Properties

Label 231.4.a.l.1.3
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 28x^{3} - 11x^{2} + 108x - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.767088\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.232912 q^{2} +3.00000 q^{3} -7.94575 q^{4} +7.75746 q^{5} +0.698736 q^{6} -7.00000 q^{7} -3.71396 q^{8} +9.00000 q^{9} +1.80680 q^{10} +11.0000 q^{11} -23.8373 q^{12} +59.4737 q^{13} -1.63038 q^{14} +23.2724 q^{15} +62.7010 q^{16} -45.4400 q^{17} +2.09621 q^{18} +111.752 q^{19} -61.6388 q^{20} -21.0000 q^{21} +2.56203 q^{22} +105.326 q^{23} -11.1419 q^{24} -64.8219 q^{25} +13.8521 q^{26} +27.0000 q^{27} +55.6203 q^{28} +10.0244 q^{29} +5.42041 q^{30} +315.364 q^{31} +44.3154 q^{32} +33.0000 q^{33} -10.5835 q^{34} -54.3022 q^{35} -71.5118 q^{36} -182.176 q^{37} +26.0283 q^{38} +178.421 q^{39} -28.8108 q^{40} +487.944 q^{41} -4.89115 q^{42} -358.348 q^{43} -87.4033 q^{44} +69.8171 q^{45} +24.5317 q^{46} +205.857 q^{47} +188.103 q^{48} +49.0000 q^{49} -15.0978 q^{50} -136.320 q^{51} -472.563 q^{52} +134.518 q^{53} +6.28862 q^{54} +85.3320 q^{55} +25.9977 q^{56} +335.255 q^{57} +2.33481 q^{58} -891.997 q^{59} -184.916 q^{60} +654.613 q^{61} +73.4520 q^{62} -63.0000 q^{63} -491.286 q^{64} +461.364 q^{65} +7.68609 q^{66} -102.298 q^{67} +361.055 q^{68} +315.978 q^{69} -12.6476 q^{70} +119.126 q^{71} -33.4256 q^{72} -346.254 q^{73} -42.4310 q^{74} -194.466 q^{75} -887.951 q^{76} -77.0000 q^{77} +41.5564 q^{78} -774.834 q^{79} +486.400 q^{80} +81.0000 q^{81} +113.648 q^{82} +1040.89 q^{83} +166.861 q^{84} -352.499 q^{85} -83.4636 q^{86} +30.0732 q^{87} -40.8535 q^{88} +502.925 q^{89} +16.2612 q^{90} -416.316 q^{91} -836.896 q^{92} +946.091 q^{93} +47.9465 q^{94} +866.908 q^{95} +132.946 q^{96} -939.285 q^{97} +11.4127 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{2} + 15 q^{3} + 21 q^{4} + 7 q^{5} + 15 q^{6} - 35 q^{7} + 60 q^{8} + 45 q^{9} + 55 q^{10} + 55 q^{11} + 63 q^{12} + 111 q^{13} - 35 q^{14} + 21 q^{15} + 201 q^{16} + 136 q^{17} + 45 q^{18} + 111 q^{19}+ \cdots + 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.232912 0.0823468 0.0411734 0.999152i \(-0.486890\pi\)
0.0411734 + 0.999152i \(0.486890\pi\)
\(3\) 3.00000 0.577350
\(4\) −7.94575 −0.993219
\(5\) 7.75746 0.693848 0.346924 0.937893i \(-0.387226\pi\)
0.346924 + 0.937893i \(0.387226\pi\)
\(6\) 0.698736 0.0475429
\(7\) −7.00000 −0.377964
\(8\) −3.71396 −0.164135
\(9\) 9.00000 0.333333
\(10\) 1.80680 0.0571362
\(11\) 11.0000 0.301511
\(12\) −23.8373 −0.573435
\(13\) 59.4737 1.26885 0.634424 0.772985i \(-0.281237\pi\)
0.634424 + 0.772985i \(0.281237\pi\)
\(14\) −1.63038 −0.0311242
\(15\) 23.2724 0.400593
\(16\) 62.7010 0.979703
\(17\) −45.4400 −0.648284 −0.324142 0.946008i \(-0.605076\pi\)
−0.324142 + 0.946008i \(0.605076\pi\)
\(18\) 2.09621 0.0274489
\(19\) 111.752 1.34935 0.674673 0.738117i \(-0.264285\pi\)
0.674673 + 0.738117i \(0.264285\pi\)
\(20\) −61.6388 −0.689143
\(21\) −21.0000 −0.218218
\(22\) 2.56203 0.0248285
\(23\) 105.326 0.954871 0.477435 0.878667i \(-0.341567\pi\)
0.477435 + 0.878667i \(0.341567\pi\)
\(24\) −11.1419 −0.0947635
\(25\) −64.8219 −0.518575
\(26\) 13.8521 0.104486
\(27\) 27.0000 0.192450
\(28\) 55.6203 0.375401
\(29\) 10.0244 0.0641892 0.0320946 0.999485i \(-0.489782\pi\)
0.0320946 + 0.999485i \(0.489782\pi\)
\(30\) 5.42041 0.0329876
\(31\) 315.364 1.82713 0.913565 0.406694i \(-0.133318\pi\)
0.913565 + 0.406694i \(0.133318\pi\)
