Properties

Label 231.4.a.l.1.4
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 28x^{3} - 11x^{2} + 108x - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.85551\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.85551 q^{2} +3.00000 q^{3} +6.86494 q^{4} +18.0422 q^{5} +11.5665 q^{6} -7.00000 q^{7} -4.37623 q^{8} +9.00000 q^{9} +69.5618 q^{10} +11.0000 q^{11} +20.5948 q^{12} +16.8358 q^{13} -26.9886 q^{14} +54.1265 q^{15} -71.7921 q^{16} +76.0041 q^{17} +34.6996 q^{18} +11.8937 q^{19} +123.858 q^{20} -21.0000 q^{21} +42.4106 q^{22} -175.501 q^{23} -13.1287 q^{24} +200.520 q^{25} +64.9104 q^{26} +27.0000 q^{27} -48.0546 q^{28} -219.409 q^{29} +208.685 q^{30} -214.355 q^{31} -241.785 q^{32} +33.0000 q^{33} +293.035 q^{34} -126.295 q^{35} +61.7845 q^{36} +272.754 q^{37} +45.8562 q^{38} +50.5073 q^{39} -78.9567 q^{40} +204.925 q^{41} -80.9657 q^{42} +406.384 q^{43} +75.5144 q^{44} +162.380 q^{45} -676.647 q^{46} +178.653 q^{47} -215.376 q^{48} +49.0000 q^{49} +773.107 q^{50} +228.012 q^{51} +115.577 q^{52} -238.316 q^{53} +104.099 q^{54} +198.464 q^{55} +30.6336 q^{56} +35.6811 q^{57} -845.931 q^{58} -584.798 q^{59} +371.575 q^{60} -910.607 q^{61} -826.449 q^{62} -63.0000 q^{63} -357.868 q^{64} +303.754 q^{65} +127.232 q^{66} -387.749 q^{67} +521.764 q^{68} -526.504 q^{69} -486.932 q^{70} -668.091 q^{71} -39.3861 q^{72} +390.298 q^{73} +1051.60 q^{74} +601.561 q^{75} +81.6495 q^{76} -77.0000 q^{77} +194.731 q^{78} -250.647 q^{79} -1295.29 q^{80} +81.0000 q^{81} +790.090 q^{82} -54.2027 q^{83} -144.164 q^{84} +1371.28 q^{85} +1566.82 q^{86} -658.226 q^{87} -48.1385 q^{88} -906.680 q^{89} +626.056 q^{90} -117.850 q^{91} -1204.81 q^{92} -643.066 q^{93} +688.796 q^{94} +214.588 q^{95} -725.356 q^{96} +618.333 q^{97} +188.920 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{2} + 15 q^{3} + 21 q^{4} + 7 q^{5} + 15 q^{6} - 35 q^{7} + 60 q^{8} + 45 q^{9} + 55 q^{10} + 55 q^{11} + 63 q^{12} + 111 q^{13} - 35 q^{14} + 21 q^{15} + 201 q^{16} + 136 q^{17} + 45 q^{18} + 111 q^{19}+ \cdots + 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.85551 1.36313 0.681564 0.731759i \(-0.261300\pi\)
0.681564 + 0.731759i \(0.261300\pi\)
\(3\) 3.00000 0.577350
\(4\) 6.86494 0.858118
\(5\) 18.0422 1.61374 0.806871 0.590728i \(-0.201159\pi\)
0.806871 + 0.590728i \(0.201159\pi\)
\(6\) 11.5665 0.787002
\(7\) −7.00000 −0.377964
\(8\) −4.37623 −0.193404
\(9\) 9.00000 0.333333
\(10\) 69.5618 2.19974
\(11\) 11.0000 0.301511
\(12\) 20.5948 0.495434
\(13\) 16.8358 0.359185 0.179592 0.983741i \(-0.442522\pi\)
0.179592 + 0.983741i \(0.442522\pi\)
\(14\) −26.9886 −0.515214
\(15\) 54.1265 0.931694
\(16\) −71.7921 −1.12175
\(17\) 76.0041 1.08434 0.542168 0.840270i \(-0.317604\pi\)
0.542168 + 0.840270i \(0.317604\pi\)
\(18\) 34.6996 0.454376
\(19\) 11.8937 0.143611 0.0718053 0.997419i \(-0.477124\pi\)
0.0718053 + 0.997419i \(0.477124\pi\)
\(20\) 123.858 1.38478
\(21\) −21.0000 −0.218218
\(22\) 42.4106 0.410999
\(23\) −175.501 −1.59107 −0.795534 0.605909i \(-0.792810\pi\)
−0.795534 + 0.605909i \(0.792810\pi\)
\(24\) −13.1287 −0.111662
\(25\) 200.520 1.60416
\(26\) 64.9104 0.489615
\(27\) 27.0000 0.192450
\(28\) −48.0546 −0.324338
\(29\) −219.409 −1.40494 −0.702468 0.711715i \(-0.747919\pi\)
−0.702468 + 0.711715i \(0.747919\pi\)
\(30\) 208.685 1.27002
\(31\) −214.355 −1.24192 −0.620958 0.783844i \(-0.713256\pi\)
−0.620958 + 0.783844i \(0.713256\pi\)
\(32\) −241.785 −1.33569
\(33\) 33.0000 0.174078
\(34\) 293.035 1.47809
\(35\) −126.295 −0.609937
\(36\) 61.7845 0.286039
\(37\) 272.754 1.21190 0.605952 0.795501i \(-0.292792\pi\)
0.605952 + 0.795501i \(0.292792\pi\)
\(38\) 45.8562 0.195760
\(39\) 50.5073 0.207375
\(40\) −78.9567 −0.312104
\(41\) 204.925 0.780583 0.390292 0.920691i \(-0.372374\pi\)
0.390292 + 0.920691i \(0.372374\pi\)
\(42\) −80.9657 −0.297459
\(43\) 406.384 1.44123 0.720616 0.693334i \(-0.243859\pi\)
0.720616 + 0.693334i \(0.243859\pi\)
\(44\) 75.5144 0.258732
\(45\) 162.380 0.537914
\(46\) −676.647 −2.16883
\(47\) 178.653 0.554450 0.277225 0.960805i \(-0.410585\pi\)
0.277225 + 0.960805i \(0.410585\pi\)
\(48\) −215.376 −0.647644
\(49\) 49.0000 0.142857
\(50\) 773.107 2.18668
\(51\) 228.012 0.626042
\(52\) 115.577 0.308223
\(53\) −238.316 −0.617646 −0.308823 0.951120i \(-0.599935\pi\)
−0.308823 + 0.951120i \(0.599935\pi\)
\(54\) 104.099 0.262334
\(55\) 198.464 0.486561
\(56\) 30.6336 0.0730998
\(57\) 35.6811 0.0829136
\(58\) −845.931 −1.91511
\(59\) −584.798 −1.29041 −0.645205 0.764009i \(-0.723228\pi\)
−0.645205 + 0.764009i \(0.723228\pi\)
\(60\) 371.575 0.799503
\(61\) −910.607 −1.91133 −0.955666 0.294452i \(-0.904863\pi\)
−0.955666 + 0.294452i \(0.904863\pi\)
\(62\) −826.449 −1.69289
\(63\) −63.0000 −0.125988
\(64\) −357.868 −0.698961
\(65\) 303.754 0.579631
\(66\) 127.232 0.237290
\(67\) −387.749 −0.707030 −0.353515 0.935429i \(-0.615014\pi\)
−0.353515 + 0.935429i \(0.615014\pi\)
\(68\) 521.764 0.930488
\(69\) −526.504 −0.918603
\(70\) −486.932 −0.831422
\(71\) −668.091 −1.11673 −0.558365 0.829595i \(-0.688571\pi\)
−0.558365 + 0.829595i \(0.688571\pi\)
