Properties

Label 2310.2.a.l.1.1
Level 2310
Weight 2
Character 2310.1
Self dual Yes
Analytic conductor 18.445
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2310.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(18.4454428669\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\)
Character \(\chi\) = 2310.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} +1.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} +1.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} -1.00000 q^{11} +1.00000 q^{12} +2.00000 q^{13} -1.00000 q^{14} +1.00000 q^{15} +1.00000 q^{16} +6.00000 q^{17} -1.00000 q^{18} -4.00000 q^{19} +1.00000 q^{20} +1.00000 q^{21} +1.00000 q^{22} -1.00000 q^{24} +1.00000 q^{25} -2.00000 q^{26} +1.00000 q^{27} +1.00000 q^{28} +6.00000 q^{29} -1.00000 q^{30} -4.00000 q^{31} -1.00000 q^{32} -1.00000 q^{33} -6.00000 q^{34} +1.00000 q^{35} +1.00000 q^{36} +2.00000 q^{37} +4.00000 q^{38} +2.00000 q^{39} -1.00000 q^{40} +6.00000 q^{41} -1.00000 q^{42} -4.00000 q^{43} -1.00000 q^{44} +1.00000 q^{45} +1.00000 q^{48} +1.00000 q^{49} -1.00000 q^{50} +6.00000 q^{51} +2.00000 q^{52} +6.00000 q^{53} -1.00000 q^{54} -1.00000 q^{55} -1.00000 q^{56} -4.00000 q^{57} -6.00000 q^{58} +1.00000 q^{60} +2.00000 q^{61} +4.00000 q^{62} +1.00000 q^{63} +1.00000 q^{64} +2.00000 q^{65} +1.00000 q^{66} -4.00000 q^{67} +6.00000 q^{68} -1.00000 q^{70} -1.00000 q^{72} +2.00000 q^{73} -2.00000 q^{74} +1.00000 q^{75} -4.00000 q^{76} -1.00000 q^{77} -2.00000 q^{78} +8.00000 q^{79} +1.00000 q^{80} +1.00000 q^{81} -6.00000 q^{82} +12.0000 q^{83} +1.00000 q^{84} +6.00000 q^{85} +4.00000 q^{86} +6.00000 q^{87} +1.00000 q^{88} +6.00000 q^{89} -1.00000 q^{90} +2.00000 q^{91} -4.00000 q^{93} -4.00000 q^{95} -1.00000 q^{96} +2.00000 q^{97} -1.00000 q^{98} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −1.00000 −0.408248
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) −1.00000 −0.301511
\(12\) 1.00000 0.288675
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −1.00000 −0.267261
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) −1.00000 −0.235702
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 1.00000 0.223607
\(21\) 1.00000 0.218218
\(22\) 1.00000 0.213201
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −1.00000 −0.204124
\(25\) 1.00000 0.200000
\(26\) −2.00000 −0.392232
\(27\) 1.00000 0.192450
\(28\) 1.00000 0.188982
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) −1.00000 −0.182574
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.00000 −0.174078
\(34\) −6.00000 −1.02899
\(35\) 1.00000 0.169031
\(36\) 1.00000 0.166667
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 4.00000 0.648886
\(39\) 2.00000 0.320256
\(40\) −1.00000 −0.158114
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) −1.00000 −0.154303
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −1.00000 −0.150756
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.00000 0.144338
\(49\) 1.00000 0.142857
\(50\) −1.00000 −0.141421
\(51\) 6.00000 0.840168
\(52\) 2.00000 0.277350
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) −1.00000 −0.136083
\(55\) −1.00000 −0.134840
\(56\) −1.00000 −0.133631
\(57\) −4.00000 −0.529813
\(58\) −6.00000 −0.787839
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 1.00000 0.129099
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 4.00000 0.508001
\(63\) 1.00000 0.125988
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) 1.00000 0.123091
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) −1.00000 −0.119523
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −1.00000 −0.117851
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −2.00000 −0.232495