\(32\) 44.3154 0.244811
\(33\) 33.0000 0.174078
\(34\) −10.5835 −0.0533841
\(35\) −54.3022 −0.262250
\(36\) −71.5118 −0.331073
\(37\) −182.176 −0.809448 −0.404724 0.914439i \(-0.632632\pi\)
−0.404724 + 0.914439i \(0.632632\pi\)
\(38\) 26.0283 0.111114
\(39\) 178.421 0.732570
\(40\) −28.8108 −0.113885
\(41\) 487.944 1.85864 0.929318 0.369280i \(-0.120396\pi\)
0.929318 + 0.369280i \(0.120396\pi\)
\(42\) −4.89115 −0.0179695
\(43\) −358.348 −1.27087 −0.635437 0.772152i \(-0.719180\pi\)
−0.635437 + 0.772152i \(0.719180\pi\)
\(44\) −87.4033 −0.299467
\(45\) 69.8171 0.231283
\(46\) 24.5317 0.0786305
\(47\) 205.857 0.638879 0.319439 0.947607i \(-0.396505\pi\)
0.319439 + 0.947607i \(0.396505\pi\)
\(48\) 188.103 0.565632
\(49\) 49.0000 0.142857
\(50\) −15.0978 −0.0427030
\(51\) −136.320 −0.374287
\(52\) −472.563 −1.26024
\(53\) 134.518 0.348632 0.174316 0.984690i \(-0.444229\pi\)
0.174316 + 0.984690i \(0.444229\pi\)
\(54\) 6.28862 0.0158476
\(55\) 85.3320 0.209203
\(56\) 25.9977 0.0620373
\(57\) 335.255 0.779046
\(58\) 2.33481 0.00528578
\(59\) −891.997 −1.96827 −0.984137 0.177410i \(-0.943228\pi\)
−0.984137 + 0.177410i \(0.943228\pi\)
\(60\) −184.916 −0.397877
\(61\) 654.613 1.37401 0.687005 0.726653i \(-0.258925\pi\)
0.687005 + 0.726653i \(0.258925\pi\)
\(62\) 73.4520 0.150458
\(63\) −63.0000 −0.125988
\(64\) −491.286 −0.959544
\(65\) 461.364 0.880388
\(66\) 7.68609 0.0143347
\(67\) −102.298 −0.186532 −0.0932659 0.995641i \(-0.529731\pi\)
−0.0932659 + 0.995641i \(0.529731\pi\)
\(68\) 361.055 0.643888
\(69\) 315.978 0.551295
\(70\) −12.6476 −0.0215954
\(71\) 119.126 0.199122 0.0995608 0.995031i \(-0.468256\pi\)
0.0995608 + 0.995031i \(0.468256\pi\)
\(72\) −33.4256 −0.0547117
\(73\) −346.254 −0.555151 −0.277575 0.960704i \(-0.589531\pi\)
−0.277575 + 0.960704i \(0.589531\pi\)
\(74\) −42.4310 −0.0666554
\(75\) −194.466 −0.299399
\(76\) −887.951 −1.34020
\(77\) −77.0000 −0.113961
\(78\) 41.5564 0.0603248
\(79\) −774.834 −1.10349 −0.551744 0.834013i \(-0.686038\pi\)
−0.551744 + 0.834013i \(0.686038\pi\)
\(80\) 486.400 0.679765
\(81\) 81.0000 0.111111
\(82\) 113.648 0.153053
\(83\) 1040.89 1.37653 0.688265 0.725459i \(-0.258373\pi\)
0.688265 + 0.725459i \(0.258373\pi\)
\(84\) 166.861 0.216738
\(85\) −352.499 −0.449811
\(86\) −83.4636 −0.104652
\(87\) 30.0732 0.0370597
\(88\) −40.8535 −0.0494886
\(89\) 502.925 0.598988 0.299494 0.954098i \(-0.403182\pi\)
0.299494 + 0.954098i \(0.403182\pi\)
\(90\) 16.2612 0.0190454
\(91\) −416.316 −0.479579
\(92\) −836.896 −0.948396
\(93\) 946.091 1.05489
\(94\) 47.9465 0.0526096
\(95\) 866.908 0.936241
\(96\) 132.946 0.141341
\(97\) −939.285 −0.983195 −0.491598 0.870822i \(-0.663587\pi\)
−0.491598 + 0.870822i \(0.663587\pi\)
\(98\) 11.4127 0.0117638
\(99\) 99.0000 0.100504
\(100\) 515.058 0.515058
\(101\) −664.250 −0.654409 −0.327205 0.944953i \(-0.606107\pi\)
−0.327205 + 0.944953i \(0.606107\pi\)
\(102\) −31.7506 −0.0308213
\(103\) −1500.66 −1.43558 −0.717789 0.696261i \(-0.754846\pi\)
−0.717789 + 0.696261i \(0.754846\pi\)
\(104\) −220.882 −0.208263
\(105\) −162.907 −0.151410
\(106\) 31.3309 0.0287087
\(107\) −1090.60 −0.985353 −0.492676 0.870213i \(-0.663981\pi\)
−0.492676 + 0.870213i \(0.663981\pi\)
\(108\) −214.535 −0.191145
\(109\) 525.673 0.461930 0.230965 0.972962i \(-0.425812\pi\)
0.230965 + 0.972962i \(0.425812\pi\)
\(110\) 19.8748 0.0172272
\(111\) −546.528 −0.467335
\(112\) −438.907 −0.370293