\(72\) −39.3861 −0.0644679
\(73\) 390.298 0.625766 0.312883 0.949792i \(-0.398705\pi\)
0.312883 + 0.949792i \(0.398705\pi\)
\(74\) 1051.60 1.65198
\(75\) 601.561 0.926163
\(76\) 81.6495 0.123235
\(77\) −77.0000 −0.113961
\(78\) 194.731 0.282679
\(79\) −250.647 −0.356962 −0.178481 0.983943i \(-0.557118\pi\)
−0.178481 + 0.983943i \(0.557118\pi\)
\(80\) −1295.29 −1.81022
\(81\) 81.0000 0.111111
\(82\) 790.090 1.06403
\(83\) −54.2027 −0.0716809 −0.0358404 0.999358i \(-0.511411\pi\)
−0.0358404 + 0.999358i \(0.511411\pi\)
\(84\) −144.164 −0.187257
\(85\) 1371.28 1.74984
\(86\) 1566.82 1.96458
\(87\) −658.226 −0.811140
\(88\) −48.1385 −0.0583134
\(89\) −906.680 −1.07986 −0.539932 0.841709i \(-0.681550\pi\)
−0.539932 + 0.841709i \(0.681550\pi\)
\(90\) 626.056 0.733245
\(91\) −117.850 −0.135759
\(92\) −1204.81 −1.36532
\(93\) −643.066 −0.717020
\(94\) 688.796 0.755786
\(95\) 214.588 0.231750
\(96\) −725.356 −0.771159
\(97\) 618.333 0.647239 0.323620 0.946187i \(-0.395100\pi\)
0.323620 + 0.946187i \(0.395100\pi\)
\(98\) 188.920 0.194733
\(99\) 99.0000 0.100504
\(100\) 1376.56 1.37656
\(101\) 443.731 0.437157 0.218578 0.975819i \(-0.429858\pi\)
0.218578 + 0.975819i \(0.429858\pi\)
\(102\) 879.104 0.853375
\(103\) −1893.39 −1.81128 −0.905638 0.424051i \(-0.860608\pi\)
−0.905638 + 0.424051i \(0.860608\pi\)
\(104\) −73.6771 −0.0694677
\(105\) −378.886 −0.352147
\(106\) −918.830 −0.841930
\(107\) 966.336 0.873077 0.436538 0.899686i \(-0.356204\pi\)
0.436538 + 0.899686i \(0.356204\pi\)
\(108\) 185.353 0.165145
\(109\) 86.9483 0.0764049 0.0382025 0.999270i \(-0.487837\pi\)
0.0382025 + 0.999270i \(0.487837\pi\)
\(110\) 765.179 0.663245
\(111\) 818.261 0.699693
\(112\) 502.545 0.423982
\(113\) 1645.50 1.36987 0.684937 0.728602i \(-0.259830\pi\)
0.684937 + 0.728602i \(0.259830\pi\)
\(114\) 137.569 0.113022
\(115\) −3166.43 −2.56757
\(116\) −1506.23 −1.20560
\(117\) 151.522 0.119728
\(118\) −2254.69 −1.75899
\(119\) −532.029 −0.409840
\(120\) −236.870 −0.180193
\(121\) 121.000 0.0909091
\(122\) −3510.85 −2.60539
\(123\) 614.775 0.450670
\(124\) −1471.54 −1.06571
\(125\) 1362.55 0.974961
\(126\) −242.897 −0.171738
\(127\) −978.550 −0.683719 −0.341859 0.939751i \(-0.611057\pi\)
−0.341859 + 0.939751i \(0.611057\pi\)
\(128\) 554.519 0.382914
\(129\) 1219.15 0.832096
\(130\) 1171.13 0.790112
\(131\) 1494.86 0.996993 0.498497 0.866892i \(-0.333886\pi\)
0.498497 + 0.866892i \(0.333886\pi\)
\(132\) 226.543 0.149379
\(133\) −83.2559 −0.0542797
\(134\) −1494.97 −0.963773
\(135\) 487.139 0.310565
\(136\) −332.611 −0.209715
\(137\) 2397.79 1.49530 0.747652 0.664091i \(-0.231181\pi\)
0.747652 + 0.664091i \(0.231181\pi\)
\(138\) −2029.94 −1.25217
\(139\) 2672.65 1.63087 0.815436 0.578847i \(-0.196497\pi\)
0.815436 + 0.578847i \(0.196497\pi\)
\(140\) −867.009 −0.523398
\(141\) 535.958 0.320112
\(142\) −2575.83 −1.52225
\(143\) 185.193 0.108298
\(144\) −646.129 −0.373917
\(145\) −3958.61 −2.26720
\(146\) 1504.80 0.853000
\(147\) 147.000 0.0824786
\(148\) 1872.44 1.03996
\(149\) 2052.12 1.12830 0.564149 0.825673i \(-0.309204\pi\)
0.564149 + 0.825673i \(0.309204\pi\)
\(150\) 2319.32 1.26248
\(151\) 2366.66 1.27547 0.637734 0.770256i \(-0.279872\pi\)
0.637734 + 0.770256i \(0.279872\pi\)
\(152\) −52.0495 −0.0277748
\(153\) 684.037 0.361445
\(154\) −296.874 −0.155343
\(155\) −3867.44 −2.00413
\(156\) 346.730 0.177952
\(157\) −3763.06 −1.91290 −0.956450 0.291897i \(-0.905714\pi\)
−0.956450 + 0.291897i \(0.905714\pi\)
\(158\) −966.371 −0.486584
\(159\) −714.948 −0.356598
\(160\) −4362.33 −2.15545
\(161\) 1228.51 0.601367
\(162\) 312.296 0.151459
\(163\) 1394.64 0.670166 0.335083 0.942189i \(-0.391236\pi\)
0.335083 + 0.942189i \(0.391236\pi\)
\(164\) 1406.80 0.669832
\(165\) 595.392 0.280916
\(166\) −208.979 −0.0977102
\(167\) −384.184 −0.178018 −0.0890091 0.996031i \(-0.528370\pi\)
−0.0890091 + 0.996031i \(0.528370\pi\)
\(168\) 91.9008 0.0422042
\(169\) −1913.56 −0.870986
\(170\) 5286.98 2.38525
\(171\) 107.043 0.0478702
\(172\) 2789.80 1.23675
\(173\) 1156.21 0.508121 0.254061 0.967188i \(-0.418234\pi\)
0.254061 + 0.967188i \(0.418234\pi\)
\(174\) −2537.79 −1.10569
\(175\) −1403.64 −0.606316
\(176\) −789.713 −0.338221
\(177\) −1754.39 −0.745019
\(178\) −3495.71 −1.47199
\(179\) 141.765 0.0591956 0.0295978 0.999562i \(-0.490577\pi\)
0.0295978 + 0.999562i \(0.490577\pi\)
\(180\) 1114.73 0.461593
\(181\) 1359.83 0.558428 0.279214 0.960229i \(-0.409926\pi\)
0.279214 + 0.960229i \(0.409926\pi\)
\(182\) −454.373 −0.185057
\(183\) −2731.82 −1.10351
\(184\) 768.034 0.307719
\(185\) 4921.07 1.95570
\(186\) −2479.35 −0.977390
\(187\) 836.045 0.326940
\(188\) 1226.44 0.475783
\(189\) −189.000 −0.0727393
\(190\) 827.347 0.315905
\(191\) 3678.06 1.39338 0.696689 0.717373i \(-0.254656\pi\)
0.696689 + 0.717373i \(0.254656\pi\)
\(192\) −1073.60 −0.403545
\(193\) 1107.52 0.413064 0.206532 0.978440i \(-0.433782\pi\)
0.206532 + 0.978440i \(0.433782\pi\)
\(194\) 2383.99 0.882270
\(195\) 911.262 0.334650
\(196\) 336.382 0.122588
\(197\) −693.069 −0.250655 −0.125328 0.992115i \(-0.539998\pi\)
