Properties

Label 231.4.a.l.1.5
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 28x^{3} - 11x^{2} + 108x - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-4.36278\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.36278 q^{2} +3.00000 q^{3} +20.7594 q^{4} -1.66863 q^{5} +16.0883 q^{6} -7.00000 q^{7} +68.4261 q^{8} +9.00000 q^{9} -8.94849 q^{10} +11.0000 q^{11} +62.2783 q^{12} +0.996604 q^{13} -37.5395 q^{14} -5.00588 q^{15} +200.879 q^{16} -99.5115 q^{17} +48.2650 q^{18} +32.8695 q^{19} -34.6398 q^{20} -21.0000 q^{21} +58.9906 q^{22} +72.6019 q^{23} +205.278 q^{24} -122.216 q^{25} +5.34457 q^{26} +27.0000 q^{27} -145.316 q^{28} +45.0027 q^{29} -26.8455 q^{30} -62.8102 q^{31} +529.860 q^{32} +33.0000 q^{33} -533.659 q^{34} +11.6804 q^{35} +186.835 q^{36} -301.317 q^{37} +176.272 q^{38} +2.98981 q^{39} -114.178 q^{40} -307.353 q^{41} -112.618 q^{42} +214.347 q^{43} +228.354 q^{44} -15.0176 q^{45} +389.348 q^{46} -602.899 q^{47} +602.636 q^{48} +49.0000 q^{49} -655.416 q^{50} -298.535 q^{51} +20.6889 q^{52} +592.072 q^{53} +144.795 q^{54} -18.3549 q^{55} -478.983 q^{56} +98.6084 q^{57} +241.339 q^{58} +695.030 q^{59} -103.919 q^{60} +442.815 q^{61} -336.837 q^{62} -63.0000 q^{63} +1234.49 q^{64} -1.66296 q^{65} +176.972 q^{66} -555.143 q^{67} -2065.80 q^{68} +217.806 q^{69} +62.6394 q^{70} -153.352 q^{71} +615.835 q^{72} -147.489 q^{73} -1615.90 q^{74} -366.647 q^{75} +682.352 q^{76} -77.0000 q^{77} +16.0337 q^{78} +676.959 q^{79} -335.192 q^{80} +81.0000 q^{81} -1648.27 q^{82} -222.412 q^{83} -435.948 q^{84} +166.048 q^{85} +1149.50 q^{86} +135.008 q^{87} +752.687 q^{88} -1136.35 q^{89} -80.5364 q^{90} -6.97623 q^{91} +1507.18 q^{92} -188.430 q^{93} -3233.22 q^{94} -54.8469 q^{95} +1589.58 q^{96} +1010.60 q^{97} +262.776 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{2} + 15 q^{3} + 21 q^{4} + 7 q^{5} + 15 q^{6} - 35 q^{7} + 60 q^{8} + 45 q^{9} + 55 q^{10} + 55 q^{11} + 63 q^{12} + 111 q^{13} - 35 q^{14} + 21 q^{15} + 201 q^{16} + 136 q^{17} + 45 q^{18} + 111 q^{19}+ \cdots + 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.36278 1.89603 0.948015 0.318226i \(-0.103087\pi\)
0.948015 + 0.318226i \(0.103087\pi\)
\(3\) 3.00000 0.577350
\(4\) 20.7594 2.59493
\(5\) −1.66863 −0.149247 −0.0746233 0.997212i \(-0.523775\pi\)
−0.0746233 + 0.997212i \(0.523775\pi\)
\(6\) 16.0883 1.09467
\(7\) −7.00000 −0.377964
\(8\) 68.4261 3.02403
\(9\) 9.00000 0.333333
\(10\) −8.94849 −0.282976
\(11\) 11.0000 0.301511
\(12\) 62.2783 1.49818
\(13\) 0.996604 0.0212622 0.0106311 0.999943i \(-0.496616\pi\)
0.0106311 + 0.999943i \(0.496616\pi\)
\(14\) −37.5395 −0.716632
\(15\) −5.00588 −0.0861675
\(16\) 200.879 3.13873
\(17\) −99.5115 −1.41971 −0.709856 0.704347i \(-0.751240\pi\)
−0.709856 + 0.704347i \(0.751240\pi\)
\(18\) 48.2650 0.632010
\(19\) 32.8695 0.396883 0.198441 0.980113i \(-0.436412\pi\)
0.198441 + 0.980113i \(0.436412\pi\)
\(20\) −34.6398 −0.387284
\(21\) −21.0000 −0.218218
\(22\) 58.9906 0.571675
\(23\) 72.6019 0.658198 0.329099 0.944295i \(-0.393255\pi\)
0.329099 + 0.944295i \(0.393255\pi\)
\(24\) 205.278 1.74593
\(25\) −122.216 −0.977725
\(26\) 5.34457 0.0403137
\(27\) 27.0000 0.192450
\(28\) −145.316 −0.980791
\(29\) 45.0027 0.288165 0.144082 0.989566i \(-0.453977\pi\)
0.144082 + 0.989566i \(0.453977\pi\)
\(30\) −26.8455 −0.163376
\(31\) −62.8102 −0.363904 −0.181952 0.983307i \(-0.558242\pi\)
−0.181952 + 0.983307i \(0.558242\pi\)
\(32\) 529.860 2.92709
\(33\) 33.0000 0.174078
\(34\) −533.659 −2.69182
\(35\) 11.6804 0.0564099
\(36\) 186.835 0.864976
\(37\) −301.317 −1.33882 −0.669408 0.742895i \(-0.733452\pi\)
−0.669408 + 0.742895i \(0.733452\pi\)
\(38\) 176.272 0.752502
\(39\) 2.98981 0.0122757
\(40\) −114.178 −0.451327
\(41\) −307.353 −1.17074 −0.585371 0.810765i \(-0.699051\pi\)
−0.585371 + 0.810765i \(0.699051\pi\)
\(42\) −112.618 −0.413748
\(43\) 214.347 0.760178 0.380089 0.924950i \(-0.375893\pi\)
0.380089 + 0.924950i \(0.375893\pi\)
\(44\) 228.354 0.782401
\(45\) −15.0176 −0.0497489
\(46\) 389.348 1.24796
\(47\) −602.899 −1.87110 −0.935552 0.353188i \(-0.885098\pi\)
−0.935552 + 0.353188i \(0.885098\pi\)
\(48\) 602.636 1.81215
\(49\) 49.0000 0.142857
\(50\) −655.416 −1.85380
\(51\) −298.535 −0.819671
\(52\) 20.6889 0.0551738
\(53\) 592.072 1.53448 0.767239 0.641362i \(-0.221630\pi\)
0.767239 + 0.641362i \(0.221630\pi\)
\(54\) 144.795 0.364891
\(55\) −18.3549 −0.0449995
\(56\) −478.983 −1.14298
\(57\) 98.6084 0.229140
\(58\) 241.339 0.546369
\(59\) 695.030 1.53365 0.766824 0.641857i \(-0.221836\pi\)
0.766824 + 0.641857i \(0.221836\pi\)
\(60\) −103.919 −0.223599
\(61\) 442.815 0.929453 0.464726 0.885454i \(-0.346153\pi\)
0.464726 + 0.885454i \(0.346153\pi\)
\(62\) −336.837 −0.689974
\(63\) −63.0000 −0.125988
\(64\) 1234.49 2.41112
\(65\) −1.66296 −0.00317331
\(66\) 176.972 0.330056
\(67\) −555.143 −1.01226 −0.506131 0.862457i \(-0.668925\pi\)
−0.506131 + 0.862457i \(0.668925\pi\)
\(68\) −2065.80 −3.68405
\(69\) 217.806 0.380011
\(70\) 62.6394 0.106955
\(71\) −153.352 −0.256331 −0.128166 0.991753i \(-0.540909\pi\)
−0.128166 + 0.991753i \(0.540909\pi\)