\(113\) −1978.09 −1.64675 −0.823377 0.567494i \(-0.807913\pi\)
−0.823377 + 0.567494i \(0.807913\pi\)
\(114\) 78.0848 0.0641519
\(115\) 817.063 0.662535
\(116\) −79.6515 −0.0637539
\(117\) 535.263 0.422949
\(118\) −207.757 −0.162081
\(119\) 318.080 0.245028
\(120\) −86.4325 −0.0657515
\(121\) 121.000 0.0909091
\(122\) 152.467 0.113145
\(123\) 1463.83 1.07308
\(124\) −2505.80 −1.81474
\(125\) −1472.53 −1.05366
\(126\) −14.6734 −0.0103747
\(127\) −2464.93 −1.72226 −0.861131 0.508383i \(-0.830243\pi\)
−0.861131 + 0.508383i \(0.830243\pi\)
\(128\) −468.950 −0.323826
\(129\) −1075.05 −0.733740
\(130\) 107.457 0.0724971
\(131\) −552.047 −0.368188 −0.184094 0.982909i \(-0.558935\pi\)
−0.184094 + 0.982909i \(0.558935\pi\)
\(132\) −262.210 −0.172897
\(133\) −782.261 −0.510005
\(134\) −23.8263 −0.0153603
\(135\) 209.451 0.133531
\(136\) 168.762 0.106406
\(137\) 794.265 0.495318 0.247659 0.968847i \(-0.420339\pi\)
0.247659 + 0.968847i \(0.420339\pi\)
\(138\) 73.5951 0.0453974
\(139\) 430.970 0.262982 0.131491 0.991317i \(-0.458024\pi\)
0.131491 + 0.991317i \(0.458024\pi\)
\(140\) 431.472 0.260472
\(141\) 617.571 0.368857
\(142\) 27.7458 0.0163970
\(143\) 654.210 0.382572
\(144\) 564.309 0.326568
\(145\) 77.7640 0.0445376
\(146\) −80.6468 −0.0457149
\(147\) 147.000 0.0824786
\(148\) 1447.53 0.803959
\(149\) 2645.94 1.45479 0.727397 0.686217i \(-0.240730\pi\)
0.727397 + 0.686217i \(0.240730\pi\)
\(150\) −45.2933 −0.0246546
\(151\) −538.071 −0.289984 −0.144992 0.989433i \(-0.546316\pi\)
−0.144992 + 0.989433i \(0.546316\pi\)
\(152\) −415.041 −0.221475
\(153\) −408.960 −0.216095
\(154\) −17.9342 −0.00938429
\(155\) 2446.42 1.26775
\(156\) −1417.69 −0.727602
\(157\) 2052.43 1.04332 0.521661 0.853153i \(-0.325313\pi\)
0.521661 + 0.853153i \(0.325313\pi\)
\(158\) −180.468 −0.0908688
\(159\) 403.554 0.201283
\(160\) 343.775 0.169861
\(161\) −737.283 −0.360907
\(162\) 18.8659 0.00914964
\(163\) 2191.90 1.05327 0.526634 0.850092i \(-0.323454\pi\)
0.526634 + 0.850092i \(0.323454\pi\)
\(164\) −3877.08 −1.84603
\(165\) 255.996 0.120783
\(166\) 242.435 0.113353
\(167\) 40.0010 0.0185351 0.00926757 0.999957i \(-0.497050\pi\)
0.00926757 + 0.999957i \(0.497050\pi\)
\(168\) 77.9931 0.0358172
\(169\) 1340.12 0.609975
\(170\) −82.1012 −0.0370405
\(171\) 1005.76 0.449782
\(172\) 2847.35 1.26226
\(173\) 4251.43 1.86838 0.934192 0.356770i \(-0.116122\pi\)
0.934192 + 0.356770i \(0.116122\pi\)
\(174\) 7.00442 0.00305174
\(175\) 453.753 0.196003
\(176\) 689.711 0.295392
\(177\) −2675.99 −1.13638
\(178\) 117.137 0.0493247
\(179\) 4768.34 1.99108 0.995538 0.0943649i \(-0.0300820\pi\)
0.995538 + 0.0943649i \(0.0300820\pi\)
\(180\) −554.749 −0.229714
\(181\) −2955.03 −1.21351 −0.606756 0.794888i \(-0.707530\pi\)
−0.606756 + 0.794888i \(0.707530\pi\)
\(182\) −96.9648 −0.0394918
\(183\) 1963.84 0.793285
\(184\) −391.177 −0.156728
\(185\) −1413.22 −0.561634
\(186\) 220.356 0.0868671
\(187\) −499.840 −0.195465
\(188\) −1635.69 −0.634547
\(189\) −189.000 −0.0727393
\(190\) 201.913 0.0770965
\(191\) 715.502 0.271057 0.135529 0.990773i \(-0.456727\pi\)
0.135529 + 0.990773i \(0.456727\pi\)
\(192\) −1473.86 −0.553993
\(193\) 1799.38 0.671098 0.335549 0.942023i \(-0.391078\pi\)
0.335549 + 0.942023i \(0.391078\pi\)
\(194\) −218.771 −0.0809630
\(195\) 1384.09 0.508292
\(196\) −389.342 −0.141888
\(197\) 2978.55 1.07722 0.538612 0.842554i \(-0.318949\pi\)
0.538612 + 0.842554i \(0.318949\pi\)
