Properties

Label 2312.1.f.c.579.3
Level $2312$
Weight $1$
Character 2312.579
Self dual yes
Analytic conductor $1.154$
Analytic rank $0$
Dimension $4$
Projective image $D_{8}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,1,Mod(579,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.579"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2312.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.15383830921\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.0.1680747204608.3

Embedding invariants

Embedding label 579.3
Root \(-0.765367\) of defining polynomial
Character \(\chi\) \(=\) 2312.579

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.765367 q^{3} +1.00000 q^{4} -0.765367 q^{6} -1.00000 q^{8} -0.414214 q^{9} +1.84776 q^{11} +0.765367 q^{12} +1.00000 q^{16} +0.414214 q^{18} -1.84776 q^{22} -0.765367 q^{24} +1.00000 q^{25} -1.08239 q^{27} -1.00000 q^{32} +1.41421 q^{33} -0.414214 q^{36} -1.84776 q^{41} +1.41421 q^{43} +1.84776 q^{44} +0.765367 q^{48} +1.00000 q^{49} -1.00000 q^{50} +1.08239 q^{54} +1.41421 q^{59} +1.00000 q^{64} -1.41421 q^{66} -1.41421 q^{67} +0.414214 q^{72} +1.84776 q^{73} +0.765367 q^{75} -0.414214 q^{81} +1.84776 q^{82} -1.41421 q^{83} -1.41421 q^{86} -1.84776 q^{88} +1.41421 q^{89} -0.765367 q^{96} -0.765367 q^{97} -1.00000 q^{98} -0.765367 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 4 q^{8} + 4 q^{9} + 4 q^{16} - 4 q^{18} + 4 q^{25} - 4 q^{32} + 4 q^{36} + 4 q^{49} - 4 q^{50} + 4 q^{64} - 4 q^{72} + 4 q^{81} - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −1.00000
\(3\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(4\) 1.00000 1.00000
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) −0.765367 −0.765367
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) −1.00000 −1.00000
\(9\) −0.414214 −0.414214
\(10\) 0 0
\(11\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(12\) 0.765367 0.765367
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 1.00000
\(17\) 0 0
\(18\) 0.414214 0.414214
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.84776 −1.84776
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −0.765367 −0.765367
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) −1.08239 −1.08239
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −1.00000 −1.00000
\(33\) 1.41421 1.41421
\(34\) 0 0
\(35\) 0 0
\(36\) −0.414214 −0.414214
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(42\) 0 0
\(43\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 1.84776 1.84776
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0.765367 0.765367
\(49\) 1.00000 1.00000
\(50\) −1.00000 −1.00000
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 1.08239 1.08239
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) −1.41421 −1.41421
\(67\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.414214 0.414214
\(73\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(74\) 0 0
\(75\) 0.765367 0.765367
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −0.414214 −0.414214
\(82\) 1.84776 1.84776
\(83\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.41421 −1.41421
\(87\) 0 0
\(88\) −1.84776 −1.84776
\(89\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −0.765367 −0.765367
\(97\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(98\) −1.00000 −1.00000
\(99\) −0.765367 −0.765367
\(100\) 1.00000 1.00000
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(108\) −1.08239 −1.08239
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.41421 −1.41421
\(119\) 0 0
\(120\) 0 0
\(121\) 2.41421 2.41421
\(122\) 0 0
\(123\) −1.41421 −1.41421
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −1.00000 −1.00000
\(129\) 1.08239 1.08239
\(130\) 0 0
\(131\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(132\) 1.41421 1.41421
\(133\) 0 0
\(134\) 1.41421 1.41421
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.414214 −0.414214
\(145\) 0 0
\(146\) −1.84776 −1.84776
\(147\) 0.765367 0.765367
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) −0.765367 −0.765367
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.414214 0.414214
\(163\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(164\) −1.84776 −1.84776
\(165\) 0 0
\(166\) 1.41421 1.41421
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 1.41421 1.41421
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.84776 1.84776
\(177\) 1.08239 1.08239
\(178\) −1.41421 −1.41421
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0.765367 0.765367
\(193\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(194\) 0.765367 0.765367
\(195\) 0 0
\(196\) 1.00000 1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0.765367 0.765367
