# Properties

 Label 2320.2.a.c.1.1 Level $2320$ Weight $2$ Character 2320.1 Self dual yes Analytic conductor $18.525$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2320,2,Mod(1,2320)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2320, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2320.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2320 = 2^{4} \cdot 5 \cdot 29$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2320.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$18.5252932689$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 580) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 2320.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.00000 q^{5} -3.00000 q^{9} +O(q^{10})$$ $$q-1.00000 q^{5} -3.00000 q^{9} +2.00000 q^{11} -2.00000 q^{13} +2.00000 q^{19} +8.00000 q^{23} +1.00000 q^{25} +1.00000 q^{29} -2.00000 q^{31} -4.00000 q^{37} -10.0000 q^{41} -4.00000 q^{43} +3.00000 q^{45} -12.0000 q^{47} -7.00000 q^{49} -6.00000 q^{53} -2.00000 q^{55} +12.0000 q^{59} -10.0000 q^{61} +2.00000 q^{65} -12.0000 q^{67} -12.0000 q^{71} +12.0000 q^{73} -2.00000 q^{79} +9.00000 q^{81} +4.00000 q^{83} -10.0000 q^{89} -2.00000 q^{95} +8.00000 q^{97} -6.00000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$4$$ 0 0
$$5$$ −1.00000 −0.447214
$$6$$ 0 0
$$7$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$8$$ 0 0
$$9$$ −3.00000 −1.00000
$$10$$ 0 0
$$11$$ 2.00000 0.603023 0.301511 0.953463i $$-0.402509\pi$$
0.301511 + 0.953463i $$0.402509\pi$$
$$12$$ 0 0
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$18$$ 0 0
$$19$$ 2.00000 0.458831 0.229416 0.973329i $$-0.426318\pi$$
0.229416 + 0.973329i $$0.426318\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 8.00000 1.66812 0.834058 0.551677i $$-0.186012\pi$$
0.834058 + 0.551677i $$0.186012\pi$$
$$24$$ 0 0
$$25$$ 1.00000 0.200000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 1.00000 0.185695
$$30$$ 0 0
$$31$$ −2.00000 −0.359211 −0.179605 0.983739i $$-0.557482\pi$$
−0.179605 + 0.983739i $$0.557482\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −4.00000 −0.657596 −0.328798 0.944400i $$-0.606644\pi$$
−0.328798 + 0.944400i $$0.606644\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −10.0000 −1.56174 −0.780869 0.624695i $$-0.785223\pi$$
−0.780869 + 0.624695i $$0.785223\pi$$
$$42$$ 0 0
$$43$$ −4.00000 −0.609994 −0.304997 0.952353i $$-0.598656\pi$$
−0.304997 + 0.952353i $$0.598656\pi$$
$$44$$ 0 0
$$45$$ 3.00000 0.447214
$$46$$ 0 0
$$47$$ −12.0000 −1.75038 −0.875190 0.483779i $$-0.839264\pi$$
−0.875190 + 0.483779i $$0.839264\pi$$
$$48$$ 0 0
$$49$$ −7.00000 −1.00000
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −6.00000 −0.824163 −0.412082 0.911147i $$-0.635198\pi$$
−0.412082 + 0.911147i $$0.635198\pi$$
$$54$$ 0 0
$$55$$ −2.00000 −0.269680
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 12.0000 1.56227 0.781133 0.624364i $$-0.214642\pi$$
0.781133 + 0.624364i $$0.214642\pi$$
$$60$$ 0 0
$$61$$ −10.0000 −1.28037 −0.640184 0.768221i $$-0.721142\pi$$
−0.640184 + 0.768221i $$0.721142\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 2.00000 0.248069
$$66$$ 0 0
$$67$$ −12.0000 −1.46603 −0.733017 0.680211i $$-0.761888\pi$$
−0.733017 + 0.680211i $$0.761888\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −12.0000 −1.42414 −0.712069 0.702109i $$-0.752242\pi$$
−0.712069 + 0.702109i $$0.752242\pi$$
$$72$$ 0 0
$$73$$ 12.0000 1.40449 0.702247 0.711934i $$-0.252180\pi$$
0.702247 + 0.711934i $$0.252180\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −2.00000 −0.225018 −0.112509 0.993651i $$-0.535889\pi$$
−0.112509 + 0.993651i $$0.535889\pi$$
$$80$$ 0 0
$$81$$ 9.00000 1.00000
$$82$$ 0 0