\(198\) 23.0583 0.00827616
\(199\) −2303.16 −0.820434 −0.410217 0.911988i \(-0.634547\pi\)
−0.410217 + 0.911988i \(0.634547\pi\)
\(200\) 240.745 0.0851164
\(201\) −306.893 −0.107694
\(202\) −154.712 −0.0538885
\(203\) −70.1709 −0.0242612
\(204\) 1083.17 0.371749
\(205\) 3785.21 1.28961
\(206\) −349.522 −0.118215
\(207\) 947.935 0.318290
\(208\) 3729.06 1.24309
\(209\) 1229.27 0.406843
\(210\) −37.9429 −0.0124681
\(211\) −4258.59 −1.38945 −0.694724 0.719277i \(-0.744473\pi\)
−0.694724 + 0.719277i \(0.744473\pi\)
\(212\) −1068.85 −0.346268
\(213\) 357.377 0.114963
\(214\) −254.015 −0.0811406
\(215\) −2779.87 −0.881794
\(216\) −100.277 −0.0315878
\(217\) −2207.55 −0.690590
\(218\) 122.435 0.0380384
\(219\) −1038.76 −0.320517
\(220\) −678.027 −0.207784
\(221\) −2702.49 −0.822574
\(222\) −127.293 −0.0384835
\(223\) −2739.54 −0.822660 −0.411330 0.911486i \(-0.634936\pi\)
−0.411330 + 0.911486i \(0.634936\pi\)
\(224\) −310.208 −0.0925297
\(225\) −583.397 −0.172858
\(226\) −460.721 −0.135605
\(227\) 3373.57 0.986395 0.493198 0.869917i \(-0.335828\pi\)
0.493198 + 0.869917i \(0.335828\pi\)
\(228\) −2663.85 −0.773763
\(229\) 349.100 0.100739 0.0503693 0.998731i \(-0.483960\pi\)
0.0503693 + 0.998731i \(0.483960\pi\)
\(230\) 190.304 0.0545576
\(231\) −231.000 −0.0657952
\(232\) −37.2302 −0.0105357
\(233\) 2210.59 0.621548 0.310774 0.950484i \(-0.399412\pi\)
0.310774 + 0.950484i \(0.399412\pi\)
\(234\) 124.669 0.0348285
\(235\) 1596.93 0.443285
\(236\) 7087.59 1.95493
\(237\) −2324.50 −0.637100
\(238\) 74.0847 0.0201773
\(239\) −4073.04 −1.10236 −0.551178 0.834388i \(-0.685821\pi\)
−0.551178 + 0.834388i \(0.685821\pi\)
\(240\) 1459.20 0.392463
\(241\) 1967.60 0.525910 0.262955 0.964808i \(-0.415303\pi\)
0.262955 + 0.964808i \(0.415303\pi\)
\(242\) 28.1823 0.00748607
\(243\) 243.000 0.0641500
\(244\) −5201.39 −1.36469
\(245\) 380.115 0.0991211
\(246\) 340.944 0.0883650
\(247\) 6646.28 1.71212
\(248\) −1171.25 −0.299896
\(249\) 3122.66 0.794740
\(250\) −342.971 −0.0867655
\(251\) −7019.95 −1.76532 −0.882660 0.470011i \(-0.844250\pi\)
−0.882660 + 0.470011i \(0.844250\pi\)
\(252\) 500.582 0.125134
\(253\) 1158.59 0.287904
\(254\) −574.112 −0.141823
\(255\) −1057.50 −0.259698
\(256\) 3821.07 0.932878
\(257\) −2810.13 −0.682066 −0.341033 0.940051i \(-0.610777\pi\)
−0.341033 + 0.940051i \(0.610777\pi\)
\(258\) −250.391 −0.0604211
\(259\) 1275.23 0.305943
\(260\) −3665.89 −0.874418
\(261\) 90.2197 0.0213964
\(262\) −128.578 −0.0303191
\(263\) 5388.34 1.26334 0.631672 0.775236i \(-0.282369\pi\)
0.631672 + 0.775236i \(0.282369\pi\)
\(264\) −122.561 −0.0285723
\(265\) 1043.52 0.241898
\(266\) −182.198 −0.0419973
\(267\) 1508.77 0.345826
\(268\) 812.831 0.185267
\(269\) −839.014 −0.190169 −0.0950847 0.995469i \(-0.530312\pi\)
−0.0950847 + 0.995469i \(0.530312\pi\)
\(270\) 48.7837 0.0109959
\(271\) 3831.43 0.858830 0.429415 0.903107i \(-0.358720\pi\)
0.429415 + 0.903107i \(0.358720\pi\)
\(272\) −2849.14 −0.635126
\(273\) −1248.95 −0.276885
\(274\) 184.994 0.0407879
\(275\) −713.040 −0.156356
\(276\) −2510.69 −0.547556
\(277\) −800.595 −0.173657 −0.0868287 0.996223i \(-0.527673\pi\)
−0.0868287 + 0.996223i \(0.527673\pi\)
\(278\) 100.378 0.0216557
\(279\) 2838.27 0.609043
\(280\) 201.676 0.0430444
\(281\) 3988.10 0.846655 0.423327 0.905977i \(-0.360862\pi\)
0.423327 + 0.905977i \(0.360862\pi\)
\(282\) 143.840 0.0303742
\(283\) 218.036 0.0457982 0.0228991 0.999738i \(-0.492710\pi\)
