gp: [N,k,chi] = [2320,1,Mod(47,2320)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2320, base_ring=CyclotomicField(28))
chi = DirichletCharacter(H, H._module([14, 0, 7, 11]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2320.47");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 2320 Z ) × \left(\mathbb{Z}/2320\mathbb{Z}\right)^\times ( Z / 2 3 2 0 Z ) × .
n n n
321 321 3 2 1
581 581 5 8 1
1857 1857 1 8 5 7
2031 2031 2 0 3 1
χ ( n ) \chi(n) χ ( n )
ζ 28 \zeta_{28} ζ 2 8
1 1 1
− ζ 28 7 -\zeta_{28}^{7} − ζ 2 8 7
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 1 n e w ( 2320 , [ χ ] ) S_{1}^{\mathrm{new}}(2320, [\chi]) S 1 n e w ( 2 3 2 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 − T 10 + ⋯ + 1 T^{12} - T^{10} + \cdots + 1 T 1 2 − T 1 0 + ⋯ + 1
T^12 - T^10 + T^8 - T^6 + T^4 - T^2 + 1
7 7 7
T 12 T^{12} T 1 2
T^12
11 11 1 1
T 12 T^{12} T 1 2
T^12
13 13 1 3
T 12 + 2 T 11 + ⋯ + 1 T^{12} + 2 T^{11} + \cdots + 1 T 1 2 + 2 T 1 1 + ⋯ + 1
T^12 + 2*T^11 + 2*T^10 - 4*T^8 - 22*T^7 - T^6 + 40*T^5 + 82*T^4 + 84*T^3 + 39*T^2 + 8*T + 1
17 17 1 7
( T 6 + 5 T 4 + 6 T 2 + 1 ) 2 (T^{6} + 5 T^{4} + 6 T^{2} + 1)^{2} ( T 6 + 5 T 4 + 6 T 2 + 1 ) 2
(T^6 + 5*T^4 + 6*T^2 + 1)^2
19 19 1 9
T 12 T^{12} T 1 2
T^12
23 23 2 3
T 12 T^{12} T 1 2
T^12
29 29 2 9
T 12 − T 10 + ⋯ + 1 T^{12} - T^{10} + \cdots + 1 T 1 2 − T 1 0 + ⋯ + 1
T^12 - T^10 + T^8 - T^6 + T^4 - T^2 + 1
31 31 3 1
T 12 T^{12} T 1 2
T^12
37 37 3 7
T 12 + 35 T 6 + ⋯ + 49 T^{12} + 35 T^{6} + \cdots + 49 T 1 2 + 3 5 T 6 + ⋯ + 4 9
T^12 + 35*T^6 + 98*T^4 + 49*T^2 + 49
41 41 4 1
T 12 − 2 T 11 + ⋯ + 1 T^{12} - 2 T^{11} + \cdots + 1 T 1 2 − 2 T 1 1 + ⋯ + 1
T^12 - 2*T^11 + 2*T^10 + 17*T^8 - 34*T^7 + 34*T^6 + 2*T^5 + 26*T^4 - 42*T^3 + 32*T^2 - 8*T + 1
43 43 4 3
T 12 T^{12} T 1 2
T^12
47 47 4 7
T 12 T^{12} T 1 2
T^12
53 53 5 3
T 12 + 2 T 11 + ⋯ + 1 T^{12} + 2 T^{11} + \cdots + 1 T 1 2 + 2 T 1 1 + ⋯ + 1
T^12 + 2*T^11 + 9*T^10 + 14*T^9 + 31*T^8 + 34*T^7 + 41*T^6 + 12*T^5 - 23*T^4 - 28*T^3 + 11*T^2 + 8*T + 1
59 59 5 9
T 12 T^{12} T 1 2
T^12
61 61 6 1
T 12 + 2 T 11 + ⋯ + 1 T^{12} + 2 T^{11} + \cdots + 1 T 1 2 + 2 T 1 1 + ⋯ + 1
T^12 + 2*T^11 + 2*T^10 - 4*T^8 - 22*T^7 - T^6 + 40*T^5 + 82*T^4 + 84*T^3 + 39*T^2 + 8*T + 1
67 67 6 7
T 12 T^{12} T 1 2
T^12
71 71 7 1
T 12 T^{12} T 1 2
T^12
73 73 7 3
( T 6 − 7 T 5 + 21 T 4 + ⋯ + 7 ) 2 (T^{6} - 7 T^{5} + 21 T^{4} + \cdots + 7)^{2} ( T 6 − 7 T 5 + 2 1 T 4 + ⋯ + 7 ) 2
(T^6 - 7*T^5 + 21*T^4 - 35*T^3 + 35*T^2 - 21*T + 7)^2
79 79 7 9
T 12 T^{12} T 1 2
T^12
83 83 8 3
T 12 T^{12} T 1 2
T^12
89 89 8 9
T 12 + 2 T 11 + ⋯ + 1 T^{12} + 2 T^{11} + \cdots + 1 T 1 2 + 2 T 1 1 + ⋯ + 1
T^12 + 2*T^11 + 2*T^10 + 14*T^9 + 24*T^8 + 20*T^7 + 55*T^6 + 68*T^5 + 26*T^4 + 14*T^3 + 11*T^2 - 6*T + 1
97 97 9 7
( T 6 + 5 T 5 + 11 T 4 + ⋯ + 1 ) 2 (T^{6} + 5 T^{5} + 11 T^{4} + \cdots + 1)^{2} ( T 6 + 5 T 5 + 1 1 T 4 + ⋯ + 1 ) 2
(T^6 + 5*T^5 + 11*T^4 + 13*T^3 + 9*T^2 + 3*T + 1)^2
show more
show less