# Properties

 Label 2320.1.bm.a Level $2320$ Weight $1$ Character orbit 2320.bm Analytic conductor $1.158$ Analytic rank $0$ Dimension $2$ Projective image $D_{4}$ RM discriminant 29 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2320,1,Mod(753,2320)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2320, base_ring=CyclotomicField(4))

chi = DirichletCharacter(H, H._module([0, 0, 3, 2]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2320.753");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2320 = 2^{4} \cdot 5 \cdot 29$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 2320.bm (of order $$4$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.15783082931$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 145) Projective image: $$D_{4}$$ Projective field: Galois closure of 4.0.3625.1 Artin image: $C_4\wr C_2$ Artin field: Galois closure of 8.4.22632992000.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q + i q^{5} + (i + 1) q^{7} - i q^{9} +O(q^{10})$$ q + z * q^5 + (z + 1) * q^7 - z * q^9 $$q + i q^{5} + (i + 1) q^{7} - i q^{9} + ( - i + 1) q^{13} + ( - i + 1) q^{23} - q^{25} + i q^{29} + (i - 1) q^{35} + q^{45} + i q^{49} + (i - 1) q^{53} + 2 i q^{59} + ( - i + 1) q^{63} + (i + 1) q^{65} + ( - i - 1) q^{67} - q^{81} + (i - 1) q^{83} + 2 q^{91} +O(q^{100})$$ q + z * q^5 + (z + 1) * q^7 - z * q^9 + (-z + 1) * q^13 + (-z + 1) * q^23 - q^25 + z * q^29 + (z - 1) * q^35 + q^45 + z * q^49 + (z - 1) * q^53 + 2*z * q^59 + (-z + 1) * q^63 + (z + 1) * q^65 + (-z - 1) * q^67 - q^81 + (z - 1) * q^83 + 2 * q^91 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{7}+O(q^{10})$$ 2 * q + 2 * q^7 $$2 q + 2 q^{7} + 2 q^{13} + 2 q^{23} - 2 q^{25} - 2 q^{35} + 2 q^{45} - 2 q^{53} + 2 q^{63} + 2 q^{65} - 2 q^{67} - 2 q^{81} - 2 q^{83} + 4 q^{91}+O(q^{100})$$ 2 * q + 2 * q^7 + 2 * q^13 + 2 * q^23 - 2 * q^25 - 2 * q^35 + 2 * q^45 - 2 * q^53 + 2 * q^63 + 2 * q^65 - 2 * q^67 - 2 * q^81 - 2 * q^83 + 4 * q^91

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2320\mathbb{Z}\right)^\times$$.

 $$n$$ $$321$$ $$581$$ $$1857$$ $$2031$$ $$\chi(n)$$ $$-1$$ $$1$$ $$i$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
753.1
 − 1.00000i 1.00000i
0 0 0 1.00000i 0 1.00000 1.00000i 0 1.00000i 0
1217.1 0 0 0 1.00000i 0 1.00000 + 1.00000i 0 1.00000i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 RM by $$\Q(\sqrt{29})$$
5.c odd 4 1 inner
145.h odd 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2320.1.bm.a 2
4.b odd 2 1 145.1.h.a 2
5.c odd 4 1 inner 2320.1.bm.a 2
12.b even 2 1 1305.1.o.a 2
20.d odd 2 1 725.1.h.a 2
20.e even 4 1 145.1.h.a 2
20.e even 4 1 725.1.h.a 2
29.b even 2 1 RM 2320.1.bm.a 2
60.l odd 4 1 1305.1.o.a 2
116.d odd 2 1 145.1.h.a 2
145.h odd 4 1 inner 2320.1.bm.a 2
348.b even 2 1 1305.1.o.a 2
580.e odd 2 1 725.1.h.a 2
580.o even 4 1 145.1.h.a 2
580.o even 4 1 725.1.h.a 2
1740.v odd 4 1 1305.1.o.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.1.h.a 2 4.b odd 2 1
145.1.h.a 2 20.e even 4 1
145.1.h.a 2 116.d odd 2 1
145.1.h.a 2 580.o even 4 1
725.1.h.a 2 20.d odd 2 1
725.1.h.a 2 20.e even 4 1
725.1.h.a 2 580.e odd 2 1
725.1.h.a 2 580.o even 4 1
1305.1.o.a 2 12.b even 2 1
1305.1.o.a 2 60.l odd 4 1
1305.1.o.a 2 348.b even 2 1
1305.1.o.a 2 1740.v odd 4 1
2320.1.bm.a 2 1.a even 1 1 trivial
2320.1.bm.a 2 5.c odd 4 1 inner
2320.1.bm.a 2 29.b even 2 1 RM
2320.1.bm.a 2 145.h odd 4 1 inner

## Hecke kernels

This newform subspace is the entire newspace $$S_{1}^{\mathrm{new}}(2320, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2} + 1$$
$7$ $$T^{2} - 2T + 2$$
$11$ $$T^{2}$$
$13$ $$T^{2} - 2T + 2$$
$17$ $$T^{2}$$
$19$ $$T^{2}$$
$23$ $$T^{2} - 2T + 2$$
$29$ $$T^{2} + 1$$
$31$ $$T^{2}$$
$37$ $$T^{2}$$
$41$ $$T^{2}$$
$43$ $$T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2} + 2T + 2$$
$59$ $$T^{2} + 4$$
$61$ $$T^{2}$$
$67$ $$T^{2} + 2T + 2$$
$71$ $$T^{2}$$
$73$ $$T^{2}$$
$79$ $$T^{2}$$
$83$ $$T^{2} + 2T + 2$$
$89$ $$T^{2}$$
$97$ $$T^{2}$$