0.0228991 + 0.999738i \(0.492710\pi\)
\(284\) −946.544 −0.197771
\(285\) 2600.73 0.540539
\(286\) 152.373 0.0315036
\(287\) −3415.61 −0.702498
\(288\) 398.839 0.0816035
\(289\) −2848.20 −0.579728
\(290\) 18.1122 0.00366752
\(291\) −2817.86 −0.567648
\(292\) 2751.25 0.551386
\(293\) 2886.47 0.575527 0.287763 0.957702i \(-0.407088\pi\)
0.287763 + 0.957702i \(0.407088\pi\)
\(294\) 34.2380 0.00679185
\(295\) −6919.63 −1.36568
\(296\) 676.594 0.132859
\(297\) 297.000 0.0580259
\(298\) 616.272 0.119798
\(299\) 6264.13 1.21159
\(300\) 1545.18 0.297369
\(301\) 2508.44 0.480345
\(302\) −125.323 −0.0238792
\(303\) −1992.75 −0.377823
\(304\) 7006.94 1.32196
\(305\) 5078.13 0.953354
\(306\) −95.2517 −0.0177947
\(307\) 1453.05 0.270130 0.135065 0.990837i \(-0.456876\pi\)
0.135065 + 0.990837i \(0.456876\pi\)
\(308\) 611.823 0.113188
\(309\) −4501.98 −0.828831
\(310\) 569.800 0.104395
\(311\) −10772.3 −1.96412 −0.982062 0.188556i \(-0.939619\pi\)
−0.982062 + 0.188556i \(0.939619\pi\)
\(312\) −662.647 −0.120240
\(313\) −2382.11 −0.430175 −0.215087 0.976595i \(-0.569004\pi\)
−0.215087 + 0.976595i \(0.569004\pi\)
\(314\) 478.035 0.0859142
\(315\) −488.720 −0.0874166
\(316\) 6156.64 1.09601
\(317\) −7870.28 −1.39444 −0.697222 0.716855i \(-0.745581\pi\)
−0.697222 + 0.716855i \(0.745581\pi\)
\(318\) 93.9926 0.0165750
\(319\) 110.269 0.0193538
\(320\) −3811.13 −0.665777
\(321\) −3271.81 −0.568894
\(322\) −171.722 −0.0297195
\(323\) −5078.00 −0.874760
\(324\) −643.606 −0.110358
\(325\) −3855.19 −0.657993
\(326\) 510.519 0.0867333
\(327\) 1577.02 0.266695
\(328\) −1812.20 −0.305068
\(329\) −1441.00 −0.241474
\(330\) 59.6245 0.00994613
\(331\) −6237.15 −1.03572 −0.517862 0.855464i \(-0.673272\pi\)
−0.517862 + 0.855464i \(0.673272\pi\)
\(332\) −8270.62 −1.36720
\(333\) −1639.59 −0.269816
\(334\) 9.31670 0.00152631
\(335\) −793.569 −0.129425
\(336\) −1316.72 −0.213789
\(337\) −5496.22 −0.888422 −0.444211 0.895922i \(-0.646516\pi\)
−0.444211 + 0.895922i \(0.646516\pi\)
\(338\) 312.129 0.0502295
\(339\) −5934.28 −0.950754
\(340\) 2800.87 0.446760
\(341\) 3469.00 0.550900
\(342\) 234.255 0.0370381
\(343\) −343.000 −0.0539949
\(344\) 1330.89 0.208595
\(345\) 2451.19 0.382515
\(346\) 990.210 0.153855
\(347\) −10566.3 −1.63466 −0.817332 0.576167i \(-0.804548\pi\)
−0.817332 + 0.576167i \(0.804548\pi\)
\(348\) −238.955 −0.0368084
\(349\) −2553.15 −0.391596 −0.195798 0.980644i \(-0.562730\pi\)
−0.195798 + 0.980644i \(0.562730\pi\)
\(350\) 105.684 0.0161402
\(351\) 1605.79 0.244190
\(352\) 487.470 0.0738132
\(353\) 1724.64 0.260037 0.130019 0.991512i \(-0.458496\pi\)
0.130019 + 0.991512i \(0.458496\pi\)
\(354\) −623.270 −0.0935775
\(355\) 924.113 0.138160
\(356\) −3996.11 −0.594926
\(357\) 954.241 0.141467
\(358\) 1110.60 0.163959
\(359\) 2686.78 0.394994 0.197497 0.980303i \(-0.436719\pi\)
0.197497 + 0.980303i \(0.436719\pi\)
\(360\) −259.298 −0.0379616
\(361\) 5629.43 0.820736
\(362\) −688.262 −0.0999289
\(363\) 363.000 0.0524864
\(364\) 3307.94 0.476327
\(365\) −2686.05 −0.385190
\(366\) 457.401 0.0653245
\(367\) −2379.21 −0.338403 −0.169201 0.985582i \(-0.554119\pi\)
−0.169201 + 0.985582i \(0.554119\pi\)
\(368\) 6604.05 0.935490
\(369\) 4391.50 0.619545
\(370\) −329.157 −0.0462487
\(371\) −941.627 −0.131770
\(372\) −7517.41 −1.04774
\(373\) 9982.30 1.38569 0.692847 0.721085i \(-0.256356\pi\)
0.692847 + 0.721085i \(0.256356\pi\)
\(374\) −116.419 −0.0160959
\(375\) −4417.60 −0.608331