$$83$$ 4.00000 0.439057 0.219529 0.975606i $$-0.429548\pi$$
0.219529 + 0.975606i $$0.429548\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −10.0000 −1.06000 −0.529999 0.847998i $$-0.677808\pi$$
−0.529999 + 0.847998i $$0.677808\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −2.00000 −0.205196
$$96$$ 0 0
$$97$$ 8.00000 0.812277 0.406138 0.913812i $$-0.366875\pi$$
0.406138 + 0.913812i $$0.366875\pi$$
$$98$$ 0 0
$$99$$ −6.00000 −0.603023
$$100$$ 0 0
$$101$$ −6.00000 −0.597022 −0.298511 0.954406i $$-0.596490\pi$$
−0.298511 + 0.954406i $$0.596490\pi$$
$$102$$ 0 0
$$103$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −4.00000 −0.386695 −0.193347 0.981130i $$-0.561934\pi$$
−0.193347 + 0.981130i $$0.561934\pi$$
$$108$$ 0 0
$$109$$ 6.00000 0.574696 0.287348 0.957826i $$-0.407226\pi$$
0.287348 + 0.957826i $$0.407226\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −4.00000 −0.376288 −0.188144 0.982141i $$-0.560247\pi$$
−0.188144 + 0.982141i $$0.560247\pi$$
$$114$$ 0 0
$$115$$ −8.00000 −0.746004
$$116$$ 0 0
$$117$$ 6.00000 0.554700
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −7.00000 −0.636364
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ −1.00000 −0.0894427
$$126$$ 0 0
$$127$$ −8.00000 −0.709885 −0.354943 0.934888i $$-0.615500\pi$$
−0.354943 + 0.934888i $$0.615500\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −6.00000 −0.524222 −0.262111 0.965038i $$-0.584419\pi$$
−0.262111 + 0.965038i $$0.584419\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$138$$ 0 0
$$139$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ −4.00000 −0.334497
$$144$$ 0 0
$$145$$ −1.00000 −0.0830455
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −6.00000 −0.491539 −0.245770 0.969328i $$-0.579041\pi$$
−0.245770 + 0.969328i $$0.579041\pi$$
$$150$$ 0 0
$$151$$ −12.0000 −0.976546 −0.488273 0.872691i $$-0.662373\pi$$
−0.488273 + 0.872691i $$0.662373\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 2.00000 0.160644
$$156$$ 0 0
$$157$$ 16.0000 1.27694 0.638470 0.769647i $$-0.279568\pi$$
0.638470 + 0.769647i $$0.279568\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 12.0000 0.939913 0.469956 0.882690i $$-0.344270\pi$$
0.469956 + 0.882690i $$0.344270\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −16.0000 −1.23812 −0.619059 0.785345i $$-0.712486\pi$$
−0.619059 + 0.785345i $$0.712486\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ −6.00000 −0.458831
$$172$$ 0 0
$$173$$ 6.00000 0.456172 0.228086 0.973641i $$-0.426753\pi$$
0.228086 + 0.973641i $$0.426753\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 12.0000 0.896922 0.448461 0.893802i $$-0.351972\pi$$
0.448461 + 0.893802i $$0.351972\pi$$
$$180$$ 0 0
$$181$$ 10.0000 0.743294 0.371647 0.928374i $$-0.378793\pi$$
0.371647 + 0.928374i $$0.378793\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 4.00000 0.294086
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −6.00000 −0.434145 −0.217072 0.976156i $$-0.569651\pi$$
−0.217072 + 0.976156i $$0.569651\pi$$
$$192$$ 0 0
$$193$$ −4.00000 −0.287926 −0.143963 0.989583i $$-0.545985\pi$$
−0.143963 + 0.989583i $$0.545985\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −18.0000 −1.28245 −0.641223 0.767354i $$-0.721573\pi$$
−0.641223 + 0.767354i $$0.721573\pi$$
$$198$$ 0 0
$$199$$ −8.00000 −0.567105 −0.283552 0.958957i $$-0.591513\pi$$
−0.283552 + 0.958957i $$0.591513\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 10.0000 0.698430
$$206$$ 0 0
$$207$$ −24.0000 −1.66812
$$208$$ 0 0
$$209$$ 4.00000 0.276686
$$210$$ 0 0
$$211$$ 22.0000 1.51454 0.757271 0.653101i $$-0.226532\pi$$
0.757271 + 0.653101i $$0.226532\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 4.00000 0.272798