\(75\) 1.00000 0.115470
\(76\) −4.00000 −0.458831
\(77\) −1.00000 −0.113961
\(78\) −2.00000 −0.226455
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 1.00000 0.111803
\(81\) 1.00000 0.111111
\(82\) −6.00000 −0.662589
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 1.00000 0.109109
\(85\) 6.00000 0.650791
\(86\) 4.00000 0.431331
\(87\) 6.00000 0.643268
\(88\) 1.00000 0.106600
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) −1.00000 −0.105409
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) −4.00000 −0.414781
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) −1.00000 −0.102062
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) −1.00000 −0.101015
\(99\) −1.00000 −0.100504
\(100\) 1.00000 0.100000
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) −6.00000 −0.594089
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) −2.00000 −0.196116
\(105\) 1.00000 0.0975900
\(106\) −6.00000 −0.582772
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 1.00000 0.0962250
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 1.00000 0.0953463
\(111\) 2.00000 0.189832
\(112\) 1.00000 0.0944911
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 4.00000 0.374634
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 6.00000 0.550019
\(120\) −1.00000 −0.0912871
\(121\) 1.00000 0.0909091
\(122\) −2.00000 −0.181071
\(123\) 6.00000 0.541002
\(124\) −4.00000 −0.359211
\(125\) 1.00000 0.0894427
\(126\) −1.00000 −0.0890871
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −4.00000 −0.352180
\(130\) −2.00000 −0.175412
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) −1.00000 −0.0870388
\(133\) −4.00000 −0.346844
\(134\) 4.00000 0.345547
\(135\) 1.00000 0.0860663
\(136\) −6.00000 −0.514496
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 1.00000 0.0845154
\(141\) 0 0
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 1.00000 0.0833333
\(145\) 6.00000 0.498273
\(146\) −2.00000 −0.165521
\(147\) 1.00000 0.0824786
\(148\) 2.00000 0.164399
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) −1.00000 −0.0816497
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 4.00000 0.324443
\(153\) 6.00000 0.485071
\(154\) 1.00000 0.0805823
\(155\) −4.00000 −0.321288
\(156\) 2.00000 0.160128
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) −8.00000 −0.636446
\(159\) 6.00000 0.475831
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 6.00000 0.468521
\(165\) −1.00000 −0.0778499
\(166\) −12.0000 −0.931381
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) −1.00000 −0.0771517
\(169\) −9.00000 −0.692308
\(170\) −6.00000 −0.460179
\(171\) −4.00000 −0.305888
\(172\) −4.00000 −0.304997
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) −6.00000 −0.454859
\(175\) 1.00000 0.0755929
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 1.00000 0.0745356
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −2.00000 −0.148250
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 2.00000 0.147043
\(186\) 4.00000 0.293294
\(187\) −6.00000 −0.438763
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 4.00000 0.290191
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 1.00000 0.0721688
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) −2.00000 −0.143592
\(195\) 2.00000 0.143223
\(196\) 1.00000 0.0714286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 1.00000 0.0710669
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −4.00000 −0.282138
\(202\) 6.00000 0.422159
\(203\) 6.00000 0.421117
\(204\) 6.00000 0.420084
\(205\) 6.00000 0.419058
\(206\) 16.0000 1.11477
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 4.00000 0.276686