\(376\) −764.543 −0.104863
\(377\) 596.189 0.0814464
\(378\) −44.0203 −0.00598985
\(379\) −1197.67 −0.162323 −0.0811613 0.996701i \(-0.525863\pi\)
−0.0811613 + 0.996701i \(0.525863\pi\)
\(380\) −6888.24 −0.929893
\(381\) −7394.79 −0.994349
\(382\) 166.649 0.0223207
\(383\) −3954.76 −0.527621 −0.263811 0.964575i \(-0.584979\pi\)
−0.263811 + 0.964575i \(0.584979\pi\)
\(384\) −1406.85 −0.186961
\(385\) −597.324 −0.0790713
\(386\) 419.096 0.0552627
\(387\) −3225.14 −0.423625
\(388\) 7463.33 0.976528
\(389\) −14191.8 −1.84976 −0.924878 0.380263i \(-0.875833\pi\)
−0.924878 + 0.380263i \(0.875833\pi\)
\(390\) 322.372 0.0418562
\(391\) −4786.03 −0.619027
\(392\) −181.984 −0.0234479
\(393\) −1656.14 −0.212573
\(394\) 693.740 0.0887059
\(395\) −6010.74 −0.765654
\(396\) −786.629 −0.0998223
\(397\) −8724.90 −1.10300 −0.551499 0.834176i \(-0.685944\pi\)
−0.551499 + 0.834176i \(0.685944\pi\)
\(398\) −536.432 −0.0675601
\(399\) −2346.78 −0.294452
\(400\) −4064.40 −0.508049
\(401\) 9736.18 1.21247 0.606236 0.795285i \(-0.292679\pi\)
0.606236 + 0.795285i \(0.292679\pi\)
\(402\) −71.4789 −0.00886827
\(403\) 18755.8 2.31835
\(404\) 5277.97 0.649972
\(405\) 628.354 0.0770942
\(406\) −16.3436 −0.00199784
\(407\) −2003.94 −0.244058
\(408\) 506.287 0.0614337
\(409\) −10284.9 −1.24342 −0.621708 0.783249i \(-0.713561\pi\)
−0.621708 + 0.783249i \(0.713561\pi\)
\(410\) 881.620 0.106195
\(411\) 2382.79 0.285972
\(412\) 11923.9 1.42584
\(413\) 6243.98 0.743938
\(414\) 220.785 0.0262102
\(415\) 8074.62 0.955103
\(416\) 2635.60 0.310627
\(417\) 1292.91 0.151832
\(418\) 286.311 0.0335022
\(419\) 12837.5 1.49679 0.748393 0.663255i \(-0.230826\pi\)
0.748393 + 0.663255i \(0.230826\pi\)
\(420\) 1294.42 0.150383
\(421\) 3108.45 0.359849 0.179925 0.983680i \(-0.442415\pi\)
0.179925 + 0.983680i \(0.442415\pi\)
\(422\) −991.876 −0.114417
\(423\) 1852.71 0.212960
\(424\) −499.594 −0.0572227
\(425\) 2945.51 0.336184
\(426\) 83.2374 0.00946682
\(427\) −4582.29 −0.519327
\(428\) 8665.67 0.978671
\(429\) 1962.63 0.220878
\(430\) −647.465 −0.0726129
\(431\) −414.489 −0.0463231 −0.0231615 0.999732i \(-0.507373\pi\)
−0.0231615 + 0.999732i \(0.507373\pi\)
\(432\) 1692.93 0.188544
\(433\) 7591.87 0.842591 0.421296 0.906923i \(-0.361575\pi\)
0.421296 + 0.906923i \(0.361575\pi\)
\(434\) −514.164 −0.0568679
\(435\) 233.292 0.0257138
\(436\) −4176.87 −0.458797
\(437\) 11770.4 1.28845
\(438\) −241.940 −0.0263935
\(439\) −1585.71 −0.172396 −0.0861982 0.996278i \(-0.527472\pi\)
−0.0861982 + 0.996278i \(0.527472\pi\)
\(440\) −316.919 −0.0343376
\(441\) 441.000 0.0476190
\(442\) −629.441 −0.0677363
\(443\) 3305.39 0.354501 0.177250 0.984166i \(-0.443280\pi\)
0.177250 + 0.984166i \(0.443280\pi\)
\(444\) 4342.58 0.464166
\(445\) 3901.42 0.415606
\(446\) −638.072 −0.0677434
\(447\) 7937.83 0.839925
\(448\) 3439.00 0.362673
\(449\) −2470.77 −0.259694 −0.129847 0.991534i \(-0.541449\pi\)
−0.129847 + 0.991534i \(0.541449\pi\)
\(450\) −135.880 −0.0142343
\(451\) 5367.39 0.560400
\(452\) 15717.4 1.63559
\(453\) −1614.21 −0.167422
\(454\) 785.745 0.0812265
\(455\) −3229.55 −0.332755
\(456\) −1245.12 −0.127869
\(457\) 2916.85 0.298566 0.149283 0.988795i \(-0.452303\pi\)
0.149283 + 0.988795i \(0.452303\pi\)
\(458\) 81.3095 0.00829551
\(459\) −1226.88 −0.124762
\(460\) −6492.18 −0.658042
\(461\) −6185.85 −0.624954 −0.312477 0.949925i \(-0.601159\pi\)
−0.312477 + 0.949925i \(0.601159\pi\)