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −1.00000 −1.00000
\(201\) −1.08239 −1.08239
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.765367 0.765367
\(215\) 0 0
\(216\) 1.08239 1.08239
\(217\) 0 0
\(218\) 0 0
\(219\) 1.41421 1.41421
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −0.414214 −0.414214
\(226\) 0.765367 0.765367
\(227\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.41421 1.41421
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(242\) −2.41421 −2.41421
\(243\) 0.765367 0.765367
\(244\) 0 0
\(245\) 0 0
\(246\) 1.41421 1.41421
\(247\) 0 0
\(248\) 0 0
\(249\) −1.08239 −1.08239
\(250\) 0 0
\(251\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(258\) −1.08239 −1.08239
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.84776 1.84776
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) −1.41421 −1.41421
\(265\) 0 0
\(266\) 0 0
\(267\) 1.08239 1.08239
\(268\) −1.41421 −1.41421
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.84776 1.84776
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0.765367 0.765367
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.414214 0.414214
\(289\) 0 0
\(290\) 0 0
\(291\) −0.585786 −0.585786
\(292\) 1.84776 1.84776
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) −0.765367 −0.765367
\(295\) 0 0
\(296\) 0 0
\(297\) −2.00000 −2.00000
\(298\) 0 0
\(299\) 0 0
\(300\) 0.765367 0.765367
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −0.585786 −0.585786
\(322\) 0 0
\(323\) 0 0
\(324\) −0.414214 −0.414214
\(325\) 0 0
\(326\) 0.765367 0.765367
\(327\) 0 0
\(328\) 1.84776 1.84776
\(329\) 0 0
\(330\) 0 0
\(331\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(332\) −1.41421 −1.41421
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(338\) −1.00000 −1.00000
\(339\) −0.585786 −0.585786
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −1.41421 −1.41421
\(345\) 0 0
\(346\) 0 0
\(347\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.84776 −1.84776
\(353\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) −1.08239 −1.08239
\(355\) 0 0
\(356\) 1.41421 1.41421
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −1.00000 −1.00000
\(362\) 0 0
\(363\) 1.84776 1.84776
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0.765367 0.765367
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −0.765367 −0.765367
\(385\) 0 0
\(386\) −0.765367 −0.765367
\(387\) −0.585786 −0.585786
\(388\) −0.765367 −0.765367
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 −1.00000
\(393\) −1.41421 −1.41421
\(394\) 0 0
\(395\) 0 0
\(396\) −0.765367 −0.765367
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(402\) 1.08239 1.08239
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.585786 −0.585786
\(418\) 0 0
\(419\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) −1.84776 −1.84776
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.765367 −0.765367
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −1.08239 −1.08239
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −1.41421 −1.41421
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −0.414214 −0.414214
\(442\) 0 0
\(443\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(450\) 0.414214 0.414214
\(451\) −3.41421 −3.41421
\(452\) −0.765367 −0.765367
\(453\) 0 0
\(454\) 0.765367 0.765367
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.765367 −0.765367
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −1.41421 −1.41421
\(473\) 2.61313 2.61313
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.84776 1.84776
\(483\) 0 0
\(484\) 2.41421 2.41421
\(485\) 0 0
\(486\) −0.765367 −0.765367
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) −0.585786 −0.585786
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) −1.41421 −1.41421
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 1.08239 1.08239
\(499\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1.41421 1.41421
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.765367 0.765367
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 1.41421 1.41421
\(515\) 0 0
\(516\) 1.08239 1.08239
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(522\) 0 0
\(523\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) −1.84776 −1.84776
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 1.41421 1.41421
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) −0.585786 −0.585786
\(532\) 0 0
\(533\) 0 0
\(534\) −1.08239 −1.08239
\(535\) 0 0
\(536\) 1.41421 1.41421
\(537\) 0 0
\(538\) 0 0
\(539\) 1.84776 1.84776
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −1.84776 −1.84776
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −0.765367 −0.765367