\(210\) −1.00000 −0.0690066
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) −4.00000 −0.272798
\(216\) −1.00000 −0.0680414
\(217\) −4.00000 −0.271538
\(218\) −2.00000 −0.135457
\(219\) 2.00000 0.135147
\(220\) −1.00000 −0.0674200
\(221\) 12.0000 0.807207
\(222\) −2.00000 −0.134231
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 1.00000 0.0666667
\(226\) −6.00000 −0.399114
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) −4.00000 −0.264906
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) −1.00000 −0.0657952
\(232\) −6.00000 −0.393919
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) 0 0
\(237\) 8.00000 0.519656
\(238\) −6.00000 −0.388922
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 1.00000 0.0645497
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 1.00000 0.0641500
\(244\) 2.00000 0.128037
\(245\) 1.00000 0.0638877
\(246\) −6.00000 −0.382546
\(247\) −8.00000 −0.509028
\(248\) 4.00000 0.254000
\(249\) 12.0000 0.760469
\(250\) −1.00000 −0.0632456
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 1.00000 0.0629941
\(253\) 0 0
\(254\) 16.0000 1.00393
\(255\) 6.00000 0.375735
\(256\) 1.00000 0.0625000
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 4.00000 0.249029
\(259\) 2.00000 0.124274
\(260\) 2.00000 0.124035
\(261\) 6.00000 0.371391
\(262\) −12.0000 −0.741362
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 1.00000 0.0615457
\(265\) 6.00000 0.368577
\(266\) 4.00000 0.245256
\(267\) 6.00000 0.367194
\(268\) −4.00000 −0.244339
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) −1.00000 −0.0608581
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 6.00000 0.363803
\(273\) 2.00000 0.121046
\(274\) 18.0000 1.08742
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) −20.0000 −1.19952
\(279\) −4.00000 −0.239474
\(280\) −1.00000 −0.0597614
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 32.0000 1.90220 0.951101 0.308879i \(-0.0999539\pi\)
0.951101 + 0.308879i \(0.0999539\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 2.00000 0.118262
\(287\) 6.00000 0.354169
\(288\) −1.00000 −0.0589256
\(289\) 19.0000 1.11765
\(290\) −6.00000 −0.352332
\(291\) 2.00000 0.117242
\(292\) 2.00000 0.117041
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) −1.00000 −0.0583212
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) −1.00000 −0.0580259
\(298\) −6.00000 −0.347571
\(299\) 0 0
\(300\) 1.00000 0.0577350
\(301\) −4.00000 −0.230556
\(302\) −8.00000 −0.460348
\(303\) −6.00000 −0.344691
\(304\) −4.00000 −0.229416
\(305\) 2.00000 0.114520
\(306\) −6.00000 −0.342997
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) −1.00000 −0.0569803
\(309\) −16.0000 −0.910208
\(310\) 4.00000 0.227185
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −2.00000 −0.113228
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 10.0000 0.564333
\(315\) 1.00000 0.0563436
\(316\) 8.00000 0.450035
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) −6.00000 −0.336463
\(319\) −6.00000 −0.335936
\(320\) 1.00000 0.0559017
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) −24.0000 −1.33540
\(324\) 1.00000 0.0555556
\(325\) 2.00000 0.110940
\(326\) 4.00000 0.221540
\(327\) 2.00000 0.110600
\(328\) −6.00000 −0.331295
\(329\) 0 0
\(330\) 1.00000 0.0550482
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 12.0000 0.658586
\(333\) 2.00000 0.109599
\(334\) −12.0000 −0.656611
\(335\) −4.00000 −0.218543
\(336\) 1.00000 0.0545545
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 9.00000 0.489535
\(339\) 6.00000 0.325875
\(340\) 6.00000 0.325396
\(341\) 4.00000 0.216612
\(342\) 4.00000 0.216295
\(343\) 1.00000 0.0539949