−0.125328 + 0.992115i \(0.539998\pi\)
\(198\) 381.695 0.137000
\(199\) 145.818 0.0519437 0.0259718 0.999663i \(-0.491732\pi\)
0.0259718 + 0.999663i \(0.491732\pi\)
\(200\) −877.522 −0.310251
\(201\) −1163.25 −0.408204
\(202\) 1710.81 0.595901
\(203\) 1535.86 0.531016
\(204\) 1565.29 0.537217
\(205\) 3697.29 1.25966
\(206\) −7299.99 −2.46900
\(207\) −1579.51 −0.530356
\(208\) −1208.68 −0.402916
\(209\) 130.831 0.0433002
\(210\) −1460.80 −0.480022
\(211\) −3518.11 −1.14785 −0.573927 0.818907i \(-0.694580\pi\)
−0.573927 + 0.818907i \(0.694580\pi\)
\(212\) −1636.03 −0.530013
\(213\) −2004.27 −0.644744
\(214\) 3725.72 1.19012
\(215\) 7332.05 2.32578
\(216\) −118.158 −0.0372206
\(217\) 1500.49 0.469400
\(218\) 335.230 0.104150
\(219\) 1170.89 0.361286
\(220\) 1362.44 0.417527
\(221\) 1279.59 0.389477
\(222\) 3154.81 0.953771
\(223\) 1630.18 0.489530 0.244765 0.969582i \(-0.421289\pi\)
0.244765 + 0.969582i \(0.421289\pi\)
\(224\) 1692.50 0.504842
\(225\) 1804.68 0.534721
\(226\) 6344.24 1.86731
\(227\) 1841.48 0.538428 0.269214 0.963080i \(-0.413236\pi\)
0.269214 + 0.963080i \(0.413236\pi\)
\(228\) 244.949 0.0711496
\(229\) 4468.48 1.28945 0.644727 0.764413i \(-0.276971\pi\)
0.644727 + 0.764413i \(0.276971\pi\)
\(230\) −12208.2 −3.49993
\(231\) −231.000 −0.0657952
\(232\) 960.182 0.271720
\(233\) −1914.60 −0.538323 −0.269162 0.963095i \(-0.586747\pi\)
−0.269162 + 0.963095i \(0.586747\pi\)
\(234\) 584.194 0.163205
\(235\) 3223.28 0.894739
\(236\) −4014.60 −1.10732
\(237\) −751.940 −0.206092
\(238\) −2051.24 −0.558665
\(239\) 6454.45 1.74688 0.873438 0.486935i \(-0.161885\pi\)
0.873438 + 0.486935i \(0.161885\pi\)
\(240\) −3885.86 −1.04513
\(241\) −3461.21 −0.925129 −0.462564 0.886586i \(-0.653071\pi\)
−0.462564 + 0.886586i \(0.653071\pi\)
\(242\) 466.516 0.123921
\(243\) 243.000 0.0641500
\(244\) −6251.26 −1.64015
\(245\) 884.067 0.230535
\(246\) 2370.27 0.614321
\(247\) 200.240 0.0515827
\(248\) 938.068 0.240191
\(249\) −162.608 −0.0413850
\(250\) 5253.32 1.32900
\(251\) −3579.75 −0.900207 −0.450104 0.892976i \(-0.648613\pi\)
−0.450104 + 0.892976i \(0.648613\pi\)
\(252\) −432.491 −0.108113
\(253\) −1930.51 −0.479725
\(254\) −3772.81 −0.931996
\(255\) 4113.84 1.01027
\(256\) 5000.90 1.22092
\(257\) 3780.31 0.917545 0.458773 0.888554i \(-0.348289\pi\)
0.458773 + 0.888554i \(0.348289\pi\)
\(258\) 4700.45 1.13425
\(259\) −1909.28 −0.458057
\(260\) 2085.25 0.497392
\(261\) −1974.68 −0.468312
\(262\) 5763.43 1.35903
\(263\) −5063.37 −1.18715 −0.593575 0.804778i \(-0.702284\pi\)
−0.593575 + 0.804778i \(0.702284\pi\)
\(264\) −144.416 −0.0336673
\(265\) −4299.74 −0.996721
\(266\) −320.994 −0.0739902
\(267\) −2720.04 −0.623460
\(268\) −2661.87 −0.606715
\(269\) 2910.06 0.659589 0.329795 0.944053i \(-0.393021\pi\)
0.329795 + 0.944053i \(0.393021\pi\)
\(270\) 1878.17 0.423339
\(271\) 5442.93 1.22005 0.610027 0.792381i \(-0.291159\pi\)
0.610027 + 0.792381i \(0.291159\pi\)
\(272\) −5456.50 −1.21636
\(273\) −353.551 −0.0783805
\(274\) 9244.68 2.03829
\(275\) 2205.72 0.483673
\(276\) −3614.42 −0.788270
\(277\) 4044.19 0.877226 0.438613 0.898676i \(-0.355470\pi\)
0.438613 + 0.898676i \(0.355470\pi\)
\(278\) 10304.4 2.22309
\(279\) −1929.20 −0.413972
\(280\) 552.697 0.117964
\(281\) −8172.77 −1.73504 −0.867520 0.497402i \(-0.834287\pi\)
−0.867520 + 0.497402i \(0.834287\pi\)
\(282\) 2066.39 0.436353
\(283\) 2182.31 0.458391 0.229196 0.973380i \(-0.426390\pi\)
0.229196 + 0.973380i \(0.426390\pi\)
\(284\) −4586.41 −0.958286
\(285\) 643.765 0.133801
\(286\) 714.015 0.147624
\(287\) −1434.48 −0.295033
\(288\) −2176.07 −0.445229
\(289\) 863.627 0.175784
\(290\) −15262.4 −3.09049
\(291\) 1855.00 0.373684
\(292\) 2679.37 0.536981
\(293\) 1709.43 0.340839 0.170420 0.985372i \(-0.445488\pi\)
0.170420 + 0.985372i \(0.445488\pi\)
\(294\) 566.760 0.112429
\(295\) −10551.0 −2.08239
\(296\) −1193.63 −0.234387
\(297\) 297.000 0.0580259
\(298\) 7911.98 1.53801
\(299\) −2954.70 −0.571487
\(300\) 4129.68 0.794757
\(301\) −2844.69 −0.544735
\(302\) 9124.66 1.73863
\(303\) 1331.19 0.252393
\(304\) −853.874 −0.161095
\(305\) −16429.3 −3.08440
\(306\) 2637.31 0.492696
\(307\) 5485.85 1.01985 0.509925 0.860219i \(-0.329673\pi\)
0.509925 + 0.860219i \(0.329673\pi\)
\(308\) −528.600 −0.0977916
\(309\) −5680.18 −1.04574
\(310\) −14910.9 −2.73189
\(311\) 476.818 0.0869385 0.0434693 0.999055i \(-0.486159\pi\)
0.0434693 + 0.999055i \(0.486159\pi\)
\(312\) −221.031 −0.0401072
\(313\) 779.948 0.140848 0.0704238 0.997517i \(-0.477565\pi\)
0.0704238 + 0.997517i \(0.477565\pi\)
\(314\) −14508.5 −2.60753
\(315\) −1136.66 −0.203312
\(316\) −1720.68 −0.306315
\(317\) 6398.10 1.13361 0.566803 0.823853i \(-0.308180\pi\)
0.566803 + 0.823853i \(0.308180\pi\)
\(318\) −2756.49 −0.486089
\(319\) −2413.49 −0.423604
\(320\) −6456.72 −1.12794
\(321\) 2899.01 0.504071
\(322\) 4736.53 0.819740
\(323\) 903.970 0.155722
\(324\) 556.060 0.0953464
\(325\) 3375.91 0.576190
\(326\) 5377.06 0.913522
\(327\) 260.845 0.0441124
\(328\) −896.799 −0.150968
\(329\) −1250.57 −0.209562
\(330\) 2295.54 0.382925