\(72\) 615.835 1.00801
\(73\) −147.489 −0.236470 −0.118235 0.992986i \(-0.537724\pi\)
−0.118235 + 0.992986i \(0.537724\pi\)
\(74\) −1615.90 −2.53843
\(75\) −366.647 −0.564490
\(76\) 682.352 1.02988
\(77\) −77.0000 −0.113961
\(78\) 16.0337 0.0232751
\(79\) 676.959 0.964099 0.482050 0.876144i \(-0.339893\pi\)
0.482050 + 0.876144i \(0.339893\pi\)
\(80\) −335.192 −0.468445
\(81\) 81.0000 0.111111
\(82\) −1648.27 −2.21976
\(83\) −222.412 −0.294131 −0.147065 0.989127i \(-0.546983\pi\)
−0.147065 + 0.989127i \(0.546983\pi\)
\(84\) −435.948 −0.566260
\(85\) 166.048 0.211887
\(86\) 1149.50 1.44132
\(87\) 135.008 0.166372
\(88\) 752.687 0.911781
\(89\) −1136.35 −1.35340 −0.676699 0.736260i \(-0.736590\pi\)
−0.676699 + 0.736260i \(0.736590\pi\)
\(90\) −80.5364 −0.0943253
\(91\) −6.97623 −0.00803634
\(92\) 1507.18 1.70798
\(93\) −188.430 −0.210100
\(94\) −3233.22 −3.54767
\(95\) −54.8469 −0.0592334
\(96\) 1589.58 1.68996
\(97\) 1010.60 1.05785 0.528923 0.848670i \(-0.322596\pi\)
0.528923 + 0.848670i \(0.322596\pi\)
\(98\) 262.776 0.270861
\(99\) 99.0000 0.100504
\(100\) −2537.13 −2.53713
\(101\) −400.418 −0.394486 −0.197243 0.980355i \(-0.563199\pi\)
−0.197243 + 0.980355i \(0.563199\pi\)
\(102\) −1600.98 −1.55412
\(103\) −419.845 −0.401636 −0.200818 0.979629i \(-0.564360\pi\)
−0.200818 + 0.979629i \(0.564360\pi\)
\(104\) 68.1937 0.0642975
\(105\) 35.0412 0.0325683
\(106\) 3175.15 2.90941
\(107\) 2131.99 1.92623 0.963116 0.269085i \(-0.0867214\pi\)
0.963116 + 0.269085i \(0.0867214\pi\)
\(108\) 560.505 0.499394
\(109\) −14.0057 −0.0123074 −0.00615369 0.999981i \(-0.501959\pi\)
−0.00615369 + 0.999981i \(0.501959\pi\)
\(110\) −98.4333 −0.0853205
\(111\) −903.950 −0.772965
\(112\) −1406.15 −1.18633
\(113\) 1322.98 1.10137 0.550686 0.834712i \(-0.314366\pi\)
0.550686 + 0.834712i \(0.314366\pi\)
\(114\) 528.816 0.434457
\(115\) −121.146 −0.0982338
\(116\) 934.230 0.747768
\(117\) 8.96944 0.00708739
\(118\) 3727.30 2.90784
\(119\) 696.581 0.536601
\(120\) −342.533 −0.260574
\(121\) 121.000 0.0909091
\(122\) 2374.72 1.76227
\(123\) −922.059 −0.675929
\(124\) −1303.90 −0.944306
\(125\) 412.511 0.295169
\(126\) −337.855 −0.238877
\(127\) −2199.01 −1.53646 −0.768232 0.640172i \(-0.778863\pi\)
−0.768232 + 0.640172i \(0.778863\pi\)
\(128\) 2381.45 1.64447
\(129\) 643.042 0.438889
\(130\) −8.91810 −0.00601668
\(131\) 1450.27 0.967259 0.483629 0.875273i \(-0.339318\pi\)
0.483629 + 0.875273i \(0.339318\pi\)
\(132\) 685.061 0.451719
\(133\) −230.086 −0.150008
\(134\) −2977.11 −1.91928
\(135\) −45.0529 −0.0287225
\(136\) −6809.19 −4.29326
\(137\) −893.027 −0.556909 −0.278454 0.960449i \(-0.589822\pi\)
−0.278454 + 0.960449i \(0.589822\pi\)
\(138\) 1168.05 0.720512
\(139\) −530.606 −0.323780 −0.161890 0.986809i \(-0.551759\pi\)
−0.161890 + 0.986809i \(0.551759\pi\)
\(140\) 242.478 0.146380
\(141\) −1808.70 −1.08028
\(142\) −822.392 −0.486011
\(143\) 10.9626 0.00641079
\(144\) 1807.91 1.04624
\(145\) −75.0927 −0.0430076
\(146\) −790.954 −0.448355
\(147\) 147.000 0.0824786
\(148\) −6255.17 −3.47413
\(149\) 2958.97 1.62690 0.813451 0.581633i \(-0.197586\pi\)
0.813451 + 0.581633i \(0.197586\pi\)
\(150\) −1966.25 −1.07029
\(151\) 1668.28 0.899092 0.449546 0.893257i \(-0.351586\pi\)
0.449546 + 0.893257i \(0.351586\pi\)
\(152\) 2249.13 1.20019
\(153\) −895.604 −0.473237
\(154\) −412.934 −0.216073
\(155\) 104.807 0.0543115
\(156\) 62.0668 0.0318546
\(157\) −1202.63 −0.611342 −0.305671 0.952137i \(-0.598881\pi\)
−0.305671 + 0.952137i \(0.598881\pi\)
\(158\) 3630.38 1.82796
\(159\) 1776.21 0.885931
\(160\) −884.139 −0.436858
\(161\) −508.214 −0.248775
\(162\) 434.385 0.210670
\(163\) −2534.83 −1.21806 −0.609029 0.793148i \(-0.708441\pi\)
−0.609029 + 0.793148i \(0.708441\pi\)
\(164\) −6380.47 −3.03799
\(165\) −55.0647 −0.0259805
\(166\) −1192.75 −0.557681
\(167\) 2424.43 1.12340 0.561700 0.827341i \(-0.310147\pi\)
0.561700 + 0.827341i \(0.310147\pi\)
\(168\) −1436.95 −0.659898
\(169\) −2196.01 −0.999548
\(170\) 890.478 0.401744
\(171\) 295.825 0.132294
\(172\) 4449.73 1.97261
\(173\) 1977.78 0.869180 0.434590 0.900628i \(-0.356893\pi\)
0.434590 + 0.900628i \(0.356893\pi\)
\(174\) 724.018 0.315447
\(175\) 855.510 0.369545
\(176\) 2209.67 0.946363
\(177\) 2085.09 0.885452
\(178\) −6093.97 −2.56608
\(179\) 1314.89 0.549049 0.274525 0.961580i \(-0.411480\pi\)
0.274525 + 0.961580i \(0.411480\pi\)
\(180\) −311.758 −0.129095
\(181\) 2118.94 0.870163 0.435081 0.900391i \(-0.356720\pi\)
0.435081 + 0.900391i \(0.356720\pi\)
\(182\) −37.4120 −0.0152372
\(183\) 1328.44 0.536620
\(184\) 4967.87 1.99041
\(185\) 502.785 0.199814
\(186\) −1010.51 −0.398357
\(187\) −1094.63 −0.428059
\(188\) −12515.9 −4.85538
\(189\) −189.000 −0.0727393
\(190\) −294.132 −0.112308
\(191\) 2136.61 0.809421 0.404711 0.914445i \(-0.367372\pi\)
0.404711 + 0.914445i \(0.367372\pi\)
\(192\) 3703.48 1.39206
\(193\) −910.852 −0.339713 −0.169856 0.985469i \(-0.554330\pi\)
−0.169856 + 0.985469i \(0.554330\pi\)
\(194\) 5419.64 2.00571
\(195\) −4.98888 −0.00183211
\(196\) 1017.21 0.370704
\(197\) −2485.86 −0.899038 −0.449519 0.893271i \(-0.648405\pi\)