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 6.00000 0.321634
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) −1.00000 −0.0534522
\(351\) 2.00000 0.106752
\(352\) 1.00000 0.0533002
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 6.00000 0.317554
\(358\) −12.0000 −0.634220
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) −1.00000 −0.0527046
\(361\) −3.00000 −0.157895
\(362\) −2.00000 −0.105118
\(363\) 1.00000 0.0524864
\(364\) 2.00000 0.104828
\(365\) 2.00000 0.104685
\(366\) −2.00000 −0.104542
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) −2.00000 −0.103975
\(371\) 6.00000 0.311504
\(372\) −4.00000 −0.207390
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 6.00000 0.310253
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) −1.00000 −0.0514344
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) −4.00000 −0.205196
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −1.00000 −0.0509647
\(386\) −14.0000 −0.712581
\(387\) −4.00000 −0.203331
\(388\) 2.00000 0.101535
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) −2.00000 −0.101274
\(391\) 0 0
\(392\) −1.00000 −0.0505076
\(393\) 12.0000 0.605320
\(394\) 6.00000 0.302276
\(395\) 8.00000 0.402524
\(396\) −1.00000 −0.0502519
\(397\) −34.0000 −1.70641 −0.853206 0.521575i \(-0.825345\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 4.00000 0.200502
\(399\) −4.00000 −0.200250
\(400\) 1.00000 0.0500000
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 4.00000 0.199502
\(403\) −8.00000 −0.398508
\(404\) −6.00000 −0.298511
\(405\) 1.00000 0.0496904
\(406\) −6.00000 −0.297775
\(407\) −2.00000 −0.0991363
\(408\) −6.00000 −0.297044
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) −6.00000 −0.296319
\(411\) −18.0000 −0.887875
\(412\) −16.0000 −0.788263
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) −2.00000 −0.0980581
\(417\) 20.0000 0.979404
\(418\) −4.00000 −0.195646
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 1.00000 0.0487950
\(421\) 38.0000 1.85201 0.926003 0.377515i \(-0.123221\pi\)
0.926003 + 0.377515i \(0.123221\pi\)
\(422\) −8.00000 −0.389434
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) 6.00000 0.291043
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) −12.0000 −0.580042
\(429\) −2.00000 −0.0965609
\(430\) 4.00000 0.192897
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 1.00000 0.0481125
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 4.00000 0.192006
\(435\) 6.00000 0.287678
\(436\) 2.00000 0.0957826
\(437\) 0 0
\(438\) −2.00000 −0.0955637
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 1.00000 0.0476731
\(441\) 1.00000 0.0476190
\(442\) −12.0000 −0.570782
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 2.00000 0.0949158
\(445\) 6.00000 0.284427
\(446\) −8.00000 −0.378811
\(447\) 6.00000 0.283790
\(448\) 1.00000 0.0472456
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) −1.00000 −0.0471405
\(451\) −6.00000 −0.282529
\(452\) 6.00000 0.282216
\(453\) 8.00000 0.375873
\(454\) 12.0000 0.563188
\(455\) 2.00000 0.0937614
\(456\) 4.00000 0.187317
\(457\) −34.0000 −1.59045 −0.795226 0.606313i \(-0.792648\pi\)
−0.795226 + 0.606313i \(0.792648\pi\)
\(458\) 22.0000 1.02799
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 1.00000 0.0465242
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 6.00000 0.278543
\(465\) −4.00000 −0.185496
\(466\) −6.00000 −0.277945
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 2.00000 0.0924500
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) 0 0
\(473\) 4.00000 0.183920
\(474\) −8.00000 −0.367452
\(475\) −4.00000 −0.183533
\(476\) 6.00000 0.275010
\(477\) 6.00000 0.274721
\(478\) −12.0000 −0.548867
