Defining parameters
Level: | \( N \) | \(=\) | \( 2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2310.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 30 \) | ||
Sturm bound: | \(1152\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(13\), \(17\), \(19\), \(23\), \(29\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2310))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 592 | 39 | 553 |
Cusp forms | 561 | 39 | 522 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(7\) | \(11\) | Fricke | Dim |
---|---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | $+$ | \(1\) |
\(+\) | \(+\) | \(+\) | \(+\) | \(-\) | $-$ | \(1\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(+\) | $-$ | \(2\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | $+$ | \(1\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(+\) | $-$ | \(2\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | $+$ | \(1\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(-\) | $-$ | \(2\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(+\) | $-$ | \(1\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | $+$ | \(1\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | $+$ | \(2\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(-\) | $-$ | \(1\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | $+$ | \(2\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(-\) | $-$ | \(2\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(+\) | $-$ | \(1\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(+\) | $-$ | \(1\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | $+$ | \(2\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(-\) | $-$ | \(2\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | $+$ | \(1\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(-\) | $-$ | \(2\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(+\) | $-$ | \(2\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | $+$ | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(-\) | $-$ | \(2\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(+\) | $-$ | \(2\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(+\) | $-$ | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(-\) | $-$ | \(3\) |
Plus space | \(+\) | \(12\) | ||||
Minus space | \(-\) | \(27\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2310))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 7 | 11 | |||||||
2310.2.a.a | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
2310.2.a.b | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
2310.2.a.c | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-1\) | \(1\) | $+$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\) | |
2310.2.a.d | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(-1\) | \(1\) | \(1\) | $+$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\) | |
2310.2.a.e | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\) | |
2310.2.a.f | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\) | |
2310.2.a.g | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
2310.2.a.h | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
2310.2.a.i | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
2310.2.a.j | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\) | |
2310.2.a.k | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\) | |
2310.2.a.l | $1$ | $18.445$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(1\) | $+$ | $-$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
2310.2.a.m | $1$ | $18.445$ | \(\Q\) | None | \(1\) | \(-1\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\) | |
2310.2.a.n | $1$ | $18.445$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\) | |
2310.2.a.o | $1$ | $18.445$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
2310.2.a.p | $1$ | $18.445$ | \(\Q\) | None | \(1\) | \(-1\) | \(1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\) | |
2310.2.a.q | $1$ | $18.445$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
2310.2.a.r | $1$ | $18.445$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
2310.2.a.s | $1$ | $18.445$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}-q^{7}+\cdots\) | |
2310.2.a.t | $1$ | $18.445$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\) | |
2310.2.a.u | $1$ | $18.445$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\) | |
2310.2.a.v | $1$ | $18.445$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
2310.2.a.w | $2$ | $18.445$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(-2\) | \(-2\) | \(2\) | $+$ | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}+q^{7}+\cdots\) | |
2310.2.a.x | $2$ | $18.445$ | \(\Q(\sqrt{33}) \) | None | \(-2\) | \(-2\) | \(2\) | \(-2\) | $+$ | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\) | |
2310.2.a.y | $2$ | $18.445$ | \(\Q(\sqrt{33}) \) | None | \(-2\) | \(-2\) | \(2\) | \(2\) | $+$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\) | |
2310.2.a.z | $2$ | $18.445$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(2\) | \(2\) | \(-2\) | $+$ | $-$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\) | |
2310.2.a.ba | $2$ | $18.445$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(-2\) | \(-2\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}-q^{7}+\cdots\) | |
2310.2.a.bb | $2$ | $18.445$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(-2\) | \(-2\) | \(2\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\) | |
2310.2.a.bc | $2$ | $18.445$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(-2\) | \(2\) | \(-2\) | $-$ | $+$ | $-$ | $+$ | $-$ | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-q^{7}+\cdots\) | |
2310.2.a.bd | $3$ | $18.445$ | 3.3.148.1 | None | \(3\) | \(3\) | \(3\) | \(3\) | $-$ | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2310))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2310)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(330))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(385))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(462))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(770))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1155))\)\(^{\oplus 2}\)