−0.449519 + 0.893271i \(0.648405\pi\)
\(198\) 530.915 0.190558
\(199\) −384.145 −0.136841 −0.0684204 0.997657i \(-0.521796\pi\)
−0.0684204 + 0.997657i \(0.521796\pi\)
\(200\) −8362.74 −2.95668
\(201\) −1665.43 −0.584429
\(202\) −2147.36 −0.747958
\(203\) −315.019 −0.108916
\(204\) −6197.41 −2.12699
\(205\) 512.857 0.174729
\(206\) −2251.54 −0.761515
\(207\) 653.417 0.219399
\(208\) 200.196 0.0667362
\(209\) 361.564 0.119665
\(210\) 187.918 0.0617504
\(211\) 3875.31 1.26440 0.632198 0.774807i \(-0.282153\pi\)
0.632198 + 0.774807i \(0.282153\pi\)
\(212\) 12291.1 3.98186
\(213\) −460.055 −0.147993
\(214\) 11433.4 3.65219
\(215\) −357.666 −0.113454
\(216\) 1847.50 0.581976
\(217\) 439.671 0.137543
\(218\) −75.1096 −0.0233352
\(219\) −442.468 −0.136526
\(220\) −381.037 −0.116771
\(221\) −99.1736 −0.0301861
\(222\) −4847.69 −1.46557
\(223\) 449.799 0.135071 0.0675354 0.997717i \(-0.478486\pi\)
0.0675354 + 0.997717i \(0.478486\pi\)
\(224\) −3709.02 −1.10634
\(225\) −1099.94 −0.325908
\(226\) 7094.83 2.08823
\(227\) 5873.32 1.71729 0.858647 0.512567i \(-0.171305\pi\)
0.858647 + 0.512567i \(0.171305\pi\)
\(228\) 2047.06 0.594603
\(229\) 4207.68 1.21420 0.607099 0.794626i \(-0.292333\pi\)
0.607099 + 0.794626i \(0.292333\pi\)
\(230\) −649.677 −0.186254
\(231\) −231.000 −0.0657952
\(232\) 3079.36 0.871421
\(233\) 5405.81 1.51994 0.759970 0.649958i \(-0.225213\pi\)
0.759970 + 0.649958i \(0.225213\pi\)
\(234\) 48.1011 0.0134379
\(235\) 1006.01 0.279256
\(236\) 14428.4 3.97971
\(237\) 2030.88 0.556623
\(238\) 3735.61 1.01741
\(239\) −5105.16 −1.38170 −0.690848 0.723000i \(-0.742763\pi\)
−0.690848 + 0.723000i \(0.742763\pi\)
\(240\) −1005.58 −0.270457
\(241\) 254.138 0.0679273 0.0339637 0.999423i \(-0.489187\pi\)
0.0339637 + 0.999423i \(0.489187\pi\)
\(242\) 648.897 0.172366
\(243\) 243.000 0.0641500
\(244\) 9192.58 2.41186
\(245\) −81.7627 −0.0213209
\(246\) −4944.80 −1.28158
\(247\) 32.7579 0.00843859
\(248\) −4297.85 −1.10046
\(249\) −667.235 −0.169816
\(250\) 2212.21 0.559649
\(251\) 7030.70 1.76802 0.884012 0.467464i \(-0.154832\pi\)
0.884012 + 0.467464i \(0.154832\pi\)
\(252\) −1307.84 −0.326930
\(253\) 798.621 0.198454
\(254\) −11792.8 −2.91318
\(255\) 498.143 0.122333
\(256\) 2895.22 0.706841
\(257\) 6053.67 1.46933 0.734664 0.678431i \(-0.237340\pi\)
0.734664 + 0.678431i \(0.237340\pi\)
\(258\) 3448.49 0.832146
\(259\) 2109.22 0.506025
\(260\) −34.5221 −0.00823451
\(261\) 405.024 0.0960550
\(262\) 7777.50 1.83395
\(263\) −6106.79 −1.43179 −0.715895 0.698208i \(-0.753981\pi\)
−0.715895 + 0.698208i \(0.753981\pi\)
\(264\) 2258.06 0.526417
\(265\) −987.947 −0.229015
\(266\) −1233.90 −0.284419
\(267\) −3409.04 −0.781384
\(268\) −11524.5 −2.62675
\(269\) 4855.91 1.10063 0.550316 0.834956i \(-0.314507\pi\)
0.550316 + 0.834956i \(0.314507\pi\)
\(270\) −241.609 −0.0544588
\(271\) −8501.09 −1.90555 −0.952775 0.303676i \(-0.901786\pi\)
−0.952775 + 0.303676i \(0.901786\pi\)
\(272\) −19989.7 −4.45609
\(273\) −20.9287 −0.00463979
\(274\) −4789.11 −1.05592
\(275\) −1344.37 −0.294795
\(276\) 4521.53 0.986101
\(277\) −6830.18 −1.48154 −0.740768 0.671761i \(-0.765538\pi\)
−0.740768 + 0.671761i \(0.765538\pi\)
\(278\) −2845.52 −0.613896
\(279\) −565.291 −0.121301
\(280\) 799.243 0.170585
\(281\) 4987.88 1.05890 0.529452 0.848340i \(-0.322397\pi\)
0.529452 + 0.848340i \(0.322397\pi\)
\(282\) −9699.66 −2.04825
\(283\) −1952.88 −0.410200 −0.205100 0.978741i \(-0.565752\pi\)
−0.205100 + 0.978741i \(0.565752\pi\)
\(284\) −3183.50 −0.665161
\(285\) −164.541 −0.0341984
\(286\) 58.7903 0.0121550
\(287\) 2151.47 0.442499
\(288\) 4768.74 0.975697
\(289\) 4989.55 1.01558
\(290\) −402.706 −0.0815438
\(291\) 3031.81 0.610748
\(292\) −3061.80 −0.613624
\(293\) −3220.72 −0.642172 −0.321086 0.947050i \(-0.604048\pi\)
−0.321086 + 0.947050i \(0.604048\pi\)
\(294\) 788.329 0.156382
\(295\) −1159.75 −0.228892
\(296\) −20617.9 −4.04862
\(297\) 297.000 0.0580259
\(298\) 15868.3 3.08466
\(299\) 72.3554 0.0139947
\(300\) −7611.39 −1.46481
\(301\) −1500.43 −0.287320
\(302\) 8946.64 1.70471
\(303\) −1201.25 −0.227757
\(304\) 6602.78 1.24571
\(305\) −738.893 −0.138718
\(306\) −4802.93 −0.897272
\(307\) −5325.08 −0.989963 −0.494981 0.868904i \(-0.664825\pi\)
−0.494981 + 0.868904i \(0.664825\pi\)
\(308\) −1598.48 −0.295720
\(309\) −1259.53 −0.231885
\(310\) 562.056 0.102976
\(311\) −9625.36 −1.75500 −0.877498 0.479580i \(-0.840789\pi\)
−0.877498 + 0.479580i \(0.840789\pi\)
\(312\) 204.581 0.0371222
\(313\) −4315.55 −0.779327 −0.389664 0.920957i \(-0.627409\pi\)
−0.389664 + 0.920957i \(0.627409\pi\)
\(314\) −6449.46 −1.15912
\(315\) 105.124 0.0188033
\(316\) 14053.3 2.50177
\(317\) −7399.84 −1.31109 −0.655546 0.755155i \(-0.727562\pi\)
−0.655546 + 0.755155i \(0.727562\pi\)
\(318\) 9525.45 1.67975
\(319\) 495.029 0.0868850
\(320\) −2059.91 −0.359852
\(321\) 6395.96 1.11211
\(322\) −2725.44 −0.471686
\(323\) −3270.89 −0.563459
\(324\) 1681.51 0.288325
\(325\) −121.801 −0.0207886
\(326\) −13593.8 −2.30947
\(327\) −42.0171 −0.00710567
\(328\) −21031.0 −3.54037
\(329\) 4220.30 0.707211