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) −1.00000 −0.0456435
\(481\) 4.00000 0.182384
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 2.00000 0.0908153
\(486\) −1.00000 −0.0453609
\(487\) −4.00000 −0.181257 −0.0906287 0.995885i \(-0.528888\pi\)
−0.0906287 + 0.995885i \(0.528888\pi\)
\(488\) −2.00000 −0.0905357
\(489\) −4.00000 −0.180886
\(490\) −1.00000 −0.0451754
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) 6.00000 0.270501
\(493\) 36.0000 1.62136
\(494\) 8.00000 0.359937
\(495\) −1.00000 −0.0449467
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) −12.0000 −0.537733
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 1.00000 0.0447214
\(501\) 12.0000 0.536120
\(502\) 0 0
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) −1.00000 −0.0445435
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) −16.0000 −0.709885
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) −6.00000 −0.265684
\(511\) 2.00000 0.0884748
\(512\) −1.00000 −0.0441942
\(513\) −4.00000 −0.176604
\(514\) 6.00000 0.264649
\(515\) −16.0000 −0.705044
\(516\) −4.00000 −0.176090
\(517\) 0 0
\(518\) −2.00000 −0.0878750
\(519\) 6.00000 0.263371
\(520\) −2.00000 −0.0877058
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) −6.00000 −0.262613
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 12.0000 0.524222
\(525\) 1.00000 0.0436436
\(526\) 0 0
\(527\) −24.0000 −1.04546
\(528\) −1.00000 −0.0435194
\(529\) −23.0000 −1.00000
\(530\) −6.00000 −0.260623
\(531\) 0 0
\(532\) −4.00000 −0.173422
\(533\) 12.0000 0.519778
\(534\) −6.00000 −0.259645
\(535\) −12.0000 −0.518805
\(536\) 4.00000 0.172774
\(537\) 12.0000 0.517838
\(538\) −30.0000 −1.29339
\(539\) −1.00000 −0.0430730
\(540\) 1.00000 0.0430331
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 16.0000 0.687259
\(543\) 2.00000 0.0858282
\(544\) −6.00000 −0.257248
\(545\) 2.00000 0.0856706
\(546\) −2.00000 −0.0855921
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) −18.0000 −0.768922
\(549\) 2.00000 0.0853579
\(550\) 1.00000 0.0426401
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) −26.0000 −1.10463
\(555\) 2.00000 0.0848953
\(556\) 20.0000 0.848189
\(557\) −30.0000 −1.27114 −0.635570 0.772043i \(-0.719235\pi\)
−0.635570 + 0.772043i \(0.719235\pi\)
\(558\) 4.00000 0.169334
\(559\) −8.00000 −0.338364
\(560\) 1.00000 0.0422577
\(561\) −6.00000 −0.253320
\(562\) 18.0000 0.759284
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) −32.0000 −1.34506
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 4.00000 0.167542
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) −2.00000 −0.0836242
\(573\) 0 0
\(574\) −6.00000 −0.250435
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) −19.0000 −0.790296
\(579\) 14.0000 0.581820
\(580\) 6.00000 0.249136
\(581\) 12.0000 0.497844
\(582\) −2.00000 −0.0829027
\(583\) −6.00000 −0.248495
\(584\) −2.00000 −0.0827606
\(585\) 2.00000 0.0826898
\(586\) −6.00000 −0.247858
\(587\) −36.0000 −1.48588 −0.742940 0.669359i \(-0.766569\pi\)
−0.742940 + 0.669359i \(0.766569\pi\)
\(588\) 1.00000 0.0412393
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 2.00000 0.0821995
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 1.00000 0.0410305
\(595\) 6.00000 0.245976
\(596\) 6.00000 0.245770
\(597\) −4.00000 −0.163709
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) −1.00000 −0.0408248
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 4.00000 0.163028
\(603\) −4.00000 −0.162893
\(604\) 8.00000 0.325515
\(605\) 1.00000 0.0406558
\(606\) 6.00000 0.243733
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 4.00000 0.162221
\(609\) 6.00000 0.243132
\(610\) −2.00000 −0.0809776