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 8.00000 0.535720 0.267860 0.963458i $$-0.413684\pi$$
0.267860 + 0.963458i $$0.413684\pi$$
$$224$$ 0 0
$$225$$ −3.00000 −0.200000
$$226$$ 0 0
$$227$$ 20.0000 1.32745 0.663723 0.747978i $$-0.268975\pi$$
0.663723 + 0.747978i $$0.268975\pi$$
$$228$$ 0 0
$$229$$ −10.0000 −0.660819 −0.330409 0.943838i $$-0.607187\pi$$
−0.330409 + 0.943838i $$0.607187\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −22.0000 −1.44127 −0.720634 0.693316i $$-0.756149\pi$$
−0.720634 + 0.693316i $$0.756149\pi$$
$$234$$ 0 0
$$235$$ 12.0000 0.782794
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ 0 0
$$241$$ −2.00000 −0.128831 −0.0644157 0.997923i $$-0.520518\pi$$
−0.0644157 + 0.997923i $$0.520518\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 7.00000 0.447214
$$246$$ 0 0
$$247$$ −4.00000 −0.254514
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 10.0000 0.631194 0.315597 0.948893i $$-0.397795\pi$$
0.315597 + 0.948893i $$0.397795\pi$$
$$252$$ 0 0
$$253$$ 16.0000 1.00591
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 14.0000 0.873296 0.436648 0.899632i $$-0.356166\pi$$
0.436648 + 0.899632i $$0.356166\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ −3.00000 −0.185695
$$262$$ 0 0
$$263$$ 16.0000 0.986602 0.493301 0.869859i $$-0.335790\pi$$
0.493301 + 0.869859i $$0.335790\pi$$
$$264$$ 0 0
$$265$$ 6.00000 0.368577
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −22.0000 −1.34136 −0.670682 0.741745i $$-0.733998\pi$$
−0.670682 + 0.741745i $$0.733998\pi$$
$$270$$ 0 0
$$271$$ 14.0000 0.850439 0.425220 0.905090i $$-0.360197\pi$$
0.425220 + 0.905090i $$0.360197\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 2.00000 0.120605
$$276$$ 0 0
$$277$$ 2.00000 0.120168 0.0600842 0.998193i $$-0.480863\pi$$
0.0600842 + 0.998193i $$0.480863\pi$$
$$278$$ 0 0
$$279$$ 6.00000 0.359211
$$280$$ 0 0
$$281$$ −22.0000 −1.31241 −0.656205 0.754583i $$-0.727839\pi$$
−0.656205 + 0.754583i $$0.727839\pi$$
$$282$$ 0 0
$$283$$ −4.00000 −0.237775 −0.118888 0.992908i $$-0.537933\pi$$
−0.118888 + 0.992908i $$0.537933\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −17.0000 −1.00000
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ −24.0000 −1.40209 −0.701047 0.713115i $$-0.747284\pi$$
−0.701047 + 0.713115i $$0.747284\pi$$
$$294$$ 0 0
$$295$$ −12.0000 −0.698667
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −16.0000 −0.925304
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 10.0000 0.572598
$$306$$ 0 0
$$307$$ 32.0000 1.82634 0.913168 0.407583i $$-0.133628\pi$$
0.913168 + 0.407583i $$0.133628\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −18.0000 −1.02069 −0.510343 0.859971i $$-0.670482\pi$$
−0.510343 + 0.859971i $$0.670482\pi$$
$$312$$ 0 0
$$313$$ 30.0000 1.69570 0.847850 0.530236i $$-0.177897\pi$$
0.847850 + 0.530236i $$0.177897\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −20.0000 −1.12331 −0.561656 0.827371i $$-0.689836\pi$$
−0.561656 + 0.827371i $$0.689836\pi$$
$$318$$ 0 0
$$319$$ 2.00000 0.111979
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 0 0
$$325$$ −2.00000 −0.110940
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −6.00000 −0.329790 −0.164895 0.986311i $$-0.552728\pi$$
−0.164895 + 0.986311i $$0.552728\pi$$
$$332$$ 0 0
$$333$$ 12.0000 0.657596
$$334$$ 0 0
$$335$$ 12.0000 0.655630
$$336$$ 0 0
$$337$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −4.00000 −0.216612
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 12.0000 0.644194 0.322097 0.946707i $$-0.395612\pi$$
0.322097 + 0.946707i $$0.395612\pi$$
$$348$$ 0 0
$$349$$ 14.0000 0.749403 0.374701 0.927146i $$-0.377745\pi$$
