0.134694
\(966\) 0 0
\(967\) 58.8060 1.89108 0.945538 0.325513i \(-0.105537\pi\)
0.945538 + 0.325513i \(0.105537\pi\)
\(968\) 0 0
\(969\) 7.49316 0.240715
\(970\) 0 0
\(971\) 15.5541 0.499154 0.249577 0.968355i \(-0.419708\pi\)
0.249577 + 0.968355i \(0.419708\pi\)
\(972\) 0 0
\(973\) −64.8615 −2.07936
\(974\) 0 0
\(975\) 0.213997 0.00685340
\(976\) 0 0
\(977\) −35.9612 −1.15050 −0.575251 0.817977i \(-0.695096\pi\)
−0.575251 + 0.817977i \(0.695096\pi\)
\(978\) 0 0
\(979\) 29.0361 0.927996
\(980\) 0 0
\(981\) −47.4045 −1.51351
\(982\) 0 0
\(983\) 50.0609 1.59670 0.798348 0.602197i \(-0.205708\pi\)
0.798348 + 0.602197i \(0.205708\pi\)
\(984\) 0 0
\(985\) 1.28880 0.0410646
\(986\) 0 0
\(987\) −11.4432 −0.364242
\(988\) 0 0
\(989\) 80.0907 2.54674
\(990\) 0 0
\(991\) −20.0096 −0.635627 −0.317813 0.948153i \(-0.602949\pi\)
−0.317813 + 0.948153i \(0.602949\pi\)
\(992\) 0 0
\(993\) −9.90997 −0.314483
\(994\) 0 0
\(995\) 3.87122 0.122726
\(996\) 0 0
\(997\) 19.7521 0.625554 0.312777 0.949827i \(-0.398741\pi\)
0.312777 + 0.949827i \(0.398741\pi\)
\(998\) 0 0
\(999\) −8.23000 −0.260386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.2.a.p.1.2 3
4.3 odd 2 1160.2.a.g.1.2 3
8.3 odd 2 9280.2.a.bo.1.2 3
8.5 even 2 9280.2.a.bq.1.2 3
20.19 odd 2 5800.2.a.q.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.a.g.1.2 3 4.3 odd 2
2320.2.a.p.1.2 3 1.1 even 1 trivial
5800.2.a.q.1.2 3 20.19 odd 2
9280.2.a.bo.1.2 3 8.3 odd 2
9280.2.a.bq.1.2 3 8.5 even 2