\(330\) −295.300 −0.0492598
\(331\) −4899.29 −0.813562 −0.406781 0.913526i \(-0.633349\pi\)
−0.406781 + 0.913526i \(0.633349\pi\)
\(332\) −4617.14 −0.763248
\(333\) −2711.85 −0.446272
\(334\) 13001.7 2.13000
\(335\) 926.327 0.151077
\(336\) −4218.45 −0.684927
\(337\) −1445.02 −0.233577 −0.116788 0.993157i \(-0.537260\pi\)
−0.116788 + 0.993157i \(0.537260\pi\)
\(338\) −11776.7 −1.89517
\(339\) 3968.93 0.635878
\(340\) 3447.06 0.549832
\(341\) −690.912 −0.109721
\(342\) 1586.45 0.250834
\(343\) −343.000 −0.0539949
\(344\) 14666.9 2.29880
\(345\) −363.437 −0.0567153
\(346\) 10606.4 1.64799
\(347\) 4351.93 0.673268 0.336634 0.941636i \(-0.390711\pi\)
0.336634 + 0.941636i \(0.390711\pi\)
\(348\) 2802.69 0.431724
\(349\) 7971.30 1.22262 0.611309 0.791392i \(-0.290643\pi\)
0.611309 + 0.791392i \(0.290643\pi\)
\(350\) 4587.91 0.700669
\(351\) 26.9083 0.00409191
\(352\) 5828.46 0.882551
\(353\) −1169.88 −0.176393 −0.0881963 0.996103i \(-0.528110\pi\)
−0.0881963 + 0.996103i \(0.528110\pi\)
\(354\) 11181.9 1.67884
\(355\) 255.887 0.0382565
\(356\) −23589.9 −3.51197
\(357\) 2089.74 0.309806
\(358\) 7051.49 1.04101
\(359\) 11998.8 1.76400 0.881998 0.471253i \(-0.156198\pi\)
0.881998 + 0.471253i \(0.156198\pi\)
\(360\) −1027.60 −0.150442
\(361\) −5778.60 −0.842484
\(362\) 11363.4 1.64985
\(363\) 363.000 0.0524864
\(364\) −144.823 −0.0208537
\(365\) 246.105 0.0352924
\(366\) 7124.16 1.01745
\(367\) −8489.94 −1.20755 −0.603776 0.797154i \(-0.706338\pi\)
−0.603776 + 0.797154i \(0.706338\pi\)
\(368\) 14584.2 2.06590
\(369\) −2766.18 −0.390248
\(370\) 2696.33 0.378853
\(371\) −4144.50 −0.579978
\(372\) −3911.71 −0.545196
\(373\) −13306.1 −1.84708 −0.923542 0.383498i \(-0.874719\pi\)
−0.923542 + 0.383498i \(0.874719\pi\)
\(374\) −5870.25 −0.811613
\(375\) 1237.53 0.170416
\(376\) −41254.0 −5.65828
\(377\) 44.8498 0.00612701
\(378\) −1013.57 −0.137916
\(379\) −10645.0 −1.44274 −0.721368 0.692552i \(-0.756486\pi\)
−0.721368 + 0.692552i \(0.756486\pi\)
\(380\) −1138.59 −0.153707
\(381\) −6597.04 −0.887078
\(382\) 11458.2 1.53469
\(383\) 2299.39 0.306771 0.153385 0.988166i \(-0.450982\pi\)
0.153385 + 0.988166i \(0.450982\pi\)
\(384\) 7144.34 0.949435
\(385\) 128.484 0.0170082
\(386\) −4884.70 −0.644105
\(387\) 1929.12 0.253393
\(388\) 20979.5 2.74504
\(389\) −3243.77 −0.422791 −0.211395 0.977401i \(-0.567801\pi\)
−0.211395 + 0.977401i \(0.567801\pi\)
\(390\) −26.7543 −0.00347373
\(391\) −7224.73 −0.934451
\(392\) 3352.88 0.432005
\(393\) 4350.82 0.558447
\(394\) −13331.1 −1.70460
\(395\) −1129.59 −0.143888
\(396\) 2055.18 0.260800
\(397\) 13850.8 1.75102 0.875508 0.483203i \(-0.160527\pi\)
0.875508 + 0.483203i \(0.160527\pi\)
\(398\) −2060.09 −0.259454
\(399\) −690.259 −0.0866070
\(400\) −24550.5 −3.06882
\(401\) 1238.44 0.154227 0.0771133 0.997022i \(-0.475430\pi\)
0.0771133 + 0.997022i \(0.475430\pi\)
\(402\) −8931.33 −1.10810
\(403\) −62.5969 −0.00773740
\(404\) −8312.46 −1.02366
\(405\) −135.159 −0.0165830
\(406\) −1689.38 −0.206508
\(407\) −3314.48 −0.403668
\(408\) −20427.6 −2.47871
\(409\) −3951.51 −0.477726 −0.238863 0.971053i \(-0.576775\pi\)
−0.238863 + 0.971053i \(0.576775\pi\)
\(410\) 2750.34 0.331292
\(411\) −2679.08 −0.321531
\(412\) −8715.74 −1.04222
\(413\) −4865.21 −0.579665
\(414\) 3504.14 0.415988
\(415\) 371.122 0.0438980
\(416\) 528.061 0.0622363
\(417\) −1591.82 −0.186934
\(418\) 1938.99 0.226888
\(419\) −11603.6 −1.35292 −0.676462 0.736477i \(-0.736488\pi\)
−0.676462 + 0.736477i \(0.736488\pi\)
\(420\) 727.435 0.0845124
\(421\) −10498.9 −1.21541 −0.607703 0.794165i \(-0.707909\pi\)
−0.607703 + 0.794165i \(0.707909\pi\)
\(422\) 20782.5 2.39733
\(423\) −5426.09 −0.623702
\(424\) 40513.1 4.64031
\(425\) 12161.9 1.38809
\(426\) −2467.18 −0.280599
\(427\) −3099.70 −0.351300
\(428\) 44258.8 4.99844
\(429\) 32.8879 0.00370127
\(430\) −1918.08 −0.215112
\(431\) −11109.2 −1.24156 −0.620778 0.783986i \(-0.713183\pi\)
−0.620778 + 0.783986i \(0.713183\pi\)
\(432\) 5423.72 0.604049
\(433\) 12535.7 1.39129 0.695644 0.718387i \(-0.255119\pi\)
0.695644 + 0.718387i \(0.255119\pi\)
\(434\) 2357.86 0.260786
\(435\) −225.278 −0.0248305
\(436\) −290.751 −0.0319368
\(437\) 2386.39 0.261227
\(438\) −2372.86 −0.258858
\(439\) 2227.80 0.242203 0.121102 0.992640i \(-0.461357\pi\)
0.121102 + 0.992640i \(0.461357\pi\)
\(440\) −1255.95 −0.136080
\(441\) 441.000 0.0476190
\(442\) −531.846 −0.0572338
\(443\) −833.252 −0.0893657 −0.0446828 0.999001i \(-0.514228\pi\)
−0.0446828 + 0.999001i \(0.514228\pi\)
\(444\) −18765.5 −2.00579
\(445\) 1896.14 0.201990
\(446\) 2412.17 0.256098
\(447\) 8876.92 0.939293
\(448\) −8641.46 −0.911319
\(449\) −4903.89 −0.515432 −0.257716 0.966221i \(-0.582970\pi\)
−0.257716 + 0.966221i \(0.582970\pi\)
\(450\) −5898.75 −0.617932
\(451\) −3380.88 −0.352992
\(452\) 27464.2 2.85798
\(453\) 5004.85 0.519091
\(454\) 31497.3 3.25604
\(455\) 11.6407 0.00119940
\(456\) 6747.39 0.692929
\(457\) 12100.7 1.23861 0.619307 0.785149i \(-0.287414\pi\)
0.619307 + 0.785149i \(0.287414\pi\)
\(458\) 22564.9 2.30216
\(459\) −2686.81 −0.273224
\(460\) −2514.91 −0.254910