\(331\) −7792.92 −1.29407 −0.647036 0.762460i \(-0.723991\pi\)
−0.647036 + 0.762460i \(0.723991\pi\)
\(332\) −372.098 −0.0615106
\(333\) 2454.78 0.403968
\(334\) −1481.22 −0.242662
\(335\) −6995.83 −1.14096
\(336\) 1507.63 0.244786
\(337\) −4106.13 −0.663724 −0.331862 0.943328i \(-0.607677\pi\)
−0.331862 + 0.943328i \(0.607677\pi\)
\(338\) −7377.73 −1.18727
\(339\) 4936.51 0.790897
\(340\) 9413.76 1.50157
\(341\) −2357.91 −0.374452
\(342\) 412.706 0.0652532
\(343\) −343.000 −0.0539949
\(344\) −1778.43 −0.278740
\(345\) −9499.28 −1.48239
\(346\) 4457.77 0.692634
\(347\) −3014.89 −0.466421 −0.233210 0.972426i \(-0.574923\pi\)
−0.233210 + 0.972426i \(0.574923\pi\)
\(348\) −4518.68 −0.696054
\(349\) 8717.58 1.33708 0.668541 0.743675i \(-0.266919\pi\)
0.668541 + 0.743675i \(0.266919\pi\)
\(350\) −5411.75 −0.826486
\(351\) 454.566 0.0691251
\(352\) −2659.64 −0.402725
\(353\) −248.227 −0.0374272 −0.0187136 0.999825i \(-0.505957\pi\)
−0.0187136 + 0.999825i \(0.505957\pi\)
\(354\) −6764.08 −1.01556
\(355\) −12053.8 −1.80211
\(356\) −6224.31 −0.926650
\(357\) −1596.09 −0.236621
\(358\) 546.576 0.0806912
\(359\) −9850.33 −1.44814 −0.724068 0.689729i \(-0.757730\pi\)
−0.724068 + 0.689729i \(0.757730\pi\)
\(360\) −710.610 −0.104035
\(361\) −6717.54 −0.979376
\(362\) 5242.84 0.761209
\(363\) 363.000 0.0524864
\(364\) −809.036 −0.116497
\(365\) 7041.83 1.00983
\(366\) −10532.6 −1.50422
\(367\) −3597.52 −0.511686 −0.255843 0.966718i \(-0.582353\pi\)
−0.255843 + 0.966718i \(0.582353\pi\)
\(368\) 12599.6 1.78478
\(369\) 1844.33 0.260194
\(370\) 18973.2 2.66587
\(371\) 1668.21 0.233448
\(372\) −4414.61 −0.615288
\(373\) 2275.67 0.315897 0.157949 0.987447i \(-0.449512\pi\)
0.157949 + 0.987447i \(0.449512\pi\)
\(374\) 3223.38 0.445660
\(375\) 4087.65 0.562894
\(376\) −781.824 −0.107233
\(377\) −3693.91 −0.504632
\(378\) −728.691 −0.0991530
\(379\) 3964.58 0.537326 0.268663 0.963234i \(-0.413418\pi\)
0.268663 + 0.963234i \(0.413418\pi\)
\(380\) 1473.14 0.198869
\(381\) −2935.65 −0.394745
\(382\) 14180.8 1.89935
\(383\) −9289.55 −1.23936 −0.619679 0.784855i \(-0.712737\pi\)
−0.619679 + 0.784855i \(0.712737\pi\)
\(384\) 1663.56 0.221076
\(385\) −1389.25 −0.183903
\(386\) 4270.07 0.563059
\(387\) 3657.46 0.480411
\(388\) 4244.82 0.555407
\(389\) 15086.8 1.96640 0.983201 0.182528i \(-0.0584282\pi\)
0.983201 + 0.182528i \(0.0584282\pi\)
\(390\) 3513.38 0.456171
\(391\) −13338.8 −1.72525
\(392\) −214.435 −0.0276291
\(393\) 4484.57 0.575614
\(394\) −2672.13 −0.341675
\(395\) −4522.21 −0.576044
\(396\) 679.629 0.0862441
\(397\) −10215.5 −1.29144 −0.645722 0.763572i \(-0.723444\pi\)
−0.645722 + 0.763572i \(0.723444\pi\)
\(398\) 562.204 0.0708059
\(399\) −249.768 −0.0313384
\(400\) −14395.8 −1.79947
\(401\) −4143.18 −0.515962 −0.257981 0.966150i \(-0.583057\pi\)
−0.257981 + 0.966150i \(0.583057\pi\)
\(402\) −4484.90 −0.556435
\(403\) −3608.84 −0.446077
\(404\) 3046.18 0.375132
\(405\) 1461.42 0.179305
\(406\) 5921.52 0.723843
\(407\) 3000.29 0.365403
\(408\) −997.834 −0.121079
\(409\) −1958.71 −0.236801 −0.118401 0.992966i \(-0.537777\pi\)
−0.118401 + 0.992966i \(0.537777\pi\)
\(410\) 14254.9 1.71708
\(411\) 7193.36 0.863314
\(412\) −12998.0 −1.55429
\(413\) 4093.59 0.487729
\(414\) −6089.82 −0.722943
\(415\) −977.934 −0.115674
\(416\) −4070.64 −0.479758
\(417\) 8017.95 0.941585
\(418\) 504.419 0.0590237
\(419\) 616.552 0.0718868 0.0359434 0.999354i \(-0.488556\pi\)
0.0359434 + 0.999354i \(0.488556\pi\)
\(420\) −2601.03 −0.302184
\(421\) −612.327 −0.0708859 −0.0354430 0.999372i \(-0.511284\pi\)
−0.0354430 + 0.999372i \(0.511284\pi\)
\(422\) −13564.1 −1.56467
\(423\) 1607.87 0.184817
\(424\) 1042.93 0.119455
\(425\) 15240.4 1.73945
\(426\) −7727.49 −0.878869
\(427\) 6374.25 0.722416
\(428\) 6633.84 0.749203
\(429\) 555.580 0.0625260
\(430\) 28268.8 3.17033
\(431\) −2316.95 −0.258941 −0.129470 0.991583i \(-0.541328\pi\)
−0.129470 + 0.991583i \(0.541328\pi\)
\(432\) −1938.39 −0.215881
\(433\) −9187.01 −1.01963 −0.509815 0.860284i \(-0.670286\pi\)
−0.509815 + 0.860284i \(0.670286\pi\)
\(434\) 5785.14 0.639852
\(435\) −11875.8 −1.30897
\(436\) 596.895 0.0655644
\(437\) −2087.36 −0.228494
\(438\) 4514.39 0.492480
\(439\) 1907.40 0.207369 0.103685 0.994610i \(-0.466937\pi\)
0.103685 + 0.994610i \(0.466937\pi\)
\(440\) −868.524 −0.0941028
\(441\) 441.000 0.0476190
\(442\) 4933.46 0.530907
\(443\) 7657.14 0.821223 0.410611 0.911810i \(-0.365315\pi\)
0.410611 + 0.911810i \(0.365315\pi\)
\(444\) 5617.31 0.600419
\(445\) −16358.5 −1.74262
\(446\) 6285.19 0.667292
\(447\) 6156.37 0.651423
\(448\) 2505.08 0.264182
\(449\) 2156.86 0.226701 0.113350 0.993555i \(-0.463842\pi\)
0.113350 + 0.993555i \(0.463842\pi\)
\(450\) 6957.97 0.728893
\(451\) 2254.18 0.235355
\(452\) 11296.3 1.17551
\(453\) 7099.97 0.736392
\(454\) 7099.83 0.733946
\(455\) −2126.28 −0.219080
\(456\) −156.149 −0.0160358
\(457\) 18073.5 1.84998 0.924990 0.379990i \(-0.124073\pi\)
0.924990 + 0.379990i \(0.124073\pi\)
\(458\) 17228.2 1.75769
\(459\) 2052.11 0.208681
\(460\) −21737.3 −2.20328