0.374701 + 0.927146i $$0.377745\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 2.00000 0.106449 0.0532246 0.998583i $$-0.483050\pi$$
0.0532246 + 0.998583i $$0.483050\pi$$
$$354$$ 0 0
$$355$$ 12.0000 0.636894
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 10.0000 0.527780 0.263890 0.964553i $$-0.414994\pi$$
0.263890 + 0.964553i $$0.414994\pi$$
$$360$$ 0 0
$$361$$ −15.0000 −0.789474
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −12.0000 −0.628109
$$366$$ 0 0
$$367$$ −4.00000 −0.208798 −0.104399 0.994535i $$-0.533292\pi$$
−0.104399 + 0.994535i $$0.533292\pi$$
$$368$$ 0 0
$$369$$ 30.0000 1.56174
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 38.0000 1.96757 0.983783 0.179364i $$-0.0574041\pi$$
0.983783 + 0.179364i $$0.0574041\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −2.00000 −0.103005
$$378$$ 0 0
$$379$$ 14.0000 0.719132 0.359566 0.933120i $$-0.382925\pi$$
0.359566 + 0.933120i $$0.382925\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 8.00000 0.408781 0.204390 0.978889i $$-0.434479\pi$$
0.204390 + 0.978889i $$0.434479\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 12.0000 0.609994
$$388$$ 0 0
$$389$$ −6.00000 −0.304212 −0.152106 0.988364i $$-0.548606\pi$$
−0.152106 + 0.988364i $$0.548606\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 2.00000 0.100631
$$396$$ 0 0
$$397$$ −10.0000 −0.501886 −0.250943 0.968002i $$-0.580741\pi$$
−0.250943 + 0.968002i $$0.580741\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −10.0000 −0.499376 −0.249688 0.968326i $$-0.580328\pi$$
−0.249688 + 0.968326i $$0.580328\pi$$
$$402$$ 0 0
$$403$$ 4.00000 0.199254
$$404$$ 0 0
$$405$$ −9.00000 −0.447214
$$406$$ 0 0
$$407$$ −8.00000 −0.396545
$$408$$ 0 0
$$409$$ −6.00000 −0.296681 −0.148340 0.988936i $$-0.547393\pi$$
−0.148340 + 0.988936i $$0.547393\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −4.00000 −0.196352
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 8.00000 0.390826 0.195413 0.980721i $$-0.437395\pi$$
0.195413 + 0.980721i $$0.437395\pi$$
$$420$$ 0 0
$$421$$ −10.0000 −0.487370 −0.243685 0.969854i $$-0.578356\pi$$
−0.243685 + 0.969854i $$0.578356\pi$$
$$422$$ 0 0
$$423$$ 36.0000 1.75038
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −28.0000 −1.34871 −0.674356 0.738406i $$-0.735579\pi$$
−0.674356 + 0.738406i $$0.735579\pi$$
$$432$$ 0 0
$$433$$ 24.0000 1.15337 0.576683 0.816968i $$-0.304347\pi$$
0.576683 + 0.816968i $$0.304347\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 16.0000 0.765384
$$438$$ 0 0
$$439$$ −20.0000 −0.954548 −0.477274 0.878755i $$-0.658375\pi$$
−0.477274 + 0.878755i $$0.658375\pi$$
$$440$$ 0 0
$$441$$ 21.0000 1.00000
$$442$$ 0 0
$$443$$ 16.0000 0.760183 0.380091 0.924949i $$-0.375893\pi$$
0.380091 + 0.924949i $$0.375893\pi$$
$$444$$ 0 0
$$445$$ 10.0000 0.474045
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 34.0000 1.60456 0.802280 0.596948i $$-0.203620\pi$$
0.802280 + 0.596948i $$0.203620\pi$$
$$450$$ 0 0
$$451$$ −20.0000 −0.941763
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −22.0000 −1.02912 −0.514558 0.857455i $$-0.672044\pi$$
−0.514558 + 0.857455i $$0.672044\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 18.0000 0.838344 0.419172 0.907907i $$-0.362320\pi$$
0.419172 + 0.907907i $$0.362320\pi$$
$$462$$ 0 0
$$463$$ 8.00000 0.371792 0.185896 0.982569i $$-0.440481\pi$$
0.185896 + 0.982569i $$0.440481\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 24.0000 1.11059 0.555294 0.831654i $$-0.312606\pi$$
0.555294 + 0.831654i $$0.312606\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −8.00000 −0.367840
$$474$$ 0 0
$$475$$ 2.00000 0.0917663
$$476$$ 0 0
$$477$$ 18.0000 0.824163
$$478$$ 0 0