\(462\) −53.8026 −0.00541802
\(463\) −19037.0 −1.91086 −0.955428 0.295224i \(-0.904606\pi\)
−0.955428 + 0.295224i \(0.904606\pi\)
\(464\) 628.541 0.0628864
\(465\) 7339.26 0.731936
\(466\) 514.873 0.0511825
\(467\) −3241.03 −0.321150 −0.160575 0.987024i \(-0.551335\pi\)
−0.160575 + 0.987024i \(0.551335\pi\)
\(468\) −4253.07 −0.420081
\(469\) 716.083 0.0705024
\(470\) 371.943 0.0365031
\(471\) 6157.28 0.602362
\(472\) 3312.84 0.323063
\(473\) −3941.83 −0.383183
\(474\) −541.404 −0.0524631
\(475\) −7243.95 −0.699737
\(476\) −2527.39 −0.243367
\(477\) 1210.66 0.116211
\(478\) −948.659 −0.0907754
\(479\) 17662.0 1.68475 0.842377 0.538889i \(-0.181156\pi\)
0.842377 + 0.538889i \(0.181156\pi\)
\(480\) 1031.33 0.0980695
\(481\) −10834.7 −1.02707
\(482\) 458.278 0.0433070
\(483\) −2211.85 −0.208370
\(484\) −961.436 −0.0902926
\(485\) −7286.46 −0.682188
\(486\) 56.5976 0.00528255
\(487\) −11143.6 −1.03689 −0.518445 0.855111i \(-0.673489\pi\)
−0.518445 + 0.855111i \(0.673489\pi\)
\(488\) −2431.20 −0.225523
\(489\) 6575.70 0.608105
\(490\) 88.5334 0.00816231
\(491\) 7223.60 0.663944 0.331972 0.943289i \(-0.392286\pi\)
0.331972 + 0.943289i \(0.392286\pi\)
\(492\) −11631.3 −1.06581
\(493\) −455.510 −0.0416128
\(494\) 1548.00 0.140987
\(495\) 767.988 0.0697344
\(496\) 19773.6 1.79004
\(497\) −833.880 −0.0752609
\(498\) 727.304 0.0654443
\(499\) −13771.3 −1.23545 −0.617725 0.786394i \(-0.711946\pi\)
−0.617725 + 0.786394i \(0.711946\pi\)
\(500\) 11700.4 1.04652
\(501\) 120.003 0.0107013
\(502\) −1635.03 −0.145368
\(503\) −16826.6 −1.49157 −0.745787 0.666185i \(-0.767926\pi\)
−0.745787 + 0.666185i \(0.767926\pi\)
\(504\) 233.979 0.0206791
\(505\) −5152.89 −0.454061
\(506\) 269.849 0.0237080
\(507\) 4020.35 0.352169
\(508\) 19585.7 1.71058
\(509\) 17447.3 1.51932 0.759662 0.650318i \(-0.225364\pi\)
0.759662 + 0.650318i \(0.225364\pi\)
\(510\) −246.304 −0.0213853
\(511\) 2423.78 0.209827
\(512\) 4641.57 0.400645
\(513\) 3017.29 0.259682
\(514\) −654.513 −0.0561660
\(515\) −11641.3 −0.996073
\(516\) 8542.04 0.728764
\(517\) 2264.43 0.192629
\(518\) 297.017 0.0251934
\(519\) 12754.3 1.07871
\(520\) −1713.49 −0.144503
\(521\) −1688.35 −0.141973 −0.0709866 0.997477i \(-0.522615\pi\)
−0.0709866 + 0.997477i \(0.522615\pi\)
\(522\) 21.0132 0.00176193
\(523\) −21089.3 −1.76323 −0.881616 0.471967i \(-0.843544\pi\)
−0.881616 + 0.471967i \(0.843544\pi\)
\(524\) 4386.43 0.365691
\(525\) 1361.26 0.113162
\(526\) 1255.01 0.104032
\(527\) −14330.1 −1.18450
\(528\) 2069.13 0.170544
\(529\) −1073.40 −0.0882223
\(530\) 243.048 0.0199195
\(531\) −8027.98 −0.656091
\(532\) 6215.66 0.506547
\(533\) 29019.8 2.35833
\(534\) 351.411 0.0284776
\(535\) −8460.32 −0.683685
\(536\) 379.928 0.0306164
\(537\) 14305.0 1.14955
\(538\) −195.416 −0.0156598
\(539\) 539.000 0.0430730
\(540\) −1664.25 −0.132626
\(541\) 15205.5 1.20838 0.604191 0.796840i \(-0.293496\pi\)
0.604191 + 0.796840i \(0.293496\pi\)
\(542\) 892.386 0.0707219
\(543\) −8865.10 −0.700622
\(544\) −2013.70 −0.158707
\(545\) 4077.88 0.320509
\(546\) −290.895 −0.0228006
\(547\) −6915.32 −0.540544 −0.270272 0.962784i \(-0.587114\pi\)
−0.270272 + 0.962784i \(0.587114\pi\)
\(548\) −6311.03 −0.491960
\(549\) 5891.52 0.458003
\(550\) −166.076 −0.0128754
\(551\) 1120.24 0.0866135
\(552\) −1173.53 −0.0904869
\(553\) 5423.84 0.417080
\(554\) −186.468 −0.0143001
\(555\) −4239.67 −0.324259
\(556\) −3424.38 −0.261198