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.84776 1.84776
\(567\) 0 0
\(568\) 0 0
\(569\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(570\) 0 0
\(571\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.414214 −0.414214
\(577\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0.585786 0.585786
\(580\) 0 0
\(581\) 0 0
\(582\) 0.585786 0.585786
\(583\) 0 0
\(584\) −1.84776 −1.84776
\(585\) 0 0
\(586\) 0 0
\(587\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(588\) 0.765367 0.765367
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 2.00000 2.00000
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −0.765367 −0.765367
\(601\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(602\) 0 0
\(603\) 0.585786 0.585786
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 2.00000 2.00000
\(615\) 0 0
\(616\) 0 0
\(617\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(618\) 0 0
\(619\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) −0.765367 −0.765367
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 1.41421 1.41421
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(642\) 0.585786 0.585786
\(643\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0.414214 0.414214
\(649\) 2.61313 2.61313
\(650\) 0 0
\(651\) 0 0
\(652\) −0.765367 −0.765367
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.84776 −1.84776
\(657\) −0.765367 −0.765367
\(658\) 0 0
\(659\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 1.41421 1.41421
\(663\) 0 0
\(664\) 1.41421 1.41421
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(674\) 0.765367 0.765367
\(675\) −1.08239 −1.08239
\(676\) 1.00000 1.00000
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0.585786 0.585786
\(679\) 0 0
\(680\) 0 0
\(681\) −0.585786 −0.585786
\(682\) 0 0
\(683\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 1.41421 1.41421
\(689\) 0 0
\(690\) 0 0
\(691\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 1.84776 1.84776
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0.585786 0.585786
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.84776 1.84776
\(705\) 0 0
\(706\) −1.41421 −1.41421
\(707\) 0 0
\(708\) 1.08239 1.08239
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.41421 −1.41421
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000 1.00000
\(723\) −1.41421 −1.41421
\(724\) 0 0
\(725\) 0 0
\(726\) −1.84776 −1.84776
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.61313 −2.61313
\(738\) −0.765367 −0.765367
\(739\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.585786 0.585786
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) −1.08239 −1.08239
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 1.84776 1.84776
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.765367 0.765367
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −1.08239 −1.08239
\(772\) 0.765367 0.765367
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0.585786 0.585786
\(775\) 0 0
\(776\) 0.765367 0.765367
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) 1.41421 1.41421
\(787\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.765367 0.765367
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.00000 −1.00000
\(801\) −0.585786 −0.585786
\(802\) −0.765367 −0.765367
\(803\) 3.41421 3.41421
\(804\) −1.08239 −1.08239
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(810\) 0 0
\(811\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 1.41421 1.41421
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 1.41421 1.41421
\(826\) 0 0
\(827\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0.585786 0.585786
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0.765367 0.765367
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 1.84776 1.84776
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.41421 −1.41421
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.765367 0.765367
\(857\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(858\) 0 0
\(859\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 1.08239 1.08239
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0.317025 0.317025
\(874\) 0 0
\(875\) 0 0
\(876\) 1.41421 1.41421
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(882\) 0.414214 0.414214
\(883\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.41421 −1.41421
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.765367 −0.765367
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0.765367 0.765367
\(899\) 0 0
\(900\) −0.414214 −0.414214
\(901\) 0 0
\(902\) 3.41421 3.41421
\(903\) 0 0
\(904\) 0.765367 0.765367
\(905\) 0 0
\(906\) 0 0
\(907\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(908\) −0.765367 −0.765367
