Properties

Label 231.4.u
Level $231$
Weight $4$
Character orbit 231.u
Rep. character $\chi_{231}(20,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $368$
Newform subspaces $1$
Sturm bound $128$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.u (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 231 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(128\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(231, [\chi])\).

Total New Old
Modular forms 400 400 0
Cusp forms 368 368 0
Eisenstein series 32 32 0

Trace form

\( 368 q + 340 q^{4} - 18 q^{7} + 42 q^{9} + 42 q^{15} - 1116 q^{16} - 262 q^{18} - 222 q^{21} + 696 q^{22} - 1516 q^{25} + 38 q^{28} + 624 q^{30} + 1430 q^{36} + 36 q^{37} + 390 q^{39} + 2130 q^{42} - 1376 q^{43}+ \cdots - 6218 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(231, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
231.4.u.a 231.u 231.u $368$ $13.629$ None 231.4.u.a \(0\) \(0\) \(0\) \(-18\) $\mathrm{SU}(2)[C_{10}]$