\(461\) 3559.83 0.359648 0.179824 0.983699i \(-0.442447\pi\)
0.179824 + 0.983699i \(0.442447\pi\)
\(462\) −890.622 −0.0896872
\(463\) −11741.3 −1.17855 −0.589273 0.807934i \(-0.700586\pi\)
−0.589273 + 0.807934i \(0.700586\pi\)
\(464\) 15751.8 1.57599
\(465\) −11602.3 −1.15708
\(466\) −7381.74 −0.733804
\(467\) 15624.4 1.54821 0.774103 0.633060i \(-0.218201\pi\)
0.774103 + 0.633060i \(0.218201\pi\)
\(468\) 1040.19 0.102741
\(469\) 2714.24 0.267232
\(470\) 12427.4 1.21964
\(471\) −11289.2 −1.10441
\(472\) 2559.21 0.249570
\(473\) 4470.22 0.434548
\(474\) −2899.11 −0.280930
\(475\) 2384.93 0.230375
\(476\) −3652.35 −0.351691
\(477\) −2144.84 −0.205882
\(478\) 24885.2 2.38122
\(479\) 856.272 0.0816787 0.0408393 0.999166i \(-0.486997\pi\)
0.0408393 + 0.999166i \(0.486997\pi\)
\(480\) −13087.0 −1.24445
\(481\) 4592.02 0.435297
\(482\) −13344.7 −1.26107
\(483\) 3685.53 0.347199
\(484\) 830.658 0.0780107
\(485\) 11156.1 1.04448
\(486\) 936.888 0.0874447
\(487\) 1401.75 0.130430 0.0652148 0.997871i \(-0.479227\pi\)
0.0652148 + 0.997871i \(0.479227\pi\)
\(488\) 3985.02 0.369659
\(489\) 4183.93 0.386920
\(490\) 3408.53 0.314248
\(491\) −4413.29 −0.405639 −0.202820 0.979216i \(-0.565010\pi\)
−0.202820 + 0.979216i \(0.565010\pi\)
\(492\) 4220.40 0.386728
\(493\) −16676.0 −1.52342
\(494\) 772.025 0.0703139
\(495\) 1786.18 0.162187
\(496\) 15389.0 1.39312
\(497\) 4676.64 0.422084
\(498\) −626.936 −0.0564130
\(499\) 5105.31 0.458006 0.229003 0.973426i \(-0.426453\pi\)
0.229003 + 0.973426i \(0.426453\pi\)
\(500\) 9353.82 0.836631
\(501\) −1152.55 −0.102779
\(502\) −13801.8 −1.22710
\(503\) −18573.1 −1.64639 −0.823195 0.567759i \(-0.807810\pi\)
−0.823195 + 0.567759i \(0.807810\pi\)
\(504\) 275.702 0.0243666
\(505\) 8005.87 0.705458
\(506\) −7443.11 −0.653927
\(507\) −5740.67 −0.502864
\(508\) −6717.69 −0.586711
\(509\) −20788.8 −1.81031 −0.905153 0.425086i \(-0.860244\pi\)
−0.905153 + 0.425086i \(0.860244\pi\)
\(510\) 15860.9 1.37713
\(511\) −2732.09 −0.236517
\(512\) 14844.8 1.28136
\(513\) 321.130 0.0276379
\(514\) 14575.0 1.25073
\(515\) −34160.9 −2.92293
\(516\) 8369.41 0.714036
\(517\) 1965.18 0.167173
\(518\) −7361.23 −0.624390
\(519\) 3468.63 0.293364
\(520\) −1329.30 −0.112103
\(521\) −12175.6 −1.02384 −0.511921 0.859032i \(-0.671066\pi\)
−0.511921 + 0.859032i \(0.671066\pi\)
\(522\) −7613.38 −0.638369
\(523\) −104.134 −0.00870642 −0.00435321 0.999991i \(-0.501386\pi\)
−0.00435321 + 0.999991i \(0.501386\pi\)
\(524\) 10262.1 0.855538
\(525\) −4210.92 −0.350057
\(526\) −19521.9 −1.61824
\(527\) −16291.9 −1.34665
\(528\) −2369.14 −0.195272
\(529\) 18633.7 1.53150
\(530\) −16577.7 −1.35866
\(531\) −5263.18 −0.430137
\(532\) −571.547 −0.0465784
\(533\) 3450.07 0.280374
\(534\) −10487.1 −0.849855
\(535\) 17434.8 1.40892
\(536\) 1696.88 0.136742
\(537\) 425.295 0.0341766
\(538\) 11219.8 0.899104
\(539\) 539.000 0.0430730
\(540\) 3344.18 0.266501
\(541\) −2741.20 −0.217844 −0.108922 0.994050i \(-0.534740\pi\)
−0.108922 + 0.994050i \(0.534740\pi\)
\(542\) 20985.3 1.66309
\(543\) 4079.50 0.322409
\(544\) −18376.7 −1.44833
\(545\) 1568.74 0.123298
\(546\) −1363.12 −0.106843
\(547\) −17008.0 −1.32945 −0.664725 0.747089i \(-0.731451\pi\)
−0.664725 + 0.747089i \(0.731451\pi\)
\(548\) 16460.7 1.28315
\(549\) −8195.46 −0.637111
\(550\) 8504.18 0.659308
\(551\) −2609.58 −0.201764
\(552\) 2304.10 0.177661
\(553\) 1754.53 0.134919
\(554\) 15592.4 1.19577
\(555\) 14763.2 1.12912
\(556\) 18347.6 1.39948
\(557\) −2055.20 −0.156340 −0.0781702 0.996940i \(-0.524908\pi\)
−0.0781702 + 0.996940i \(0.524908\pi\)
\(558\) −7438.04 −0.564296
\(559\) 6841.79 0.517669
\(560\) 9067.00 0.684198
\(561\) 2508.14 0.188759
\(562\) −31510.2 −2.36508
\(563\) −4425.50 −0.331284 −0.165642 0.986186i \(-0.552970\pi\)
−0.165642 + 0.986186i \(0.552970\pi\)
\(564\) 3679.32 0.274694
\(565\) 29688.4 2.21062
\(566\) 8413.90 0.624846
\(567\) −567.000 −0.0419961
\(568\) 2923.72 0.215980
\(569\) 6590.24 0.485549 0.242775 0.970083i \(-0.421942\pi\)
0.242775 + 0.970083i \(0.421942\pi\)
\(570\) 2482.04 0.182388
\(571\) −24640.9 −1.80594 −0.902968 0.429707i \(-0.858617\pi\)
−0.902968 + 0.429707i \(0.858617\pi\)
\(572\) 1271.34 0.0929327
\(573\) 11034.2 0.804467
\(574\) −5530.63 −0.402167
\(575\) −35191.6 −2.55233
\(576\) −3220.81 −0.232987
\(577\) −26063.5 −1.88048 −0.940242 0.340507i \(-0.889401\pi\)
−0.940242 + 0.340507i \(0.889401\pi\)
\(578\) 3329.72 0.239616
\(579\) 3322.57 0.238482
\(580\) −27175.6 −1.94553
\(581\) 379.419 0.0270928
\(582\) 7151.96 0.509379
\(583\) −2621.48 −0.186227
\(584\) −1708.03 −0.121026
\(585\) 2733.79 0.193210
\(586\) 6590.72 0.464607
\(587\) 18880.3 1.32756 0.663778 0.747930i \(-0.268952\pi\)
0.663778 + 0.747930i \(0.268952\pi\)
\(588\) 1009.15 0.0707764
\(589\) −2549.48 −0.178352
\(590\) −40679.6 −2.83856
\(591\) −2079.21 −0.144716
\(592\) −19581.6 −1.35945
\(593\) 20373.4 1.41085 0.705426 0.708783i \(-0.250756\pi\)
0.705426 + 0.708783i \(0.250756\pi\)
\(594\) 1145.09 0.0790967
\(595\) −9598.96 −0.661376
\(596\) 14087.7 0.968213
\(597\) 437.455 0.0299897
\(598\) −11391.9 −0.779010