$$479$$ −30.0000 −1.37073 −0.685367 0.728197i $$-0.740358\pi$$
−0.685367 + 0.728197i $$0.740358\pi$$
$$480$$ 0 0
$$481$$ 8.00000 0.364769
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −8.00000 −0.363261
$$486$$ 0 0
$$487$$ 8.00000 0.362515 0.181257 0.983436i $$-0.441983\pi$$
0.181257 + 0.983436i $$0.441983\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 18.0000 0.812329 0.406164 0.913800i $$-0.366866\pi$$
0.406164 + 0.913800i $$0.366866\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 6.00000 0.269680
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −20.0000 −0.895323 −0.447661 0.894203i $$-0.647743\pi$$
−0.447661 + 0.894203i $$0.647743\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ −24.0000 −1.07011 −0.535054 0.844818i $$-0.679709\pi$$
−0.535054 + 0.844818i $$0.679709\pi$$
$$504$$ 0 0
$$505$$ 6.00000 0.266996
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 18.0000 0.797836 0.398918 0.916987i $$-0.369386\pi$$
0.398918 + 0.916987i $$0.369386\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ −24.0000 −1.05552
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −2.00000 −0.0876216 −0.0438108 0.999040i $$-0.513950\pi$$
−0.0438108 + 0.999040i $$0.513950\pi$$
$$522$$ 0 0
$$523$$ 28.0000 1.22435 0.612177 0.790721i $$-0.290294\pi$$
0.612177 + 0.790721i $$0.290294\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 41.0000 1.78261
$$530$$ 0 0
$$531$$ −36.0000 −1.56227
$$532$$ 0 0
$$533$$ 20.0000 0.866296
$$534$$ 0 0
$$535$$ 4.00000 0.172935
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −14.0000 −0.603023
$$540$$ 0 0
$$541$$ −38.0000 −1.63375 −0.816874 0.576816i $$-0.804295\pi$$
−0.816874 + 0.576816i $$0.804295\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ −6.00000 −0.257012
$$546$$ 0 0
$$547$$ −4.00000 −0.171028 −0.0855138 0.996337i $$-0.527253\pi$$
−0.0855138 + 0.996337i $$0.527253\pi$$
$$548$$ 0 0
$$549$$ 30.0000 1.28037
$$550$$ 0 0
$$551$$ 2.00000 0.0852029
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 18.0000 0.762684 0.381342 0.924434i $$-0.375462\pi$$
0.381342 + 0.924434i $$0.375462\pi$$
$$558$$ 0 0
$$559$$ 8.00000 0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −36.0000 −1.51722 −0.758610 0.651546i $$-0.774121\pi$$
−0.758610 + 0.651546i $$0.774121\pi$$
$$564$$ 0 0
$$565$$ 4.00000 0.168281
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −30.0000 −1.25767 −0.628833 0.777541i $$-0.716467\pi$$
−0.628833 + 0.777541i $$0.716467\pi$$
$$570$$ 0 0
$$571$$ −16.0000 −0.669579 −0.334790 0.942293i $$-0.608665\pi$$
−0.334790 + 0.942293i $$0.608665\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 8.00000 0.333623
$$576$$ 0 0
$$577$$ 12.0000 0.499567 0.249783 0.968302i $$-0.419641\pi$$
0.249783 + 0.968302i $$0.419641\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ −12.0000 −0.496989
$$584$$ 0 0
$$585$$ −6.00000 −0.248069
$$586$$ 0 0
$$587$$ −20.0000 −0.825488 −0.412744 0.910847i $$-0.635430\pi$$
−0.412744 + 0.910847i $$0.635430\pi$$
$$588$$ 0 0
$$589$$ −4.00000 −0.164817
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 42.0000 1.72473 0.862367 0.506284i $$-0.168981\pi$$
0.862367 + 0.506284i $$0.168981\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 30.0000 1.22577 0.612883 0.790173i $$-0.290010\pi$$
0.612883 + 0.790173i $$0.290010\pi$$
$$600$$ 0 0
$$601$$ 30.0000 1.22373 0.611863 0.790964i $$-0.290420\pi$$
0.611863 + 0.790964i $$0.290420\pi$$
$$602$$ 0 0
$$603$$ 36.0000 1.46603
$$604$$ 0 0
$$605$$ 7.00000 0.284590
$$606$$ 0 0
$$607$$ 28.0000 1.13648 0.568242 0.822861i $$-0.307624\pi$$
0.568242 + 0.822861i $$0.307624\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 24.0000 0.970936
$$612$$ 0 0