\(611\) 0 0
\(612\) 6.00000 0.242536
\(613\) −22.0000 −0.888572 −0.444286 0.895885i \(-0.646543\pi\)
−0.444286 + 0.895885i \(0.646543\pi\)
\(614\) 16.0000 0.645707
\(615\) 6.00000 0.241943
\(616\) 1.00000 0.0402911
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 16.0000 0.643614
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) −4.00000 −0.160644
\(621\) 0 0
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) 2.00000 0.0800641
\(625\) 1.00000 0.0400000
\(626\) 22.0000 0.879297
\(627\) 4.00000 0.159745
\(628\) −10.0000 −0.399043
\(629\) 12.0000 0.478471
\(630\) −1.00000 −0.0398410
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) −8.00000 −0.318223
\(633\) 8.00000 0.317971
\(634\) −6.00000 −0.238290
\(635\) −16.0000 −0.634941
\(636\) 6.00000 0.237915
\(637\) 2.00000 0.0792429
\(638\) 6.00000 0.237542
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 12.0000 0.473602
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 0 0
\(645\) −4.00000 −0.157500
\(646\) 24.0000 0.944267
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 0 0
\(650\) −2.00000 −0.0784465
\(651\) −4.00000 −0.156772
\(652\) −4.00000 −0.156652
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) −2.00000 −0.0782062
\(655\) 12.0000 0.468879
\(656\) 6.00000 0.234261
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) −1.00000 −0.0389249
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 28.0000 1.08825
\(663\) 12.0000 0.466041
\(664\) −12.0000 −0.465690
\(665\) −4.00000 −0.155113
\(666\) −2.00000 −0.0774984
\(667\) 0 0
\(668\) 12.0000 0.464294
\(669\) 8.00000 0.309298
\(670\) 4.00000 0.154533
\(671\) −2.00000 −0.0772091
\(672\) −1.00000 −0.0385758
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 10.0000 0.385186
\(675\) 1.00000 0.0384900
\(676\) −9.00000 −0.346154
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) −6.00000 −0.230429
\(679\) 2.00000 0.0767530
\(680\) −6.00000 −0.230089
\(681\) −12.0000 −0.459841
\(682\) −4.00000 −0.153168
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) −4.00000 −0.152944
\(685\) −18.0000 −0.687745
\(686\) −1.00000 −0.0381802
\(687\) −22.0000 −0.839352
\(688\) −4.00000 −0.152499
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) 6.00000 0.228086
\(693\) −1.00000 −0.0379869
\(694\) −12.0000 −0.455514
\(695\) 20.0000 0.758643
\(696\) −6.00000 −0.227429
\(697\) 36.0000 1.36360
\(698\) −2.00000 −0.0757011
\(699\) 6.00000 0.226941
\(700\) 1.00000 0.0377964
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) −2.00000 −0.0754851
\(703\) −8.00000 −0.301726
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) −6.00000 −0.225653
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) −6.00000 −0.224860
\(713\) 0 0
\(714\) −6.00000 −0.224544
\(715\) −2.00000 −0.0747958
\(716\) 12.0000 0.448461
\(717\) 12.0000 0.448148
\(718\) −36.0000 −1.34351
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 1.00000 0.0372678
\(721\) −16.0000 −0.595871
\(722\) 3.00000 0.111648
\(723\) −10.0000 −0.371904
\(724\) 2.00000 0.0743294
\(725\) 6.00000 0.222834
\(726\) −1.00000 −0.0371135
\(727\) −40.0000 −1.48352 −0.741759 0.670667i \(-0.766008\pi\)
−0.741759 + 0.670667i \(0.766008\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 1.00000 0.0370370
\(730\) −2.00000 −0.0740233
\(731\) −24.0000 −0.887672
\(732\) 2.00000 0.0739221
\(733\) 2.00000 0.0738717 0.0369358 0.999318i \(-0.488240\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(734\) −8.00000 −0.295285
\(735\) 1.00000 0.0368856
\(736\) 0 0
\(737\) 4.00000 0.147342
\(738\) −6.00000 −0.220863
\(739\) 32.0000 1.17714 0.588570 0.808447i \(-0.299691\pi\)
0.588570 + 0.808447i \(0.299691\pi\)