\(461\) −1271.16 −0.128425 −0.0642125 0.997936i \(-0.520454\pi\)
−0.0642125 + 0.997936i \(0.520454\pi\)
\(462\) −1238.80 −0.124750
\(463\) −16020.3 −1.60805 −0.804024 0.594596i \(-0.797312\pi\)
−0.804024 + 0.594596i \(0.797312\pi\)
\(464\) 9040.08 0.904472
\(465\) 314.420 0.0313568
\(466\) 28990.2 2.88185
\(467\) −10696.1 −1.05986 −0.529930 0.848042i \(-0.677782\pi\)
−0.529930 + 0.848042i \(0.677782\pi\)
\(468\) 186.200 0.0183913
\(469\) 3886.00 0.382599
\(470\) 5395.04 0.529478
\(471\) −3607.90 −0.352958
\(472\) 47558.2 4.63780
\(473\) 2357.82 0.229202
\(474\) 10891.2 1.05537
\(475\) −4017.17 −0.388043
\(476\) 14460.6 1.39244
\(477\) 5328.64 0.511492
\(478\) −27377.9 −2.61974
\(479\) −12055.2 −1.14993 −0.574963 0.818179i \(-0.694984\pi\)
−0.574963 + 0.818179i \(0.694984\pi\)
\(480\) −2652.42 −0.252220
\(481\) −300.293 −0.0284661
\(482\) 1362.89 0.128792
\(483\) −1524.64 −0.143631
\(484\) 2511.89 0.235903
\(485\) −1686.32 −0.157880
\(486\) 1303.16 0.121630
\(487\) −14273.2 −1.32809 −0.664045 0.747693i \(-0.731162\pi\)
−0.664045 + 0.747693i \(0.731162\pi\)
\(488\) 30300.1 2.81070
\(489\) −7604.50 −0.703246
\(490\) −438.476 −0.0404251
\(491\) −15616.7 −1.43538 −0.717691 0.696362i \(-0.754801\pi\)
−0.717691 + 0.696362i \(0.754801\pi\)
\(492\) −19141.4 −1.75399
\(493\) −4478.28 −0.409111
\(494\) 175.673 0.0159998
\(495\) −165.194 −0.0149998
\(496\) −12617.2 −1.14220
\(497\) 1073.46 0.0968841
\(498\) −3578.24 −0.321977
\(499\) 5820.03 0.522125 0.261062 0.965322i \(-0.415927\pi\)
0.261062 + 0.965322i \(0.415927\pi\)
\(500\) 8563.49 0.765942
\(501\) 7273.28 0.648596
\(502\) 37704.1 3.35223
\(503\) −1744.38 −0.154629 −0.0773143 0.997007i \(-0.524634\pi\)
−0.0773143 + 0.997007i \(0.524634\pi\)
\(504\) −4310.84 −0.380992
\(505\) 668.149 0.0588757
\(506\) 4282.83 0.376275
\(507\) −6588.02 −0.577089
\(508\) −45650.3 −3.98701
\(509\) −4561.13 −0.397187 −0.198594 0.980082i \(-0.563637\pi\)
−0.198594 + 0.980082i \(0.563637\pi\)
\(510\) 2671.43 0.231947
\(511\) 1032.43 0.0893774
\(512\) −3525.13 −0.304278
\(513\) 887.476 0.0763802
\(514\) 32464.5 2.78589
\(515\) 700.565 0.0599429
\(516\) 13349.2 1.13889
\(517\) −6631.89 −0.564159
\(518\) 11311.3 0.959438
\(519\) 5933.35 0.501822
\(520\) −113.790 −0.00959619
\(521\) −311.151 −0.0261646 −0.0130823 0.999914i \(-0.504164\pi\)
−0.0130823 + 0.999914i \(0.504164\pi\)
\(522\) 2172.06 0.182123
\(523\) 18159.9 1.51831 0.759154 0.650911i \(-0.225613\pi\)
0.759154 + 0.650911i \(0.225613\pi\)
\(524\) 30106.8 2.50997
\(525\) 2566.53 0.213357
\(526\) −32749.4 −2.71472
\(527\) 6250.34 0.516639
\(528\) 6629.00 0.546383
\(529\) −6895.96 −0.566776
\(530\) −5298.14 −0.434220
\(531\) 6255.27 0.511216
\(532\) −4776.46 −0.389259
\(533\) −306.309 −0.0248925
\(534\) −18281.9 −1.48153
\(535\) −3557.49 −0.287484
\(536\) −37986.3 −3.06111
\(537\) 3944.68 0.316994
\(538\) 26041.2 2.08683
\(539\) 539.000 0.0430730
\(540\) −935.274 −0.0745329
\(541\) 10858.8 0.862951 0.431476 0.902125i \(-0.357993\pi\)
0.431476 + 0.902125i \(0.357993\pi\)
\(542\) −45589.5 −3.61298
\(543\) 6356.81 0.502389
\(544\) −52727.2 −4.15562
\(545\) 23.3703 0.00183683
\(546\) −112.236 −0.00879717
\(547\) 9560.10 0.747277 0.373638 0.927574i \(-0.378110\pi\)
0.373638 + 0.927574i \(0.378110\pi\)
\(548\) −18538.7 −1.44514
\(549\) 3985.33 0.309818
\(550\) −7209.58 −0.558941
\(551\) 1479.21 0.114368
\(552\) 14903.6 1.14917
\(553\) −4738.71 −0.364395
\(554\) −36628.8 −2.80904
\(555\) 1508.36 0.115362
\(556\) −11015.1 −0.840186
\(557\) −961.471 −0.0731397 −0.0365699 0.999331i \(-0.511643\pi\)
−0.0365699 + 0.999331i \(0.511643\pi\)
\(558\) −3031.53 −0.229991
\(559\) 213.619 0.0161630
\(560\) 2346.34 0.177055
\(561\) −3283.88 −0.247140
\(562\) 26748.9 2.00772
\(563\) 26376.5 1.97449 0.987245 0.159206i \(-0.0508935\pi\)
0.987245 + 0.159206i \(0.0508935\pi\)
\(564\) −37547.6 −2.80326
\(565\) −2207.55 −0.164376
\(566\) −10472.9 −0.777751
\(567\) −567.000 −0.0419961
\(568\) −10493.3 −0.775154
\(569\) 8256.23 0.608294 0.304147 0.952625i \(-0.401629\pi\)
0.304147 + 0.952625i \(0.401629\pi\)
\(570\) −882.396 −0.0648412
\(571\) −25003.0 −1.83248 −0.916239 0.400632i \(-0.868791\pi\)
−0.916239 + 0.400632i \(0.868791\pi\)
\(572\) 227.578 0.0166355
\(573\) 6409.82 0.467320
\(574\) 11537.9 0.838992
\(575\) −8873.09 −0.643537
\(576\) 11110.5 0.803708
\(577\) −5560.17 −0.401166 −0.200583 0.979677i \(-0.564284\pi\)
−0.200583 + 0.979677i \(0.564284\pi\)
\(578\) 26757.9 1.92557
\(579\) −2732.56 −0.196133
\(580\) −1558.88 −0.111602
\(581\) 1556.88 0.111171
\(582\) 16258.9 1.15800
\(583\) 6512.79 0.462662
\(584\) −10092.1 −0.715094
\(585\) −14.9666 −0.00105777
\(586\) −17272.0 −1.21758
\(587\) 3926.82 0.276111 0.138055 0.990425i \(-0.455915\pi\)
0.138055 + 0.990425i \(0.455915\pi\)
\(588\) 3051.64 0.214026
\(589\) −2064.54 −0.144427
\(590\) −6219.47 −0.433986
\(591\) −7457.59 −0.519060
\(592\) −60528.1 −4.20218
\(593\) −14397.6 −0.997027 −0.498514 0.866882i \(-0.666121\pi\)
−0.498514 + 0.866882i \(0.666121\pi\)
\(594\) 1592.75 0.110019
\(595\) −1162.33 −0.0800858
\(596\) 61426.6 4.22170
\(597\) −1152.44 −0.0790051
\(598\) 388.026 0.0265344
