Newspace parameters
Level: | \( N \) | \(=\) | \( 231 = 3 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 231.u (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.6294412113\) |
Analytic rank: | \(0\) |
Dimension: | \(368\) |
Relative dimension: | \(92\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20.1 | −5.23865 | − | 1.70214i | −5.19044 | − | 0.243508i | 18.0740 | + | 13.1315i | −3.51328 | − | 10.8128i | 26.7764 | + | 10.1105i | 18.1267 | − | 3.79766i | −46.4303 | − | 63.9058i | 26.8814 | + | 2.52783i | 62.6244i | ||
20.2 | −5.23865 | − | 1.70214i | 5.19044 | + | 0.243508i | 18.0740 | + | 13.1315i | 3.51328 | + | 10.8128i | −26.7764 | − | 10.1105i | 1.98968 | + | 18.4131i | −46.4303 | − | 63.9058i | 26.8814 | + | 2.52783i | − | 62.6244i | |
20.3 | −5.16622 | − | 1.67861i | −4.69469 | + | 2.22707i | 17.4000 | + | 12.6418i | 5.52182 | + | 16.9944i | 27.9922 | − | 3.62501i | −16.9124 | − | 7.54789i | −43.1284 | − | 59.3611i | 17.0803 | − | 20.9109i | − | 97.0658i | |
20.4 | −5.16622 | − | 1.67861i | 4.69469 | − | 2.22707i | 17.4000 | + | 12.6418i | −5.52182 | − | 16.9944i | −27.9922 | + | 3.62501i | −12.4047 | − | 13.7522i | −43.1284 | − | 59.3611i | 17.0803 | − | 20.9109i | 97.0658i | ||
20.5 | −4.80477 | − | 1.56117i | −2.74997 | − | 4.40882i | 14.1765 | + | 10.2998i | −1.47694 | − | 4.54554i | 6.33009 | + | 25.4765i | −10.9453 | + | 14.9399i | −28.2789 | − | 38.9226i | −11.8753 | + | 24.2482i | 24.1460i | ||
20.6 | −4.80477 | − | 1.56117i | 2.74997 | + | 4.40882i | 14.1765 | + | 10.2998i | 1.47694 | + | 4.54554i | −6.33009 | − | 25.4765i | 10.8264 | − | 15.0263i | −28.2789 | − | 38.9226i | −11.8753 | + | 24.2482i | − | 24.1460i | |
20.7 | −4.68308 | − | 1.52162i | −0.649279 | − | 5.15543i | 13.1437 | + | 9.54947i | −0.436121 | − | 1.34224i | −4.80400 | + | 25.1312i | 16.1366 | − | 9.08906i | −23.8679 | − | 32.8514i | −26.1569 | + | 6.69463i | 6.94944i | ||
20.8 | −4.68308 | − | 1.52162i | 0.649279 | + | 5.15543i | 13.1437 | + | 9.54947i | 0.436121 | + | 1.34224i | 4.80400 | − | 25.1312i | −3.65774 | + | 18.1555i | −23.8679 | − | 32.8514i | −26.1569 | + | 6.69463i | − | 6.94944i | |
20.9 | −4.60266 | − | 1.49550i | −1.25395 | + | 5.04258i | 12.4759 | + | 9.06425i | −3.57575 | − | 11.0050i | 13.3126 | − | 21.3340i | −13.9159 | − | 12.2208i | −21.1099 | − | 29.0552i | −23.8552 | − | 12.6462i | 55.9999i | ||
20.10 | −4.60266 | − | 1.49550i | 1.25395 | − | 5.04258i | 12.4759 | + | 9.06425i | 3.57575 | + | 11.0050i | −13.3126 | + | 21.3340i | −15.9229 | − | 9.45841i | −21.1099 | − | 29.0552i | −23.8552 | − | 12.6462i | − | 55.9999i | |
20.11 | −4.11007 | − | 1.33544i | −3.27517 | + | 4.03401i | 8.63715 | + | 6.27526i | 3.35478 | + | 10.3250i | 18.8484 | − | 12.2063i | 17.4564 | + | 6.18659i | −6.79775 | − | 9.35630i | −5.54653 | − | 26.4242i | − | 46.9164i | |
20.12 | −4.11007 | − | 1.33544i | 3.27517 | − | 4.03401i | 8.63715 | + | 6.27526i | −3.35478 | − | 10.3250i | −18.8484 | + | 12.2063i | 11.2781 | + | 14.6903i | −6.79775 | − | 9.35630i | −5.54653 | − | 26.4242i | 46.9164i | ||