$$613$$ 34.0000 1.37325 0.686624 0.727013i $$-0.259092\pi$$
0.686624 + 0.727013i $$0.259092\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −48.0000 −1.93241 −0.966204 0.257780i $$-0.917009\pi$$
−0.966204 + 0.257780i $$0.917009\pi$$
$$618$$ 0 0
$$619$$ −6.00000 −0.241160 −0.120580 0.992704i $$-0.538475\pi$$
−0.120580 + 0.992704i $$0.538475\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 1.00000 0.0400000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ −48.0000 −1.91085 −0.955425 0.295234i $$-0.904602\pi$$
−0.955425 + 0.295234i $$0.904602\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 8.00000 0.317470
$$636$$ 0 0
$$637$$ 14.0000 0.554700
$$638$$ 0 0
$$639$$ 36.0000 1.42414
$$640$$ 0 0
$$641$$ −18.0000 −0.710957 −0.355479 0.934684i $$-0.615682\pi$$
−0.355479 + 0.934684i $$0.615682\pi$$
$$642$$ 0 0
$$643$$ −4.00000 −0.157745 −0.0788723 0.996885i $$-0.525132\pi$$
−0.0788723 + 0.996885i $$0.525132\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −24.0000 −0.943537 −0.471769 0.881722i $$-0.656384\pi$$
−0.471769 + 0.881722i $$0.656384\pi$$
$$648$$ 0 0
$$649$$ 24.0000 0.942082
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 36.0000 1.40879 0.704394 0.709809i $$-0.251219\pi$$
0.704394 + 0.709809i $$0.251219\pi$$
$$654$$ 0 0
$$655$$ 6.00000 0.234439
$$656$$ 0 0
$$657$$ −36.0000 −1.40449
$$658$$ 0 0
$$659$$ −30.0000 −1.16863 −0.584317 0.811525i $$-0.698638\pi$$
−0.584317 + 0.811525i $$0.698638\pi$$
$$660$$ 0 0
$$661$$ −10.0000 −0.388955 −0.194477 0.980907i $$-0.562301\pi$$
−0.194477 + 0.980907i $$0.562301\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 8.00000 0.309761
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −20.0000 −0.772091
$$672$$ 0 0
$$673$$ 14.0000 0.539660 0.269830 0.962908i $$-0.413032\pi$$
0.269830 + 0.962908i $$0.413032\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −32.0000 −1.22986 −0.614930 0.788582i $$-0.710816\pi$$
−0.614930 + 0.788582i $$0.710816\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 12.0000 0.459167 0.229584 0.973289i $$-0.426264\pi$$
0.229584 + 0.973289i $$0.426264\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 12.0000 0.457164
$$690$$ 0 0
$$691$$ 28.0000 1.06517 0.532585 0.846376i $$-0.321221\pi$$
0.532585 + 0.846376i $$0.321221\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −2.00000 −0.0755390 −0.0377695 0.999286i $$-0.512025\pi$$
−0.0377695 + 0.999286i $$0.512025\pi$$
$$702$$ 0 0
$$703$$ −8.00000 −0.301726
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 34.0000 1.27690 0.638448 0.769665i $$-0.279577\pi$$
0.638448 + 0.769665i $$0.279577\pi$$
$$710$$ 0 0
$$711$$ 6.00000 0.225018
$$712$$ 0 0
$$713$$ −16.0000 −0.599205
$$714$$ 0 0
$$715$$ 4.00000 0.149592
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −40.0000 −1.49175 −0.745874 0.666087i $$-0.767968\pi$$
−0.745874 + 0.666087i $$0.767968\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 1.00000 0.0371391
$$726$$ 0 0
$$727$$ 12.0000 0.445055 0.222528 0.974926i $$-0.428569\pi$$
0.222528 + 0.974926i $$0.428569\pi$$
$$728$$ 0 0
$$729$$ −27.0000 −1.00000
$$730$$ 0 0
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 24.0000 0.886460 0.443230 0.896408i $$-0.353832\pi$$
0.443230 + 0.896408i $$0.353832\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −24.0000 −0.884051
$$738$$ 0 0
$$739$$ 26.0000 0.956425 0.478213 0.878244i $$-0.341285\pi$$
0.478213 + 0.878244i $$0.341285\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 40.0000 1.46746 0.733729 0.679442i $$-0.237778\pi$$
0.733729 + 0.679442i $$0.237778\pi$$
$$744$$ 0 0
$$745$$ 6.00000 0.219823
$$746$$ 0 0
$$747$$ −12.0000 −0.439057
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 50.0000 1.82453 0.912263 0.409605i $$-0.134333\pi$$