\(599\) −3953.48 −0.269674 −0.134837 0.990868i \(-0.543051\pi\)
−0.134837 + 0.990868i \(0.543051\pi\)
\(600\) −2632.57 −0.179123
\(601\) 6736.90 0.457244 0.228622 0.973515i \(-0.426578\pi\)
0.228622 + 0.973515i \(0.426578\pi\)
\(602\) −10967.7 −0.742543
\(603\) −3489.74 −0.235677
\(604\) 16247.0 1.09450
\(605\) 2183.10 0.146704
\(606\) 5132.42 0.344043
\(607\) −28336.7 −1.89481 −0.947406 0.320035i \(-0.896305\pi\)
−0.947406 + 0.320035i \(0.896305\pi\)
\(608\) −2875.72 −0.191819
\(609\) 4607.58 0.306582
\(610\) −63343.4 −4.20443
\(611\) 3007.75 0.199150
\(612\) 4695.87 0.310163
\(613\) 2767.63 0.182355 0.0911774 0.995835i \(-0.470937\pi\)
0.0911774 + 0.995835i \(0.470937\pi\)
\(614\) 21150.7 1.39019
\(615\) 11091.9 0.727265
\(616\) 336.970 0.0220404
\(617\) 25880.0 1.68864 0.844318 0.535842i \(-0.180006\pi\)
0.844318 + 0.535842i \(0.180006\pi\)
\(618\) −21900.0 −1.42548
\(619\) 42.9744 0.00279045 0.00139522 0.999999i \(-0.499556\pi\)
0.00139522 + 0.999999i \(0.499556\pi\)
\(620\) −26549.7 −1.71978
\(621\) −4738.54 −0.306201
\(622\) 1838.38 0.118508
\(623\) 6346.76 0.408150
\(624\) −3626.03 −0.232624
\(625\) −481.672 −0.0308270
\(626\) 3007.10 0.191993
\(627\) 392.492 0.0249994
\(628\) −25833.2 −1.64149
\(629\) 20730.4 1.31411
\(630\) −4382.39 −0.277141
\(631\) −18766.2 −1.18395 −0.591974 0.805957i \(-0.701651\pi\)
−0.591974 + 0.805957i \(0.701651\pi\)
\(632\) 1096.89 0.0690377
\(633\) −10554.3 −0.662713
\(634\) 24667.9 1.54525
\(635\) −17655.2 −1.10335
\(636\) −4908.08 −0.306003
\(637\) 824.953 0.0513121
\(638\) −9305.25 −0.577427
\(639\) −6012.82 −0.372243
\(640\) 10004.7 0.617925
\(641\) −29882.6 −1.84133 −0.920663 0.390358i \(-0.872351\pi\)
−0.920663 + 0.390358i \(0.872351\pi\)
\(642\) 11177.1 0.687113
\(643\) −18805.2 −1.15335 −0.576677 0.816973i \(-0.695651\pi\)
−0.576677 + 0.816973i \(0.695651\pi\)
\(644\) 8433.64 0.516044
\(645\) 21996.2 1.34279
\(646\) 3485.26 0.212269
\(647\) −28514.1 −1.73262 −0.866309 0.499508i \(-0.833514\pi\)
−0.866309 + 0.499508i \(0.833514\pi\)
\(648\) −354.474 −0.0214893
\(649\) −6432.78 −0.389073
\(650\) 13015.9 0.785421
\(651\) 4501.46 0.271008
\(652\) 9574.15 0.575081
\(653\) 28136.5 1.68616 0.843082 0.537785i \(-0.180739\pi\)
0.843082 + 0.537785i \(0.180739\pi\)
\(654\) 1005.69 0.0601308
\(655\) 26970.4 1.60889
\(656\) −14712.0 −0.875621
\(657\) 3512.68 0.208589
\(658\) −4821.57 −0.285660
\(659\) 25412.3 1.50216 0.751080 0.660211i \(-0.229533\pi\)
0.751080 + 0.660211i \(0.229533\pi\)
\(660\) 4087.33 0.241059
\(661\) −15015.6 −0.883569 −0.441784 0.897121i \(-0.645654\pi\)
−0.441784 + 0.897121i \(0.645654\pi\)
\(662\) −30045.7 −1.76398
\(663\) 3838.76 0.224865
\(664\) 237.203 0.0138634
\(665\) −1502.12 −0.0875934
\(666\) 9464.44 0.550660
\(667\) 38506.5 2.23535
\(668\) −2637.40 −0.152761
\(669\) 4890.55 0.282630
\(670\) −26972.5 −1.55528
\(671\) −10016.7 −0.576289
\(672\) 5077.49 0.291471
\(673\) 21748.2 1.24566 0.622831 0.782357i \(-0.285983\pi\)
0.622831 + 0.782357i \(0.285983\pi\)
\(674\) −15831.2 −0.904741
\(675\) 5414.05 0.308721
\(676\) −13136.5 −0.747409
\(677\) 18842.5 1.06969 0.534843 0.844952i \(-0.320371\pi\)
0.534843 + 0.844952i \(0.320371\pi\)
\(678\) 19032.7 1.07809
\(679\) −4328.33 −0.244633
\(680\) −6001.03 −0.338425
\(681\) 5524.43 0.310862
\(682\) −9090.94 −0.510425
\(683\) −11932.7 −0.668510 −0.334255 0.942483i \(-0.608485\pi\)
−0.334255 + 0.942483i \(0.608485\pi\)
\(684\) 734.846 0.0410783
\(685\) 43261.3 2.41303
\(686\) −1322.44 −0.0736020
\(687\) 13405.4 0.744467
\(688\) −29175.2 −1.61670
\(689\) −4012.23 −0.221849
\(690\) −36624.5 −2.02069
\(691\) 11305.0 0.622376 0.311188 0.950348i \(-0.399273\pi\)
0.311188 + 0.950348i \(0.399273\pi\)
\(692\) 7937.31 0.436028
\(693\) −693.000 −0.0379869
\(694\) −11623.9 −0.635791
\(695\) 48220.4 2.63181
\(696\) 2880.55 0.156878
\(697\) 15575.1 0.846414
\(698\) 33610.7 1.82261
\(699\) −5743.79 −0.310801
\(700\) −9635.92 −0.520291
\(701\) 9963.42 0.536823 0.268412 0.963304i \(-0.413501\pi\)
0.268412 + 0.963304i \(0.413501\pi\)
\(702\) 1752.58 0.0942264
\(703\) 3244.05 0.174042
\(704\) −3936.55 −0.210745
\(705\) 9669.84 0.516578
\(706\) −957.043 −0.0510181
\(707\) −3106.11 −0.165230
\(708\) −12043.8 −0.639314
\(709\) 11000.9 0.582718 0.291359 0.956614i \(-0.405893\pi\)
0.291359 + 0.956614i \(0.405893\pi\)
\(710\) −46473.6 −2.45651
\(711\) −2255.82 −0.118987
\(712\) 3967.84 0.208850
\(713\) 37619.7 1.97597
\(714\) −6153.72 −0.322545
\(715\) 3341.29 0.174765
\(716\) 973.209 0.0507968
\(717\) 19363.3 1.00856
\(718\) −37978.0 −1.97399
\(719\) −16311.5 −0.846059 −0.423030 0.906116i \(-0.639033\pi\)
−0.423030 + 0.906116i \(0.639033\pi\)
\(720\) −11657.6 −0.603406
\(721\) 13253.7 0.684598
\(722\) −25899.5 −1.33501
\(723\) −10383.6 −0.534123
\(724\) 9335.17 0.479197
\(725\) −43995.9 −2.25374
\(726\) 1399.55 0.0715457
\(727\) −17113.7 −0.873056 −0.436528 0.899691i \(-0.643792\pi\)
−0.436528 + 0.899691i \(0.643792\pi\)
\(728\) 515.740 0.0262563
\(729\) 729.000 0.0370370
\(730\) 27149.8 1.37652
\(731\) 30886.9 1.56278
\(732\) −18753.8 −0.946940