\(599\) −14711.0 −1.00347 −0.501734 0.865022i \(-0.667304\pi\)
−0.501734 + 0.865022i \(0.667304\pi\)
\(600\) −25088.2 −1.70704
\(601\) 27436.8 1.86218 0.931090 0.364790i \(-0.118859\pi\)
0.931090 + 0.364790i \(0.118859\pi\)
\(602\) −8046.48 −0.544768
\(603\) −4996.29 −0.337420
\(604\) 34632.6 2.33308
\(605\) −201.904 −0.0135679
\(606\) −6442.07 −0.431834
\(607\) 6090.69 0.407271 0.203636 0.979047i \(-0.434724\pi\)
0.203636 + 0.979047i \(0.434724\pi\)
\(608\) 17416.2 1.16171
\(609\) −945.056 −0.0628828
\(610\) −3962.52 −0.263013
\(611\) −600.852 −0.0397837
\(612\) −18592.2 −1.22802
\(613\) 5175.61 0.341013 0.170506 0.985357i \(-0.445460\pi\)
0.170506 + 0.985357i \(0.445460\pi\)
\(614\) −28557.3 −1.87700
\(615\) 1538.57 0.100880
\(616\) −5268.81 −0.344621
\(617\) −10544.9 −0.688044 −0.344022 0.938962i \(-0.611789\pi\)
−0.344022 + 0.938962i \(0.611789\pi\)
\(618\) −6754.61 −0.439661
\(619\) −8378.59 −0.544045 −0.272023 0.962291i \(-0.587693\pi\)
−0.272023 + 0.962291i \(0.587693\pi\)
\(620\) 2175.73 0.140934
\(621\) 1960.25 0.126670
\(622\) −51618.7 −3.32753
\(623\) 7954.42 0.511536
\(624\) 600.589 0.0385302
\(625\) 14588.6 0.933673
\(626\) −23143.4 −1.47763
\(627\) 1084.69 0.0690885
\(628\) −24966.0 −1.58639
\(629\) 29984.5 1.90073
\(630\) 563.755 0.0356516
\(631\) −2651.03 −0.167251 −0.0836257 0.996497i \(-0.526650\pi\)
−0.0836257 + 0.996497i \(0.526650\pi\)
\(632\) 46321.6 2.91547
\(633\) 11625.9 0.730000
\(634\) −39683.7 −2.48587
\(635\) 3669.33 0.229312
\(636\) 36873.2 2.29893
\(637\) 48.8336 0.00303745
\(638\) 2654.73 0.164737
\(639\) −1380.17 −0.0854437
\(640\) −3973.75 −0.245431
\(641\) −6716.00 −0.413831 −0.206916 0.978359i \(-0.566343\pi\)
−0.206916 + 0.978359i \(0.566343\pi\)
\(642\) 34300.1 2.10860
\(643\) 752.048 0.0461242 0.0230621 0.999734i \(-0.492658\pi\)
0.0230621 + 0.999734i \(0.492658\pi\)
\(644\) −10550.2 −0.645555
\(645\) −1073.00 −0.0655026
\(646\) −17541.1 −1.06834
\(647\) −10412.8 −0.632717 −0.316358 0.948640i \(-0.602460\pi\)
−0.316358 + 0.948640i \(0.602460\pi\)
\(648\) 5542.51 0.336004
\(649\) 7645.33 0.462412
\(650\) −653.190 −0.0394157
\(651\) 1319.01 0.0794105
\(652\) −52621.7 −3.16077
\(653\) 15442.9 0.925462 0.462731 0.886499i \(-0.346870\pi\)
0.462731 + 0.886499i \(0.346870\pi\)
\(654\) −225.329 −0.0134726
\(655\) −2419.96 −0.144360
\(656\) −61740.6 −3.67464
\(657\) −1327.40 −0.0788234
\(658\) 22632.5 1.34089
\(659\) −5333.13 −0.315249 −0.157625 0.987499i \(-0.550384\pi\)
−0.157625 + 0.987499i \(0.550384\pi\)
\(660\) −1143.11 −0.0674175
\(661\) 15118.3 0.889614 0.444807 0.895626i \(-0.353272\pi\)
0.444807 + 0.895626i \(0.353272\pi\)
\(662\) −26273.8 −1.54254
\(663\) −297.521 −0.0174280
\(664\) −15218.8 −0.889461
\(665\) 383.928 0.0223881
\(666\) −14543.1 −0.846145
\(667\) 3267.28 0.189670
\(668\) 50329.8 2.91514
\(669\) 1349.40 0.0779831
\(670\) 4967.69 0.286446
\(671\) 4870.96 0.280241
\(672\) −11127.1 −0.638744
\(673\) −813.476 −0.0465931 −0.0232966 0.999729i \(-0.507416\pi\)
−0.0232966 + 0.999729i \(0.507416\pi\)
\(674\) −7749.33 −0.442868
\(675\) −3299.82 −0.188163
\(676\) −45587.9 −2.59376
\(677\) 10390.3 0.589854 0.294927 0.955520i \(-0.404705\pi\)
0.294927 + 0.955520i \(0.404705\pi\)
\(678\) 21284.5 1.20564
\(679\) −7074.22 −0.399828
\(680\) 11362.0 0.640754
\(681\) 17620.0 0.991480
\(682\) −3705.21 −0.208035
\(683\) 24315.7 1.36225 0.681124 0.732168i \(-0.261491\pi\)
0.681124 + 0.732168i \(0.261491\pi\)
\(684\) 6141.17 0.343294
\(685\) 1490.13 0.0831167
\(686\) −1839.43 −0.102376
\(687\) 12623.0 0.701018
\(688\) 43057.8 2.38599
\(689\) 590.061 0.0326263
\(690\) −1949.03 −0.107534
\(691\) −15379.7 −0.846701 −0.423351 0.905966i \(-0.639146\pi\)
−0.423351 + 0.905966i \(0.639146\pi\)
\(692\) 41057.7 2.25546
\(693\) −693.000 −0.0379869
\(694\) 23338.5 1.27654
\(695\) 885.384 0.0483230
\(696\) 9238.07 0.503115
\(697\) 30585.2 1.66212
\(698\) 42748.3 2.31812
\(699\) 16217.4 0.877538
\(700\) 17759.9 0.958944
\(701\) −2397.08 −0.129153 −0.0645766 0.997913i \(-0.520570\pi\)
−0.0645766 + 0.997913i \(0.520570\pi\)
\(702\) 144.303 0.00775838
\(703\) −9904.13 −0.531353
\(704\) 13579.4 0.726981
\(705\) 3018.04 0.161228
\(706\) −6273.83 −0.334446
\(707\) 2802.93 0.149102
\(708\) 43285.3 2.29769
\(709\) 17121.2 0.906912 0.453456 0.891279i \(-0.350191\pi\)
0.453456 + 0.891279i \(0.350191\pi\)
\(710\) 1372.27 0.0725355
\(711\) 6092.63 0.321366
\(712\) −77755.6 −4.09272
\(713\) −4560.14 −0.239521
\(714\) 11206.8 0.587402
\(715\) −18.2926 −0.000956788 0
\(716\) 27296.5 1.42474
\(717\) −15315.5 −0.797723
\(718\) 64347.2 3.34459
\(719\) 34131.4 1.77036 0.885179 0.465251i \(-0.154036\pi\)
0.885179 + 0.465251i \(0.154036\pi\)
\(720\) −3016.73 −0.156148
\(721\) 2938.91 0.151804
\(722\) −30989.4 −1.59737
\(723\) 762.415 0.0392179
\(724\) 43988.0 2.25801
\(725\) −5500.03 −0.281746
\(726\) 1946.69 0.0995158
\(727\) −1143.65 −0.0583434 −0.0291717 0.999574i \(-0.509287\pi\)
−0.0291717 + 0.999574i \(0.509287\pi\)
\(728\) −477.356 −0.0243022
\(729\) 729.000 0.0370370
\(730\) 1319.81 0.0669154
\(731\) −21330.0 −1.07923
\(732\) 27577.7 1.39249