0.912263 + 0.409605i $$0.134333\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 12.0000 0.436725
$$756$$ 0 0
$$757$$ −52.0000 −1.88997 −0.944986 0.327111i $$-0.893925\pi$$
−0.944986 + 0.327111i $$0.893925\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −6.00000 −0.217500 −0.108750 0.994069i $$-0.534685\pi$$
−0.108750 + 0.994069i $$0.534685\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −24.0000 −0.866590
$$768$$ 0 0
$$769$$ −2.00000 −0.0721218 −0.0360609 0.999350i $$-0.511481\pi$$
−0.0360609 + 0.999350i $$0.511481\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ −4.00000 −0.143870 −0.0719350 0.997409i $$-0.522917\pi$$
−0.0719350 + 0.997409i $$0.522917\pi$$
$$774$$ 0 0
$$775$$ −2.00000 −0.0718421
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −20.0000 −0.716574
$$780$$ 0 0
$$781$$ −24.0000 −0.858788
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ −16.0000 −0.571064
$$786$$ 0 0
$$787$$ 44.0000 1.56843 0.784215 0.620489i $$-0.213066\pi$$
0.784215 + 0.620489i $$0.213066\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 20.0000 0.710221
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −12.0000 −0.425062 −0.212531 0.977154i $$-0.568171\pi$$
−0.212531 + 0.977154i $$0.568171\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ 30.0000 1.06000
$$802$$ 0 0
$$803$$ 24.0000 0.846942
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 38.0000 1.33601 0.668004 0.744157i $$-0.267149\pi$$
0.668004 + 0.744157i $$0.267149\pi$$
$$810$$ 0 0
$$811$$ 44.0000 1.54505 0.772524 0.634985i $$-0.218994\pi$$
0.772524 + 0.634985i $$0.218994\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ −12.0000 −0.420342
$$816$$ 0 0
$$817$$ −8.00000 −0.279885
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 50.0000 1.74501 0.872506 0.488603i $$-0.162493\pi$$
0.872506 + 0.488603i $$0.162493\pi$$
$$822$$ 0 0
$$823$$ −32.0000 −1.11545 −0.557725 0.830026i $$-0.688326\pi$$
−0.557725 + 0.830026i $$0.688326\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 28.0000 0.973655 0.486828 0.873498i $$-0.338154\pi$$
0.486828 + 0.873498i $$0.338154\pi$$
$$828$$ 0 0
$$829$$ −38.0000 −1.31979 −0.659897 0.751356i $$-0.729400\pi$$
−0.659897 + 0.751356i $$0.729400\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 0 0
$$834$$ 0 0
$$835$$ 16.0000 0.553703
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 2.00000 0.0690477 0.0345238 0.999404i $$-0.489009\pi$$
0.0345238 + 0.999404i $$0.489009\pi$$
$$840$$ 0 0
$$841$$ 1.00000 0.0344828
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 9.00000 0.309609
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ −32.0000 −1.09695
$$852$$ 0 0
$$853$$ −56.0000 −1.91740 −0.958702 0.284413i $$-0.908201\pi$$
−0.958702 + 0.284413i $$0.908201\pi$$
$$854$$ 0 0
$$855$$ 6.00000 0.205196
$$856$$ 0 0
$$857$$ 38.0000 1.29806 0.649028 0.760765i $$-0.275176\pi$$
0.649028 + 0.760765i $$0.275176\pi$$
$$858$$ 0 0
$$859$$ −30.0000 −1.02359 −0.511793 0.859109i $$-0.671019\pi$$
−0.511793 + 0.859109i $$0.671019\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 24.0000 0.816970 0.408485 0.912765i $$-0.366057\pi$$
0.408485 + 0.912765i $$0.366057\pi$$
$$864$$ 0 0
$$865$$ −6.00000 −0.204006
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ −4.00000 −0.135691
$$870$$ 0 0
$$871$$ 24.0000 0.813209
$$872$$ 0 0
$$873$$ −24.0000 −0.812277
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −6.00000 −0.202606 −0.101303 0.994856i $$-0.532301\pi$$
−0.101303 + 0.994856i $$0.532301\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −26.0000 −0.875962 −0.437981 0.898984i $$-0.644306\pi$$
−0.437981 + 0.898984i $$0.644306\pi$$
$$882$$ 0 0