\(740\) 2.00000 0.0735215
\(741\) −8.00000 −0.293887
\(742\) −6.00000 −0.220267
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 4.00000 0.146647
\(745\) 6.00000 0.219823
\(746\) 22.0000 0.805477
\(747\) 12.0000 0.439057
\(748\) −6.00000 −0.219382
\(749\) −12.0000 −0.438470
\(750\) −1.00000 −0.0365148
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −12.0000 −0.437014
\(755\) 8.00000 0.291150
\(756\) 1.00000 0.0363696
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 4.00000 0.145287
\(759\) 0 0
\(760\) 4.00000 0.145095
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 16.0000 0.579619
\(763\) 2.00000 0.0724049
\(764\) 0 0
\(765\) 6.00000 0.216930
\(766\) 24.0000 0.867155
\(767\) 0 0
\(768\) 1.00000 0.0360844
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 1.00000 0.0360375
\(771\) −6.00000 −0.216085
\(772\) 14.0000 0.503871
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 4.00000 0.143777
\(775\) −4.00000 −0.143684
\(776\) −2.00000 −0.0717958
\(777\) 2.00000 0.0717496
\(778\) −6.00000 −0.215110
\(779\) −24.0000 −0.859889
\(780\) 2.00000 0.0716115
\(781\) 0 0
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 1.00000 0.0357143
\(785\) −10.0000 −0.356915
\(786\) −12.0000 −0.428026
\(787\) −40.0000 −1.42585 −0.712923 0.701242i \(-0.752629\pi\)
−0.712923 + 0.701242i \(0.752629\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) −8.00000 −0.284627
\(791\) 6.00000 0.213335
\(792\) 1.00000 0.0355335
\(793\) 4.00000 0.142044
\(794\) 34.0000 1.20661
\(795\) 6.00000 0.212798
\(796\) −4.00000 −0.141776
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 4.00000 0.141598
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) 6.00000 0.212000
\(802\) 30.0000 1.05934
\(803\) −2.00000 −0.0705785
\(804\) −4.00000 −0.141069
\(805\) 0 0
\(806\) 8.00000 0.281788
\(807\) 30.0000 1.05605
\(808\) 6.00000 0.211079
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) −1.00000 −0.0351364
\(811\) −52.0000 −1.82597 −0.912983 0.407997i \(-0.866228\pi\)
−0.912983 + 0.407997i \(0.866228\pi\)
\(812\) 6.00000 0.210559
\(813\) −16.0000 −0.561144
\(814\) 2.00000 0.0701000
\(815\) −4.00000 −0.140114
\(816\) 6.00000 0.210042
\(817\) 16.0000 0.559769
\(818\) −14.0000 −0.489499
\(819\) 2.00000 0.0698857
\(820\) 6.00000 0.209529
\(821\) 54.0000 1.88461 0.942306 0.334751i \(-0.108652\pi\)
0.942306 + 0.334751i \(0.108652\pi\)
\(822\) 18.0000 0.627822
\(823\) 44.0000 1.53374 0.766872 0.641800i \(-0.221812\pi\)
0.766872 + 0.641800i \(0.221812\pi\)
\(824\) 16.0000 0.557386
\(825\) −1.00000 −0.0348155
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) −12.0000 −0.416526
\(831\) 26.0000 0.901930
\(832\) 2.00000 0.0693375
\(833\) 6.00000 0.207888
\(834\) −20.0000 −0.692543
\(835\) 12.0000 0.415277
\(836\) 4.00000 0.138343
\(837\) −4.00000 −0.138260
\(838\) −24.0000 −0.829066
\(839\) 48.0000 1.65714 0.828572 0.559883i \(-0.189154\pi\)
0.828572 + 0.559883i \(0.189154\pi\)
\(840\) −1.00000 −0.0345033
\(841\) 7.00000 0.241379
\(842\) −38.0000 −1.30957
\(843\) −18.0000 −0.619953
\(844\) 8.00000 0.275371
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) 6.00000 0.206041
\(849\) 32.0000 1.09824
\(850\) −6.00000 −0.205798
\(851\) 0 0
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) −2.00000 −0.0684386
\(855\) −4.00000 −0.136797
\(856\) 12.0000 0.410152
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 2.00000 0.0682789
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) −4.00000 −0.136399
\(861\) 6.00000 0.204479
\(862\) 12.0000 0.408722
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 6.00000 0.204006
\(866\) −2.00000 −0.0679628
\(867\) 19.0000 0.645274
\(868\) −4.00000 −0.135769