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −2.61313 −2.61313
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −1.53073 −1.53073
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.765367 0.765367
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0.585786 0.585786
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.41421 1.41421
\(945\) 0 0
\(946\) −2.61313 −2.61313
\(947\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0.317025 0.317025
\(964\) −1.84776 −1.84776
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −2.41421 −2.41421
\(969\) 0 0
\(970\) 0 0
\(971\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(972\) 0.765367 0.765367
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(978\) 0.585786 0.585786
\(979\) 2.61313 2.61313
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 1.41421 1.41421
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −1.08239 −1.08239
\(994\) 0 0
\(995\) 0 0
\(996\) −1.08239 −1.08239
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 1.84776 1.84776
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.1.f.c.579.3 4
8.3 odd 2 CM 2312.1.f.c.579.3 4
17.2 even 8 2312.1.j.c.1483.3 8
17.3 odd 16 136.1.p.a.43.1 yes 4
17.4 even 4 2312.1.e.b.1155.2 4
17.5 odd 16 2312.1.p.a.1555.1 4
17.6 odd 16 136.1.p.a.19.1 4
17.7 odd 16 2312.1.p.a.1579.1 4
17.8 even 8 2312.1.j.c.251.2 8
17.9 even 8 2312.1.j.c.251.3 8
17.10 odd 16 2312.1.p.d.1579.1 4
17.11 odd 16 2312.1.p.b.155.1 4
17.12 odd 16 2312.1.p.d.1555.1 4
17.13 even 4 2312.1.e.b.1155.3 4
17.14 odd 16 2312.1.p.b.179.1 4
17.15 even 8 2312.1.j.c.1483.2 8
17.16 even 2 inner 2312.1.f.c.579.2 4
51.20 even 16 1224.1.bv.a.451.1 4
51.23 even 16 1224.1.bv.a.19.1 4
68.3 even 16 544.1.bl.a.111.1 4
68.23 even 16 544.1.bl.a.495.1 4
85.3 even 16 3400.1.br.a.2899.1 4
85.23 even 16 3400.1.br.b.699.1 4
85.37 even 16 3400.1.br.b.2899.1 4
85.54 odd 16 3400.1.ce.a.451.1 4
85.57 even 16 3400.1.br.a.699.1 4
85.74 odd 16 3400.1.ce.a.1651.1 4
136.3 even 16 136.1.p.a.43.1 yes 4
136.11 even 16 2312.1.p.b.155.1 4
136.19 odd 8 2312.1.j.c.1483.3 8
136.27 even 16 2312.1.p.d.1579.1 4
136.37 odd 16 544.1.bl.a.111.1 4
136.43 odd 8 2312.1.j.c.251.3 8
136.59 odd 8 2312.1.j.c.251.2 8
136.67 odd 2 inner 2312.1.f.c.579.2 4
136.75 even 16 2312.1.p.a.1579.1 4
136.83 odd 8 2312.1.j.c.1483.2 8
136.91 even 16 136.1.p.a.19.1 4
136.99 even 16 2312.1.p.b.179.1 4
136.107 even 16 2312.1.p.a.1555.1 4
136.115 odd 4 2312.1.e.b.1155.3 4
136.123 odd 4 2312.1.e.b.1155.2 4
136.125 odd 16 544.1.bl.a.495.1 4
136.131 even 16 2312.1.p.d.1555.1 4
408.227 odd 16 1224.1.bv.a.19.1 4
408.275 odd 16 1224.1.bv.a.451.1 4
680.3 odd 16 3400.1.br.a.2899.1 4
680.139 even 16 3400.1.ce.a.451.1 4
680.227 odd 16 3400.1.br.a.699.1 4
680.363 odd 16 3400.1.br.b.699.1 4
680.499 even 16 3400.1.ce.a.1651.1 4
680.547 odd 16 3400.1.br.b.2899.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.1.p.a.19.1 4 17.6 odd 16
136.1.p.a.19.1 4 136.91 even 16
136.1.p.a.43.1 yes 4 17.3 odd 16
136.1.p.a.43.1 yes 4 136.3 even 16
544.1.bl.a.111.1 4 68.3 even 16
544.1.bl.a.111.1 4 136.37 odd 16
544.1.bl.a.495.1 4 68.23 even 16
544.1.bl.a.495.1 4 136.125 odd 16
1224.1.bv.a.19.1 4 51.23 even 16
1224.1.bv.a.19.1 4 408.227 odd 16
1224.1.bv.a.451.1 4 51.20 even 16
1224.1.bv.a.451.1 4 408.275 odd 16
2312.1.e.b.1155.2 4 17.4 even 4
2312.1.e.b.1155.2 4 136.123 odd 4
2312.1.e.b.1155.3 4 17.13 even 4
2312.1.e.b.1155.3 4 136.115 odd 4
2312.1.f.c.579.2 4 17.16 even 2 inner
2312.1.f.c.579.2 4 136.67 odd 2 inner
2312.1.f.c.579.3 4 1.1 even 1 trivial
2312.1.f.c.579.3 4 8.3 odd 2 CM
2312.1.j.c.251.2 8 17.8 even 8
2312.1.j.c.251.2 8 136.59 odd 8
2312.1.j.c.251.3 8 17.9 even 8
2312.1.j.c.251.3 8 136.43 odd 8
2312.1.j.c.1483.2 8 17.15 even 8
2312.1.j.c.1483.2 8 136.83 odd 8
2312.1.j.c.1483.3 8 17.2 even 8
2312.1.j.c.1483.3 8 136.19 odd 8
2312.1.p.a.1555.1 4 17.5 odd 16
2312.1.p.a.1555.1 4 136.107 even 16
2312.1.p.a.1579.1 4 17.7 odd 16
2312.1.p.a.1579.1 4 136.75 even 16
2312.1.p.b.155.1 4 17.11 odd 16
2312.1.p.b.155.1 4 136.11 even 16
2312.1.p.b.179.1 4 17.14 odd 16
2312.1.p.b.179.1 4 136.99 even 16
2312.1.p.d.1555.1 4 17.12 odd 16
2312.1.p.d.1555.1 4 136.131 even 16
2312.1.p.d.1579.1 4 17.10 odd 16
2312.1.p.d.1579.1 4 136.27 even 16
3400.1.br.a.699.1 4 85.57 even 16
3400.1.br.a.699.1 4 680.227 odd 16
3400.1.br.a.2899.1 4 85.3 even 16
3400.1.br.a.2899.1 4 680.3 odd 16
3400.1.br.b.699.1 4 85.23 even 16
3400.1.br.b.699.1 4 680.363 odd 16
3400.1.br.b.2899.1 4 85.37 even 16
3400.1.br.b.2899.1 4 680.547 odd 16
3400.1.ce.a.451.1 4 85.54 odd 16
3400.1.ce.a.451.1 4 680.139 even 16
3400.1.ce.a.1651.1 4 85.74 odd 16
3400.1.ce.a.1651.1 4 680.499 even 16