Properties

Label 2320.1.fg.a
Level 23202320
Weight 11
Character orbit 2320.fg
Analytic conductor 1.1581.158
Analytic rank 00
Dimension 1212
Projective image D28D_{28}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2320,1,Mod(47,2320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2320, base_ring=CyclotomicField(28)) chi = DirichletCharacter(H, H._module([14, 0, 7, 11])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2320.47"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2320=24529 2320 = 2^{4} \cdot 5 \cdot 29
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2320.fg (of order 2828, degree 1212, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.157830829311.15783082931
Analytic rank: 00
Dimension: 1212
Coefficient field: Q(ζ28)\Q(\zeta_{28})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x10+x8x6+x4x2+1 x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D28D_{28}
Projective field: Galois closure of Q[x]/(x28)\mathbb{Q}[x]/(x^{28} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ289q5+ζ2812q9+(ζ2810+ζ28)q13+(ζ2811+ζ283)q17ζ284q25+ζ289q29+(ζ2813+ζ2811)q37++(ζ2821)q97+O(q100) q + \zeta_{28}^{9} q^{5} + \zeta_{28}^{12} q^{9} + ( - \zeta_{28}^{10} + \zeta_{28}) q^{13} + (\zeta_{28}^{11} + \zeta_{28}^{3}) q^{17} - \zeta_{28}^{4} q^{25} + \zeta_{28}^{9} q^{29} + (\zeta_{28}^{13} + \zeta_{28}^{11}) q^{37} + \cdots + (\zeta_{28}^{2} - 1) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q2q92q13+2q25+2q412q532q61+2q65+14q732q814q852q8910q97+O(q100) 12 q - 2 q^{9} - 2 q^{13} + 2 q^{25} + 2 q^{41} - 2 q^{53} - 2 q^{61} + 2 q^{65} + 14 q^{73} - 2 q^{81} - 4 q^{85} - 2 q^{89} - 10 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2320Z)×\left(\mathbb{Z}/2320\mathbb{Z}\right)^\times.

nn 321321 581581 18571857 20312031
χ(n)\chi(n) ζ28\zeta_{28} 11 ζ287-\zeta_{28}^{7} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
47.1
−0.781831 + 0.623490i
−0.433884 0.900969i
−0.781831 0.623490i
−0.974928 0.222521i
−0.974928 + 0.222521i
0.974928 0.222521i
0.974928 + 0.222521i
0.781831 + 0.623490i
0.433884 + 0.900969i
0.781831 0.623490i
0.433884 0.900969i
−0.433884 + 0.900969i
0 0 0 −0.974928 0.222521i 0 0 0 −0.222521 0.974928i 0
287.1 0 0 0 0.781831 + 0.623490i 0 0 0 0.623490 + 0.781831i 0
543.1 0 0 0 −0.974928 + 0.222521i 0 0 0 −0.222521 + 0.974928i 0
607.1 0 0 0 0.433884 0.900969i 0 0 0 −0.900969 + 0.433884i 0
623.1 0 0 0 0.433884 + 0.900969i 0 0 0 −0.900969 0.433884i 0
1407.1 0 0 0 −0.433884 0.900969i 0 0 0 −0.900969 0.433884i 0
1423.1 0 0 0 −0.433884 + 0.900969i 0 0 0 −0.900969 + 0.433884i 0
1487.1 0 0 0 0.974928 0.222521i 0 0 0 −0.222521 + 0.974928i 0
1743.1 0 0 0 −0.781831 0.623490i 0 0 0 0.623490 + 0.781831i 0
1983.1 0 0 0 0.974928 + 0.222521i 0 0 0 −0.222521 0.974928i 0
2127.1 0 0 0 −0.781831 + 0.623490i 0 0 0 0.623490 0.781831i 0
2223.1 0 0 0 0.781831 0.623490i 0 0 0 0.623490 0.781831i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 47.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
145.t even 28 1 inner
580.bm odd 28 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2320.1.fg.a yes 12
4.b odd 2 1 CM 2320.1.fg.a yes 12
5.c odd 4 1 2320.1.dr.a 12
20.e even 4 1 2320.1.dr.a 12
29.f odd 28 1 2320.1.dr.a 12
116.l even 28 1 2320.1.dr.a 12
145.t even 28 1 inner 2320.1.fg.a yes 12
580.bm odd 28 1 inner 2320.1.fg.a yes 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2320.1.dr.a 12 5.c odd 4 1
2320.1.dr.a 12 20.e even 4 1
2320.1.dr.a 12 29.f odd 28 1
2320.1.dr.a 12 116.l even 28 1
2320.1.fg.a yes 12 1.a even 1 1 trivial
2320.1.fg.a yes 12 4.b odd 2 1 CM
2320.1.fg.a yes 12 145.t even 28 1 inner
2320.1.fg.a yes 12 580.bm odd 28 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(2320,[χ])S_{1}^{\mathrm{new}}(2320, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12T10++1 T^{12} - T^{10} + \cdots + 1 Copy content Toggle raw display
77 T12 T^{12} Copy content Toggle raw display
1111 T12 T^{12} Copy content Toggle raw display
1313 T12+2T11++1 T^{12} + 2 T^{11} + \cdots + 1 Copy content Toggle raw display
1717 (T6+5T4+6T2+1)2 (T^{6} + 5 T^{4} + 6 T^{2} + 1)^{2} Copy content Toggle raw display
1919 T12 T^{12} Copy content Toggle raw display
2323 T12 T^{12} Copy content Toggle raw display
2929 T12T10++1 T^{12} - T^{10} + \cdots + 1 Copy content Toggle raw display
3131 T12 T^{12} Copy content Toggle raw display
3737 T12+35T6++49 T^{12} + 35 T^{6} + \cdots + 49 Copy content Toggle raw display
4141 T122T11++1 T^{12} - 2 T^{11} + \cdots + 1 Copy content Toggle raw display
4343 T12 T^{12} Copy content Toggle raw display
4747 T12 T^{12} Copy content Toggle raw display
5353 T12+2T11++1 T^{12} + 2 T^{11} + \cdots + 1 Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 T12+2T11++1 T^{12} + 2 T^{11} + \cdots + 1 Copy content Toggle raw display
6767 T12 T^{12} Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 (T67T5+21T4++7)2 (T^{6} - 7 T^{5} + 21 T^{4} + \cdots + 7)^{2} Copy content Toggle raw display
7979 T12 T^{12} Copy content Toggle raw display
8383 T12 T^{12} Copy content Toggle raw display
8989 T12+2T11++1 T^{12} + 2 T^{11} + \cdots + 1 Copy content Toggle raw display
9797 (T6+5T5+11T4++1)2 (T^{6} + 5 T^{5} + 11 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
show more
show less