Properties

Label 2310.2.a.k
Level 2310
Weight 2
Character orbit 2310.a
Self dual yes
Analytic conductor 18.445
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2310.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(18.4454428669\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - q^{11} + q^{12} + 2q^{13} + q^{14} + q^{15} + q^{16} - 2q^{17} - q^{18} - 8q^{19} + q^{20} - q^{21} + q^{22} - 8q^{23} - q^{24} + q^{25} - 2q^{26} + q^{27} - q^{28} - 6q^{29} - q^{30} - q^{32} - q^{33} + 2q^{34} - q^{35} + q^{36} - 6q^{37} + 8q^{38} + 2q^{39} - q^{40} - 2q^{41} + q^{42} + 4q^{43} - q^{44} + q^{45} + 8q^{46} + 12q^{47} + q^{48} + q^{49} - q^{50} - 2q^{51} + 2q^{52} - 14q^{53} - q^{54} - q^{55} + q^{56} - 8q^{57} + 6q^{58} + 4q^{59} + q^{60} - 10q^{61} - q^{63} + q^{64} + 2q^{65} + q^{66} + 8q^{67} - 2q^{68} - 8q^{69} + q^{70} - q^{72} - 10q^{73} + 6q^{74} + q^{75} - 8q^{76} + q^{77} - 2q^{78} + 4q^{79} + q^{80} + q^{81} + 2q^{82} - 4q^{83} - q^{84} - 2q^{85} - 4q^{86} - 6q^{87} + q^{88} - 14q^{89} - q^{90} - 2q^{91} - 8q^{92} - 12q^{94} - 8q^{95} - q^{96} + 14q^{97} - q^{98} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 1.00000 −1.00000 −1.00000 −1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2310.2.a.k 1
3.b odd 2 1 6930.2.a.w 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2310.2.a.k 1 1.a even 1 1 trivial
6930.2.a.w 1 3.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(7\) \(1\)
\(11\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2310))\):

\( T_{13} - 2 \)
\( T_{17} + 2 \)
\( T_{19} + 8 \)
\( T_{23} + 8 \)
\( T_{29} + 6 \)
\( T_{31} \)