\(869\) −8.00000 −0.271381
\(870\) −6.00000 −0.203419
\(871\) −8.00000 −0.271070
\(872\) −2.00000 −0.0677285
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) 1.00000 0.0338062
\(876\) 2.00000 0.0675737
\(877\) 50.0000 1.68838 0.844190 0.536044i \(-0.180082\pi\)
0.844190 + 0.536044i \(0.180082\pi\)
\(878\) 16.0000 0.539974
\(879\) 6.00000 0.202375
\(880\) −1.00000 −0.0337100
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) −1.00000 −0.0336718
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 12.0000 0.403604
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) −2.00000 −0.0671156
\(889\) −16.0000 −0.536623
\(890\) −6.00000 −0.201120
\(891\) −1.00000 −0.0335013
\(892\) 8.00000 0.267860
\(893\) 0 0
\(894\) −6.00000 −0.200670
\(895\) 12.0000 0.401116
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −18.0000 −0.600668
\(899\) −24.0000 −0.800445
\(900\) 1.00000 0.0333333
\(901\) 36.0000 1.19933
\(902\) 6.00000 0.199778
\(903\) −4.00000 −0.133112
\(904\) −6.00000 −0.199557
\(905\) 2.00000 0.0664822
\(906\) −8.00000 −0.265782
\(907\) 44.0000 1.46100 0.730498 0.682915i \(-0.239288\pi\)
0.730498 + 0.682915i \(0.239288\pi\)
\(908\) −12.0000 −0.398234
\(909\) −6.00000 −0.199007
\(910\) −2.00000 −0.0662994
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) −4.00000 −0.132453
\(913\) −12.0000 −0.397142
\(914\) 34.0000 1.12462
\(915\) 2.00000 0.0661180
\(916\) −22.0000 −0.726900
\(917\) 12.0000 0.396275
\(918\) −6.00000 −0.198030
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) −16.0000 −0.527218
\(922\) 6.00000 0.197599
\(923\) 0 0
\(924\) −1.00000 −0.0328976
\(925\) 2.00000 0.0657596
\(926\) 4.00000 0.131448
\(927\) −16.0000 −0.525509
\(928\) −6.00000 −0.196960
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 4.00000 0.131165
\(931\) −4.00000 −0.131095
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) 12.0000 0.392652
\(935\) −6.00000 −0.196221
\(936\) −2.00000 −0.0653720
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 4.00000 0.130605
\(939\) −22.0000 −0.717943
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 10.0000 0.325818
\(943\) 0 0
\(944\) 0 0
\(945\) 1.00000 0.0325300
\(946\) −4.00000 −0.130051
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 8.00000 0.259828
\(949\) 4.00000 0.129845
\(950\) 4.00000 0.129777
\(951\) 6.00000 0.194563
\(952\) −6.00000 −0.194461
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) −6.00000 −0.194257
\(955\) 0 0
\(956\) 12.0000 0.388108
\(957\) −6.00000 −0.193952
\(958\) 0 0
\(959\) −18.0000 −0.581250
\(960\) 1.00000 0.0322749
\(961\) −15.0000 −0.483871
\(962\) −4.00000 −0.128965
\(963\) −12.0000 −0.386695
\(964\) −10.0000 −0.322078
\(965\) 14.0000 0.450676
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −24.0000 −0.770991
\(970\) −2.00000 −0.0642161
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 1.00000 0.0320750
\(973\) 20.0000 0.641171
\(974\) 4.00000 0.128168
\(975\) 2.00000 0.0640513
\(976\) 2.00000 0.0640184
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 4.00000 0.127906
\(979\) −6.00000 −0.191761
\(980\) 1.00000 0.0319438
\(981\) 2.00000 0.0638551
\(982\) 36.0000 1.14881
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) −6.00000 −0.191273
\(985\) −6.00000 −0.191176
\(986\) −36.0000 −1.14647
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 0 0
\(990\) 1.00000 0.0317821
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 4.00000 0.127000
\(993\) −28.0000 −0.888553
\(994\) 0 0
\(995\) −4.00000 −0.126809
\(996\) 12.0000 0.380235
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) 4.00000 0.126618
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))