$$883$$ −4.00000 −0.134611 −0.0673054 0.997732i $$-0.521440\pi$$
−0.0673054 + 0.997732i $$0.521440\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −24.0000 −0.805841 −0.402921 0.915235i $$-0.632005\pi$$
−0.402921 + 0.915235i $$0.632005\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 18.0000 0.603023
$$892$$ 0 0
$$893$$ −24.0000 −0.803129
$$894$$ 0 0
$$895$$ −12.0000 −0.401116
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ −2.00000 −0.0667037
$$900$$ 0 0
$$901$$ 0 0
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ −10.0000 −0.332411
$$906$$ 0 0
$$907$$ 36.0000 1.19536 0.597680 0.801735i $$-0.296089\pi$$
0.597680 + 0.801735i $$0.296089\pi$$
$$908$$ 0 0
$$909$$ 18.0000 0.597022
$$910$$ 0 0
$$911$$ −38.0000 −1.25900 −0.629498 0.777002i $$-0.716739\pi$$
−0.629498 + 0.777002i $$0.716739\pi$$
$$912$$ 0 0
$$913$$ 8.00000 0.264761
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 40.0000 1.31948 0.659739 0.751495i $$-0.270667\pi$$
0.659739 + 0.751495i $$0.270667\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 24.0000 0.789970
$$924$$ 0 0
$$925$$ −4.00000 −0.131519
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −34.0000 −1.11550 −0.557752 0.830008i $$-0.688336\pi$$
−0.557752 + 0.830008i $$0.688336\pi$$
$$930$$ 0 0
$$931$$ −14.0000 −0.458831
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 2.00000 0.0653372 0.0326686 0.999466i $$-0.489599\pi$$
0.0326686 + 0.999466i $$0.489599\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 6.00000 0.195594 0.0977972 0.995206i $$-0.468820\pi$$
0.0977972 + 0.995206i $$0.468820\pi$$
$$942$$ 0 0
$$943$$ −80.0000 −2.60516
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 8.00000 0.259965 0.129983 0.991516i $$-0.458508\pi$$
0.129983 + 0.991516i $$0.458508\pi$$
$$948$$ 0 0
$$949$$ −24.0000 −0.779073
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 2.00000 0.0647864 0.0323932 0.999475i $$-0.489687\pi$$
0.0323932 + 0.999475i $$0.489687\pi$$
$$954$$ 0 0
$$955$$ 6.00000 0.194155
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ −27.0000 −0.870968
$$962$$ 0 0
$$963$$ 12.0000 0.386695
$$964$$ 0 0
$$965$$ 4.00000 0.128765
$$966$$ 0 0
$$967$$ −40.0000 −1.28631 −0.643157 0.765735i $$-0.722376\pi$$
−0.643157 + 0.765735i $$0.722376\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −42.0000 −1.34784 −0.673922 0.738802i $$-0.735392\pi$$
−0.673922 + 0.738802i $$0.735392\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 6.00000 0.191957 0.0959785 0.995383i $$-0.469402\pi$$
0.0959785 + 0.995383i $$0.469402\pi$$
$$978$$ 0 0
$$979$$ −20.0000 −0.639203
$$980$$ 0 0
$$981$$ −18.0000 −0.574696
$$982$$ 0 0
$$983$$ −8.00000 −0.255160 −0.127580 0.991828i $$-0.540721\pi$$
−0.127580 + 0.991828i $$0.540721\pi$$
$$984$$ 0 0
$$985$$ 18.0000 0.573528
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −32.0000 −1.01754
$$990$$ 0 0
$$991$$ 36.0000 1.14358 0.571789 0.820401i $$-0.306250\pi$$
0.571789 + 0.820401i $$0.306250\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 8.00000 0.253617
$$996$$ 0 0
$$997$$ −20.0000 −0.633406 −0.316703 0.948525i $$-0.602576\pi$$
−0.316703 + 0.948525i $$0.602576\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.2.a.c.1.1 1
4.3 odd 2 580.2.a.a.1.1 1
8.3 odd 2 9280.2.a.n.1.1 1
8.5 even 2 9280.2.a.m.1.1 1
12.11 even 2 5220.2.a.n.1.1 1
20.3 even 4 2900.2.c.e.349.1 2
20.7 even 4 2900.2.c.e.349.2 2
20.19 odd 2 2900.2.a.c.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
580.2.a.a.1.1 1 4.3 odd 2
2320.2.a.c.1.1 1 1.1 even 1 trivial
2900.2.a.c.1.1 1 20.19 odd 2
2900.2.c.e.349.1 2 20.3 even 4
2900.2.c.e.349.2 2 20.7 even 4
5220.2.a.n.1.1 1 12.11 even 2
9280.2.a.m.1.1 1 8.5 even 2
9280.2.a.n.1.1 1 8.3 odd 2