\(733\) 24224.7 1.22068 0.610342 0.792138i \(-0.291032\pi\)
0.610342 + 0.792138i \(0.291032\pi\)
\(734\) −45529.7 −2.28955
\(735\) −245.288 −0.0123096
\(736\) 38468.9 1.92660
\(737\) −6106.57 −0.305208
\(738\) −14834.4 −0.739921
\(739\) 25815.9 1.28505 0.642525 0.766265i \(-0.277887\pi\)
0.642525 + 0.766265i \(0.277887\pi\)
\(740\) 10437.5 0.518502
\(741\) 98.2736 0.00487202
\(742\) −22226.1 −1.09966
\(743\) −17221.1 −0.850312 −0.425156 0.905120i \(-0.639781\pi\)
−0.425156 + 0.905120i \(0.639781\pi\)
\(744\) −12893.6 −0.635351
\(745\) −4937.42 −0.242810
\(746\) −71357.5 −3.50212
\(747\) −2001.70 −0.0980436
\(748\) −22723.8 −1.11078
\(749\) −14923.9 −0.728048
\(750\) 6636.62 0.323113
\(751\) −15631.7 −0.759531 −0.379766 0.925083i \(-0.623995\pi\)
−0.379766 + 0.925083i \(0.623995\pi\)
\(752\) −121110. −5.87289
\(753\) 21092.1 1.02077
\(754\) 240.520 0.0116170
\(755\) −2783.74 −0.134186
\(756\) −3923.53 −0.188753
\(757\) 24756.7 1.18864 0.594319 0.804230i \(-0.297422\pi\)
0.594319 + 0.804230i \(0.297422\pi\)
\(758\) −57086.8 −2.73547
\(759\) 2395.86 0.114578
\(760\) −3752.96 −0.179124
\(761\) −9087.20 −0.432866 −0.216433 0.976297i \(-0.569442\pi\)
−0.216433 + 0.976297i \(0.569442\pi\)
\(762\) −35378.5 −1.68193
\(763\) 98.0400 0.00465175
\(764\) 44354.8 2.10039
\(765\) 1494.43 0.0706290
\(766\) 12331.1 0.581647
\(767\) 692.670 0.0326087
\(768\) 8685.66 0.408095
\(769\) 10699.9 0.501753 0.250876 0.968019i \(-0.419281\pi\)
0.250876 + 0.968019i \(0.419281\pi\)
\(770\) 689.033 0.0322481
\(771\) 18161.0 0.848317
\(772\) −18908.8 −0.881531
\(773\) −6586.45 −0.306466 −0.153233 0.988190i \(-0.548968\pi\)
−0.153233 + 0.988190i \(0.548968\pi\)
\(774\) 10345.5 0.480440
\(775\) 7676.39 0.355799
\(776\) 69151.5 3.19896
\(777\) 6327.65 0.292153
\(778\) −17395.6 −0.801623
\(779\) −10102.5 −0.464648
\(780\) −103.566 −0.00475419
\(781\) −1686.87 −0.0772867
\(782\) −38744.7 −1.77175
\(783\) 1215.07 0.0554574
\(784\) 9843.06 0.448390
\(785\) 2006.75 0.0912406
\(786\) 23332.5 1.05883
\(787\) −5581.26 −0.252796 −0.126398 0.991980i \(-0.540342\pi\)
−0.126398 + 0.991980i \(0.540342\pi\)
\(788\) −51605.1 −2.33294
\(789\) −18320.4 −0.826644
\(790\) −6057.76 −0.272817
\(791\) −9260.83 −0.416280
\(792\) 6774.18 0.303927
\(793\) 441.311 0.0197622
\(794\) 74279.0 3.31998
\(795\) −2963.84 −0.132222
\(796\) −7974.64 −0.355092
\(797\) −20336.2 −0.903821 −0.451911 0.892063i \(-0.649257\pi\)
−0.451911 + 0.892063i \(0.649257\pi\)
\(798\) −3701.71 −0.164209
\(799\) 59995.5 2.65643
\(800\) −64757.2 −2.86189
\(801\) −10227.1 −0.451132
\(802\) 6641.49 0.292418
\(803\) −1622.38 −0.0712985
\(804\) −34573.4 −1.51655
\(805\) 848.019 0.0371289
\(806\) −335.693 −0.0146703
\(807\) 14567.7 0.635450
\(808\) −27399.1 −1.19294
\(809\) 5494.43 0.238781 0.119391 0.992847i \(-0.461906\pi\)
0.119391 + 0.992847i \(0.461906\pi\)
\(810\) −724.827 −0.0314418
\(811\) 33839.3 1.46518 0.732590 0.680671i \(-0.238312\pi\)
0.732590 + 0.680671i \(0.238312\pi\)
\(812\) −6539.61 −0.282630
\(813\) −25503.3 −1.10017
\(814\) −17774.9 −0.765367
\(815\) 4229.69 0.181791
\(816\) −59969.2 −2.57272
\(817\) 7045.48 0.301702
\(818\) −21191.1 −0.905782
\(819\) −62.7860 −0.00267878
\(820\) 10646.6 0.453410
\(821\) 35849.2 1.52393 0.761965 0.647618i \(-0.224235\pi\)
0.761965 + 0.647618i \(0.224235\pi\)
\(822\) −14367.3 −0.609633
\(823\) −14873.5 −0.629961 −0.314981 0.949098i \(-0.601998\pi\)
−0.314981 + 0.949098i \(0.601998\pi\)
\(824\) −28728.3 −1.21456
\(825\) −4033.12 −0.170200
\(826\) −26091.1 −1.09906
\(827\) 5757.86 0.242104 0.121052 0.992646i \(-0.461373\pi\)
0.121052 + 0.992646i \(0.461373\pi\)
\(828\) 13564.6 0.569326
\(829\) −38718.4 −1.62213 −0.811064 0.584957i \(-0.801111\pi\)
−0.811064 + 0.584957i \(0.801111\pi\)
\(830\) 1990.25 0.0832319
\(831\) −20490.5 −0.855366
\(832\) 1230.30 0.0512657
\(833\) −4876.07 −0.202816
\(834\) −8536.57 −0.354433
\(835\) −4045.47 −0.167664
\(836\) 7505.87 0.310521
\(837\) −1695.87 −0.0700334
\(838\) −62227.8 −2.56518
\(839\) −36011.2 −1.48182 −0.740908 0.671606i \(-0.765605\pi\)
−0.740908 + 0.671606i \(0.765605\pi\)
\(840\) 2397.73 0.0984876
\(841\) −22363.8 −0.916961
\(842\) −56303.4 −2.30445
\(843\) 14963.7 0.611359
\(844\) 80449.3 3.28102
\(845\) 3664.32 0.149179
\(846\) −29099.0 −1.18256
\(847\) −847.000 −0.0343604
\(848\) 118935. 4.81631
\(849\) −5858.63 −0.236829
\(850\) 65221.5 2.63186
\(851\) −21876.2 −0.881205
\(852\) −9550.49 −0.384031
\(853\) −12086.6 −0.485157 −0.242578 0.970132i \(-0.577993\pi\)
−0.242578 + 0.970132i \(0.577993\pi\)
\(854\) −16623.0 −0.666075
\(855\) −493.622 −0.0197445
\(856\) 145883. 5.82499
\(857\) −8653.97 −0.344941 −0.172470 0.985015i \(-0.555175\pi\)
−0.172470 + 0.985015i \(0.555175\pi\)
\(858\) 176.371 0.00701772
\(859\) −46141.6 −1.83275 −0.916374 0.400324i \(-0.868898\pi\)
−0.916374 + 0.400324i \(0.868898\pi\)
\(860\) −7424.94 −0.294405
\(861\) 6454.41 0.255477
\(862\) −59576.1 −2.35403
\(863\) 16324.1 0.643893 0.321946 0.946758i \(-0.395663\pi\)
0.321946 + 0.946758i \(0.395663\pi\)
\(864\) 14306.2 0.563319
\(865\) −3300.19 −0.129722
\(866\) 67226.2 2.63792