20.13 | −4.04850 | − | 1.31544i | −4.30346 | + | 2.91208i | 8.18784 | + | 5.94881i | −4.42707 | − | 13.6251i | 21.2532 | − | 6.12864i | −2.32894 | + | 18.3732i | −5.30628 | − | 7.30347i | 10.0395 | − | 25.0641i | 60.9848i | ||
20.14 | −4.04850 | − | 1.31544i | 4.30346 | − | 2.91208i | 8.18784 | + | 5.94881i | 4.42707 | + | 13.6251i | −21.2532 | + | 6.12864i | 16.7543 | − | 7.89260i | −5.30628 | − | 7.30347i | 10.0395 | − | 25.0641i | − | 60.9848i | |
20.15 | −3.90714 | − | 1.26951i | −4.58324 | − | 2.44825i | 7.18195 | + | 5.21799i | 4.81631 | + | 14.8231i | 14.7993 | + | 15.3841i | 9.66179 | + | 15.8003i | −2.11865 | − | 2.91608i | 15.0121 | + | 22.4418i | − | 64.0302i | |
20.16 | −3.90714 | − | 1.26951i | 4.58324 | + | 2.44825i | 7.18195 | + | 5.21799i | −4.81631 | − | 14.8231i | −14.7993 | − | 15.3841i | 18.0126 | + | 4.30634i | −2.11865 | − | 2.91608i | 15.0121 | + | 22.4418i | 64.0302i | ||
20.17 | −3.82785 | − | 1.24374i | −4.34301 | − | 2.85276i | 6.63341 | + | 4.81945i | 1.82332 | + | 5.61160i | 13.0763 | + | 16.3215i | −3.71540 | − | 18.1438i | −0.471589 | − | 0.649086i | 10.7235 | + | 24.7791i | − | 23.7481i | |
20.18 | −3.82785 | − | 1.24374i | 4.34301 | + | 2.85276i | 6.63341 | + | 4.81945i | −1.82332 | − | 5.61160i | −13.0763 | − | 16.3215i | −18.4039 | + | 2.07318i | −0.471589 | − | 0.649086i | 10.7235 | + | 24.7791i | 23.7481i | ||
20.19 | −3.45308 | − | 1.12197i | −5.17340 | + | 0.485754i | 4.19280 | + | 3.04625i | −2.95174 | − | 9.08454i | 18.4092 | + | 4.12707i | 1.71814 | − | 18.4404i | 6.01270 | + | 8.27577i | 26.5281 | − | 5.02599i | 34.6814i | ||
20.20 | −3.45308 | − | 1.12197i | 5.17340 | − | 0.485754i | 4.19280 | + | 3.04625i | 2.95174 | + | 9.08454i | −18.4092 | − | 4.12707i | −17.0069 | + | 7.33244i | 6.01270 | + | 8.27577i | 26.5281 | − | 5.02599i | − | 34.6814i | |
See next 80 embeddings (of 368 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
21.c | even | 2 | 1 | inner |
33.h | odd | 10 | 1 | inner |
77.j | odd | 10 | 1 | inner |
231.u | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 231.4.u.a | ✓ | 368 |
3.b | odd | 2 | 1 | inner | 231.4.u.a | ✓ | 368 |
7.b | odd | 2 | 1 | inner | 231.4.u.a | ✓ | 368 |
11.c | even | 5 | 1 | inner | 231.4.u.a | ✓ | 368 |
21.c | even | 2 | 1 | inner | 231.4.u.a | ✓ | 368 |
33.h | odd | 10 | 1 | inner | 231.4.u.a | ✓ | 368 |
77.j | odd | 10 | 1 | inner | 231.4.u.a | ✓ | 368 |
231.u | even | 10 | 1 | inner | 231.4.u.a | ✓ | 368 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
231.4.u.a | ✓ | 368 | 1.a | even | 1 | 1 | trivial |
231.4.u.a | ✓ | 368 | 3.b | odd | 2 | 1 | inner |
231.4.u.a | ✓ | 368 | 7.b | odd | 2 | 1 | inner |
231.4.u.a | ✓ | 368 | 11.c | even | 5 | 1 | inner |
231.4.u.a | ✓ | 368 | 21.c | even | 2 | 1 | inner |
231.4.u.a | ✓ | 368 | 33.h | odd | 10 | 1 | inner |
231.4.u.a | ✓ | 368 | 77.j | odd | 10 | 1 | inner |
231.4.u.a | ✓ | 368 | 231.u | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(231, [\chi])\).