\(733\) −908.468 −0.0457777 −0.0228888 0.999738i \(-0.507286\pi\)
−0.0228888 + 0.999738i \(0.507286\pi\)
\(734\) −13870.3 −0.697494
\(735\) 2652.20 0.133099
\(736\) 42433.6 2.12517
\(737\) −4265.24 −0.213178
\(738\) 7110.81 0.354678
\(739\) 3111.66 0.154891 0.0774453 0.996997i \(-0.475324\pi\)
0.0774453 + 0.996997i \(0.475324\pi\)
\(740\) 33782.9 1.67822
\(741\) 600.719 0.0297813
\(742\) 6431.81 0.318220
\(743\) 34279.0 1.69257 0.846283 0.532734i \(-0.178835\pi\)
0.846283 + 0.532734i \(0.178835\pi\)
\(744\) 2814.20 0.138674
\(745\) 37024.8 1.82078
\(746\) 8773.86 0.430608
\(747\) −487.824 −0.0238936
\(748\) 5739.40 0.280553
\(749\) −6764.35 −0.329992
\(750\) 15760.0 0.767296
\(751\) 18668.4 0.907086 0.453543 0.891234i \(-0.350160\pi\)
0.453543 + 0.891234i \(0.350160\pi\)
\(752\) −12825.8 −0.621955
\(753\) −10739.3 −0.519735
\(754\) −14241.9 −0.687877
\(755\) 42699.6 2.05828
\(756\) −1297.47 −0.0624189
\(757\) 8879.31 0.426320 0.213160 0.977017i \(-0.431624\pi\)
0.213160 + 0.977017i \(0.431624\pi\)
\(758\) 15285.5 0.732444
\(759\) −5791.54 −0.276969
\(760\) −939.087 −0.0448214
\(761\) −20677.5 −0.984967 −0.492484 0.870322i \(-0.663911\pi\)
−0.492484 + 0.870322i \(0.663911\pi\)
\(762\) −11318.4 −0.538088
\(763\) −608.638 −0.0288783
\(764\) 25249.7 1.19568
\(765\) 12341.5 0.583279
\(766\) −35816.0 −1.68940
\(767\) −9845.52 −0.463496
\(768\) 15002.7 0.704900
\(769\) −27497.6 −1.28945 −0.644725 0.764414i \(-0.723028\pi\)
−0.644725 + 0.764414i \(0.723028\pi\)
\(770\) −5356.26 −0.250683
\(771\) 11340.9 0.529745
\(772\) 7603.08 0.354457
\(773\) 9834.49 0.457596 0.228798 0.973474i \(-0.426520\pi\)
0.228798 + 0.973474i \(0.426520\pi\)
\(774\) 14101.4 0.654861
\(775\) −42982.6 −1.99223
\(776\) −2705.97 −0.125179
\(777\) −5727.83 −0.264459
\(778\) 58167.2 2.68046
\(779\) 2437.32 0.112100
\(780\) 6255.76 0.287169
\(781\) −7349.00 −0.336707
\(782\) −51427.9 −2.35174
\(783\) −5924.03 −0.270380
\(784\) −3517.81 −0.160250
\(785\) −67893.9 −3.08693
\(786\) 17290.3 0.784636
\(787\) −39329.2 −1.78136 −0.890682 0.454627i \(-0.849773\pi\)
−0.890682 + 0.454627i \(0.849773\pi\)
\(788\) −4757.88 −0.215092
\(789\) −15190.1 −0.685402
\(790\) −17435.4 −0.785221
\(791\) −11518.5 −0.517764
\(792\) −433.247 −0.0194378
\(793\) −15330.8 −0.686522
\(794\) −39386.1 −1.76040
\(795\) −12899.2 −0.575457
\(796\) 1001.03 0.0445738
\(797\) −22338.1 −0.992792 −0.496396 0.868096i \(-0.665344\pi\)
−0.496396 + 0.868096i \(0.665344\pi\)
\(798\) −962.981 −0.0427183
\(799\) 13578.3 0.601210
\(800\) −48482.8 −2.14266
\(801\) −8160.12 −0.359955
\(802\) −15974.1 −0.703322
\(803\) 4293.28 0.188676
\(804\) −7985.62 −0.350287
\(805\) 22165.0 0.970451
\(806\) −13913.9 −0.608060
\(807\) 8730.18 0.380814
\(808\) −1941.87 −0.0845478
\(809\) 37494.8 1.62948 0.814739 0.579828i \(-0.196880\pi\)
0.814739 + 0.579828i \(0.196880\pi\)
\(810\) 5634.50 0.244415
\(811\) −42506.0 −1.84043 −0.920214 0.391417i \(-0.871985\pi\)
−0.920214 + 0.391417i \(0.871985\pi\)
\(812\) 10543.6 0.455674
\(813\) 16328.8 0.704399
\(814\) 11567.6 0.498091
\(815\) 25162.4 1.08147
\(816\) −16369.5 −0.702263
\(817\) 4833.41 0.206976
\(818\) −7551.81 −0.322791
\(819\) −1060.65 −0.0452530
\(820\) 25381.7 1.08094
\(821\) −42443.9 −1.80427 −0.902133 0.431458i \(-0.857999\pi\)
−0.902133 + 0.431458i \(0.857999\pi\)
\(822\) 27734.0 1.17681
\(823\) 2288.06 0.0969099 0.0484549 0.998825i \(-0.484570\pi\)
0.0484549 + 0.998825i \(0.484570\pi\)
\(824\) 8285.92 0.350308
\(825\) 6617.17 0.279249
\(826\) 15782.9 0.664837
\(827\) −3182.84 −0.133831 −0.0669155 0.997759i \(-0.521316\pi\)
−0.0669155 + 0.997759i \(0.521316\pi\)
\(828\) −10843.3 −0.455108
\(829\) −1264.12 −0.0529609 −0.0264804 0.999649i \(-0.508430\pi\)
−0.0264804 + 0.999649i \(0.508430\pi\)
\(830\) −3770.43 −0.157679
\(831\) 12132.6 0.506467
\(832\) −6024.98 −0.251056
\(833\) 3724.20 0.154905
\(834\) 30913.3 1.28350
\(835\) −6931.52 −0.287275
\(836\) 898.145 0.0371567
\(837\) −5787.60 −0.239007
\(838\) 2377.12 0.0979908
\(839\) −2934.36 −0.120745 −0.0603726 0.998176i \(-0.519229\pi\)
−0.0603726 + 0.998176i \(0.519229\pi\)
\(840\) 1658.09 0.0681066
\(841\) 23751.1 0.973845
\(842\) −2360.83 −0.0966266
\(843\) −24518.3 −1.00173
\(844\) −24151.6 −0.984993
\(845\) −34524.7 −1.40555
\(846\) 6199.17 0.251929
\(847\) −847.000 −0.0343604
\(848\) 17109.2 0.692845
\(849\) 6546.92 0.264652
\(850\) 58759.3 2.37109
\(851\) −47868.6 −1.92822
\(852\) −13759.2 −0.553266
\(853\) 25305.3 1.01575 0.507877 0.861429i \(-0.330430\pi\)
0.507877 + 0.861429i \(0.330430\pi\)
\(854\) 24576.0 0.984745
\(855\) 1931.29 0.0772501
\(856\) −4228.91 −0.168856
\(857\) −34699.9 −1.38311 −0.691556 0.722323i \(-0.743074\pi\)
−0.691556 + 0.722323i \(0.743074\pi\)
\(858\) 2142.04 0.0852310
\(859\) 17543.8 0.696841 0.348421 0.937338i \(-0.386718\pi\)
0.348421 + 0.937338i \(0.386718\pi\)
\(860\) 50334.1 1.99579
\(861\) −4303.43 −0.170337
\(862\) −8933.01 −0.352969
\(863\) 18985.7 0.748876 0.374438 0.927252i \(-0.377836\pi\)
0.374438 + 0.927252i \(0.377836\pi\)
\(864\) −6528.20 −0.257053
\(865\) 20860.5 0.819976