\(867\) 14968.6 0.586346
\(868\) 9127.32 0.356914
\(869\) 7446.55 0.290687
\(870\) −1208.12 −0.0470793
\(871\) −553.258 −0.0215229
\(872\) −958.356 −0.0372179
\(873\) 9095.42 0.352615
\(874\) 12797.7 0.495295
\(875\) −2887.58 −0.111563
\(876\) −9185.39 −0.354276
\(877\) 17297.6 0.666017 0.333008 0.942924i \(-0.391936\pi\)
0.333008 + 0.942924i \(0.391936\pi\)
\(878\) 11947.2 0.459225
\(879\) −9662.15 −0.370758
\(880\) −3687.11 −0.141241
\(881\) 45762.2 1.75002 0.875009 0.484106i \(-0.160855\pi\)
0.875009 + 0.484106i \(0.160855\pi\)
\(882\) 2364.99 0.0902871
\(883\) −1535.96 −0.0585380 −0.0292690 0.999572i \(-0.509318\pi\)
−0.0292690 + 0.999572i \(0.509318\pi\)
\(884\) −2058.79 −0.0783309
\(885\) −3479.24 −0.132151
\(886\) −4468.55 −0.169440
\(887\) −47975.2 −1.81607 −0.908033 0.418899i \(-0.862416\pi\)
−0.908033 + 0.418899i \(0.862416\pi\)
\(888\) −61853.8 −2.33747
\(889\) 15393.1 0.580729
\(890\) 10168.6 0.382979
\(891\) 891.000 0.0335013
\(892\) 9337.57 0.350499
\(893\) −19817.0 −0.742610
\(894\) 47605.0 1.78093
\(895\) −2194.07 −0.0819437
\(896\) −16670.1 −0.621551
\(897\) 217.066 0.00807985
\(898\) −26298.5 −0.977274
\(899\) −2826.62 −0.104865
\(900\) −22834.2 −0.845710
\(901\) −58918.0 −2.17851
\(902\) −18130.9 −0.669284
\(903\) −4501.29 −0.165884
\(904\) 90526.0 3.33059
\(905\) −3535.72 −0.129869
\(906\) 26839.9 0.984212
\(907\) 16461.0 0.602622 0.301311 0.953526i \(-0.402576\pi\)
0.301311 + 0.953526i \(0.402576\pi\)
\(908\) 121927. 4.45626
\(909\) −3603.76 −0.131495
\(910\) 62.4267 0.00227409
\(911\) −4712.18 −0.171374 −0.0856869 0.996322i \(-0.527308\pi\)
−0.0856869 + 0.996322i \(0.527308\pi\)
\(912\) 19808.3 0.719210
\(913\) −2446.53 −0.0886837
\(914\) 64893.4 2.34845
\(915\) −2216.68 −0.0800887
\(916\) 87349.1 3.15076
\(917\) −10151.9 −0.365589
\(918\) −14408.8 −0.518040
\(919\) 16055.3 0.576294 0.288147 0.957586i \(-0.406961\pi\)
0.288147 + 0.957586i \(0.406961\pi\)
\(920\) −8289.52 −0.297062
\(921\) −15975.2 −0.571555
\(922\) −6816.97 −0.243498
\(923\) −152.831 −0.00545016
\(924\) −4795.43 −0.170734
\(925\) 36825.6 1.30899
\(926\) −85913.4 −3.04891
\(927\) −3778.60 −0.133879
\(928\) 23845.1 0.843485
\(929\) 9378.49 0.331215 0.165607 0.986192i \(-0.447042\pi\)
0.165607 + 0.986192i \(0.447042\pi\)
\(930\) 1686.17 0.0594533
\(931\) 1610.60 0.0566976
\(932\) 112222. 3.94414
\(933\) −28876.1 −1.01325
\(934\) −57360.6 −2.00953
\(935\) 1826.52 0.0638864
\(936\) 613.743 0.0214325
\(937\) 9100.65 0.317295 0.158647 0.987335i \(-0.449287\pi\)
0.158647 + 0.987335i \(0.449287\pi\)
\(938\) 20839.8 0.725419
\(939\) −12946.7 −0.449945
\(940\) 20884.3 0.724650
\(941\) 9738.84 0.337383 0.168691 0.985669i \(-0.446046\pi\)
0.168691 + 0.985669i \(0.446046\pi\)
\(942\) −19348.4 −0.669219
\(943\) −22314.4 −0.770580
\(944\) 139617. 4.81371
\(945\) 315.371 0.0108561
\(946\) 12644.5 0.434574
\(947\) 47225.8 1.62052 0.810260 0.586071i \(-0.199326\pi\)
0.810260 + 0.586071i \(0.199326\pi\)
\(948\) 42159.9 1.44440
\(949\) −146.989 −0.00502787
\(950\) −21543.2 −0.735740
\(951\) −22199.5 −0.756960
\(952\) 47664.3 1.62270
\(953\) 972.630 0.0330604 0.0165302 0.999863i \(-0.494738\pi\)
0.0165302 + 0.999863i \(0.494738\pi\)
\(954\) 28576.4 0.969805
\(955\) −3565.20 −0.120803
\(956\) −105980. −3.58541
\(957\) 1485.09 0.0501631
\(958\) −64649.3 −2.18030
\(959\) 6251.19 0.210492
\(960\) −6179.74 −0.207761
\(961\) −25845.9 −0.867574
\(962\) −1610.41 −0.0539726
\(963\) 19187.9 0.642078
\(964\) 5275.77 0.176267
\(965\) 1519.87 0.0507010
\(966\) −8176.32 −0.272328
\(967\) −21987.5 −0.731199 −0.365599 0.930772i \(-0.619136\pi\)
−0.365599 + 0.930772i \(0.619136\pi\)
\(968\) 8279.56 0.274912
\(969\) −9812.68 −0.325313
\(970\) −9043.36 −0.299345
\(971\) −18194.5 −0.601326 −0.300663 0.953730i \(-0.597208\pi\)
−0.300663 + 0.953730i \(0.597208\pi\)
\(972\) 5044.54 0.166465
\(973\) 3714.24 0.122377
\(974\) −76544.0 −2.51810
\(975\) −365.402 −0.0120023
\(976\) 88952.0 2.91730
\(977\) −14356.0 −0.470103 −0.235051 0.971983i \(-0.575526\pi\)
−0.235051 + 0.971983i \(0.575526\pi\)
\(978\) −40781.3 −1.33338
\(979\) −12499.8 −0.408065
\(980\) −1697.35 −0.0553263
\(981\) −126.051 −0.00410246
\(982\) −83749.1 −2.72153
\(983\) 25765.5 0.836005 0.418002 0.908446i \(-0.362730\pi\)
0.418002 + 0.908446i \(0.362730\pi\)
\(984\) −63092.9 −2.04403
\(985\) 4147.98 0.134178
\(986\) −24016.1 −0.775687
\(987\) 12660.9 0.408309
\(988\) 680.035 0.0218976
\(989\) 15562.0 0.500347
\(990\) −885.900 −0.0284402
\(991\) 7750.45 0.248437 0.124219 0.992255i \(-0.460358\pi\)
0.124219 + 0.992255i \(0.460358\pi\)
\(992\) −33280.6 −1.06518
\(993\) −14697.9 −0.469711
\(994\) 5756.75 0.183695
\(995\) 640.995 0.0204230
\(996\) −13851.4 −0.440662
\(997\) 12105.1 0.384528 0.192264 0.981343i \(-0.438417\pi\)
0.192264 + 0.981343i \(0.438417\pi\)
\(998\) 31211.5 0.989964
\(999\) −8135.55 −0.257655
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.l.1.5 5
3.2 odd 2 693.4.a.n.1.1 5
7.6 odd 2 1617.4.a.p.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.l.1.5 5 1.1 even 1 trivial
693.4.a.n.1.1 5 3.2 odd 2
1617.4.a.p.1.5 5 7.6 odd 2