\(866\) −35420.6 −1.38989
\(867\) 2590.88 0.101489
\(868\) 10300.8 0.402800
\(869\) −2757.11 −0.107628
\(870\) −45787.3 −1.78429
\(871\) −6528.05 −0.253955
\(872\) −380.506 −0.0147770
\(873\) 5565.00 0.215746
\(874\) −8047.83 −0.311467
\(875\) −9537.84 −0.368501
\(876\) 8038.12 0.310026
\(877\) 4203.00 0.161830 0.0809152 0.996721i \(-0.474216\pi\)
0.0809152 + 0.996721i \(0.474216\pi\)
\(878\) 7353.98 0.282671
\(879\) 5128.29 0.196784
\(880\) −14248.1 −0.545801
\(881\) 25566.7 0.977713 0.488856 0.872364i \(-0.337414\pi\)
0.488856 + 0.872364i \(0.337414\pi\)
\(882\) 1700.28 0.0649109
\(883\) −39105.9 −1.49039 −0.745197 0.666845i \(-0.767645\pi\)
−0.745197 + 0.666845i \(0.767645\pi\)
\(884\) 8784.29 0.334217
\(885\) −31653.1 −1.20227
\(886\) 29522.2 1.11943
\(887\) −10841.1 −0.410382 −0.205191 0.978722i \(-0.565782\pi\)
−0.205191 + 0.978722i \(0.565782\pi\)
\(888\) −3580.90 −0.135323
\(889\) 6849.85 0.258421
\(890\) −63070.3 −2.37542
\(891\) 891.000 0.0335013
\(892\) 11191.1 0.420074
\(893\) 2124.84 0.0796249
\(894\) 23735.9 0.887973
\(895\) 2557.75 0.0955264
\(896\) −3881.63 −0.144728
\(897\) −8864.10 −0.329948
\(898\) 8315.79 0.309022
\(899\) 47031.4 1.74481
\(900\) 12389.0 0.458853
\(901\) −18113.0 −0.669735
\(902\) 8690.99 0.320819
\(903\) −8534.07 −0.314503
\(904\) −7201.09 −0.264939
\(905\) 24534.3 0.901159
\(906\) 27374.0 1.00380
\(907\) −21542.0 −0.788632 −0.394316 0.918975i \(-0.629018\pi\)
−0.394316 + 0.918975i \(0.629018\pi\)
\(908\) 12641.6 0.462035
\(909\) 3993.57 0.145719
\(910\) −8197.88 −0.298634
\(911\) 16272.3 0.591794 0.295897 0.955220i \(-0.404382\pi\)
0.295897 + 0.955220i \(0.404382\pi\)
\(912\) −2561.62 −0.0930085
\(913\) −596.229 −0.0216126
\(914\) 69682.4 2.52176
\(915\) −49288.0 −1.78078
\(916\) 30675.8 1.10650
\(917\) −10464.0 −0.376828
\(918\) 7911.93 0.284458
\(919\) 46663.1 1.67494 0.837472 0.546481i \(-0.184033\pi\)
0.837472 + 0.546481i \(0.184033\pi\)
\(920\) 13857.0 0.496578
\(921\) 16457.5 0.588811
\(922\) 13725.0 0.490247
\(923\) −11247.8 −0.401112
\(924\) −1585.80 −0.0564600
\(925\) 54692.6 1.94409
\(926\) −45268.8 −1.60651
\(927\) −17040.5 −0.603759
\(928\) 53049.7 1.87656
\(929\) 37396.2 1.32070 0.660349 0.750959i \(-0.270408\pi\)
0.660349 + 0.750959i \(0.270408\pi\)
\(930\) −44732.8 −1.57725
\(931\) 582.791 0.0205158
\(932\) −13143.6 −0.461945
\(933\) 1430.45 0.0501940
\(934\) 60240.1 2.11040
\(935\) 15084.1 0.527596
\(936\) −663.094 −0.0231559
\(937\) −27371.8 −0.954321 −0.477161 0.878816i \(-0.658334\pi\)
−0.477161 + 0.878816i \(0.658334\pi\)
\(938\) 10464.8 0.364272
\(939\) 2339.85 0.0813184
\(940\) 22127.6 0.767791
\(941\) 2345.33 0.0812491 0.0406246 0.999174i \(-0.487065\pi\)
0.0406246 + 0.999174i \(0.487065\pi\)
\(942\) −43525.6 −1.50546
\(943\) −35964.6 −1.24196
\(944\) 41983.9 1.44752
\(945\) −3409.97 −0.117382
\(946\) 17235.0 0.592344
\(947\) 39562.8 1.35757 0.678784 0.734338i \(-0.262507\pi\)
0.678784 + 0.734338i \(0.262507\pi\)
\(948\) −5162.03 −0.176851
\(949\) 6570.97 0.224766
\(950\) 9195.10 0.314030
\(951\) 19194.3 0.654488
\(952\) 2328.28 0.0792647
\(953\) −34016.4 −1.15624 −0.578121 0.815951i \(-0.696214\pi\)
−0.578121 + 0.815951i \(0.696214\pi\)
\(954\) −8269.47 −0.280643
\(955\) 66360.3 2.24855
\(956\) 44309.4 1.49903
\(957\) −7240.48 −0.244568
\(958\) 3301.36 0.111338
\(959\) −16784.5 −0.565172
\(960\) −19370.2 −0.651218
\(961\) 16157.2 0.542353
\(962\) 17704.6 0.593366
\(963\) 8697.02 0.291026
\(964\) −23761.0 −0.793869
\(965\) 19982.1 0.666578
\(966\) 14209.6 0.473277
\(967\) −37016.4 −1.23099 −0.615495 0.788141i \(-0.711044\pi\)
−0.615495 + 0.788141i \(0.711044\pi\)
\(968\) −529.524 −0.0175822
\(969\) 2711.91 0.0899062
\(970\) 43012.3 1.42376
\(971\) 43208.1 1.42803 0.714013 0.700133i \(-0.246876\pi\)
0.714013 + 0.700133i \(0.246876\pi\)
\(972\) 1668.18 0.0550483
\(973\) −18708.6 −0.616412
\(974\) 5404.44 0.177792
\(975\) 10127.7 0.332664
\(976\) 65374.4 2.14404
\(977\) 12161.9 0.398253 0.199126 0.979974i \(-0.436190\pi\)
0.199126 + 0.979974i \(0.436190\pi\)
\(978\) 16131.2 0.527422
\(979\) −9973.48 −0.325591
\(980\) 6069.07 0.197826
\(981\) 782.535 0.0254683
\(982\) −17015.5 −0.552938
\(983\) 16531.0 0.536377 0.268188 0.963366i \(-0.413575\pi\)
0.268188 + 0.963366i \(0.413575\pi\)
\(984\) −2690.40 −0.0871613
\(985\) −12504.5 −0.404493
\(986\) −64294.3 −2.07662
\(987\) −3751.70 −0.120991
\(988\) 1374.63 0.0442641
\(989\) −71320.9 −2.29310
\(990\) 6886.61 0.221082
\(991\) −16088.6 −0.515712 −0.257856 0.966183i \(-0.583016\pi\)
−0.257856 + 0.966183i \(0.583016\pi\)
\(992\) 51828.0 1.65881
\(993\) −23378.8 −0.747132
\(994\) 18030.8 0.575355
\(995\) 2630.88 0.0838237
\(996\) −1116.29 −0.0355132
\(997\) −31807.7 −1.01039 −0.505196 0.863005i \(-0.668580\pi\)
−0.505196 + 0.863005i \(0.668580\pi\)
\(998\) 19683.6 0.624321
\(999\) 7364.35 0.233231
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.l.1.4 5
3.2 odd 2 693.4.a.n.1.2 5
7.6 odd 2 1617.4.a.p.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.l.1.4 5 1.1 even 1 trivial
693.4.a.n.1.2 5 3.2 odd 2
1617.4.a.p.1.4 5 7.6 odd 2