\(557\) −2243.06 −0.170631 −0.0853156 0.996354i \(-0.527190\pi\)
−0.0853156 + 0.996354i \(0.527190\pi\)
\(558\) 661.068 0.0501527
\(559\) −21312.3 −1.61255
\(560\) −3404.80 −0.256927
\(561\) −1499.52 −0.112852
\(562\) 928.875 0.0697193
\(563\) −1533.10 −0.114765 −0.0573824 0.998352i \(-0.518275\pi\)
−0.0573824 + 0.998352i \(0.518275\pi\)
\(564\) −4907.06 −0.366356
\(565\) −15345.0 −1.14260
\(566\) 50.7832 0.00377134
\(567\) −567.000 −0.0419961
\(568\) −442.428 −0.0326828
\(569\) 8226.60 0.606110 0.303055 0.952973i \(-0.401993\pi\)
0.303055 + 0.952973i \(0.401993\pi\)
\(570\) 605.740 0.0445117
\(571\) 565.628 0.0414550 0.0207275 0.999785i \(-0.493402\pi\)
0.0207275 + 0.999785i \(0.493402\pi\)
\(572\) −5198.19 −0.379978
\(573\) 2146.51 0.156495
\(574\) −795.536 −0.0578485
\(575\) −6827.44 −0.495172
\(576\) −4421.58 −0.319848
\(577\) −7258.21 −0.523680 −0.261840 0.965111i \(-0.584329\pi\)
−0.261840 + 0.965111i \(0.584329\pi\)
\(578\) −663.380 −0.0477387
\(579\) 5398.13 0.387458
\(580\) −617.893 −0.0442356
\(581\) −7286.20 −0.520279
\(582\) −656.312 −0.0467440
\(583\) 1479.70 0.105116
\(584\) 1285.97 0.0911198
\(585\) 4152.28 0.293463
\(586\) 672.293 0.0473928
\(587\) 17458.6 1.22758 0.613792 0.789468i \(-0.289643\pi\)
0.613792 + 0.789468i \(0.289643\pi\)
\(588\) −1168.03 −0.0819193
\(589\) 35242.4 2.46543
\(590\) −1611.66 −0.112460
\(591\) 8935.65 0.621935
\(592\) −11422.6 −0.793019
\(593\) −13482.3 −0.933648 −0.466824 0.884350i \(-0.654602\pi\)
−0.466824 + 0.884350i \(0.654602\pi\)
\(594\) 69.1748 0.00477825
\(595\) 2467.49 0.170012
\(596\) −21024.0 −1.44493
\(597\) −6909.47 −0.473678
\(598\) 1458.99 0.0997702
\(599\) −5040.45 −0.343819 −0.171909 0.985113i \(-0.554994\pi\)
−0.171909 + 0.985113i \(0.554994\pi\)
\(600\) 722.236 0.0491420
\(601\) 13587.9 0.922234 0.461117 0.887339i \(-0.347449\pi\)
0.461117 + 0.887339i \(0.347449\pi\)
\(602\) 584.245 0.0395549
\(603\) −920.678 −0.0621773
\(604\) 4275.38 0.288018
\(605\) 938.652 0.0630771
\(606\) −464.135 −0.0311125
\(607\) −24238.0 −1.62074 −0.810371 0.585917i \(-0.800735\pi\)
−0.810371 + 0.585917i \(0.800735\pi\)
\(608\) 4952.32 0.330334
\(609\) −210.513 −0.0140072
\(610\) 1182.76 0.0785056
\(611\) 12243.1 0.810640
\(612\) 3249.50 0.214629
\(613\) −7239.20 −0.476979 −0.238490 0.971145i \(-0.576652\pi\)
−0.238490 + 0.971145i \(0.576652\pi\)
\(614\) 338.433 0.0222444
\(615\) 11355.6 0.744557
\(616\) 285.975 0.0187049
\(617\) 25095.8 1.63747 0.818736 0.574170i \(-0.194675\pi\)
0.818736 + 0.574170i \(0.194675\pi\)
\(618\) −1048.57 −0.0682516
\(619\) 9983.31 0.648244 0.324122 0.946015i \(-0.394931\pi\)
0.324122 + 0.946015i \(0.394931\pi\)
\(620\) −19438.7 −1.25915
\(621\) 2843.81 0.183765
\(622\) −2509.00 −0.161739
\(623\) −3520.47 −0.226396
\(624\) 11187.2 0.717701
\(625\) −3320.39 −0.212505
\(626\) −554.821 −0.0354235
\(627\) 3687.80 0.234891
\(628\) −16308.1 −1.03625
\(629\) 8278.09 0.524752
\(630\) −113.829 −0.00719848
\(631\) 10735.0 0.677264 0.338632 0.940919i \(-0.390036\pi\)
0.338632 + 0.940919i \(0.390036\pi\)
\(632\) 2877.70 0.181121
\(633\) −12775.8 −0.802198
\(634\) −1833.08 −0.114828
\(635\) −19121.6 −1.19499
\(636\) −3206.54 −0.199918
\(637\) 2914.21 0.181264
\(638\) 25.6829 0.00159372
\(639\) 1072.13 0.0663738
\(640\) −3637.86 −0.224686
\(641\) 12831.2 0.790643 0.395322 0.918543i \(-0.370633\pi\)
0.395322 + 0.918543i \(0.370633\pi\)
\(642\) −762.044 −0.0468466
\(643\) −16536.8 −1.01423 −0.507113 0.861880i \(-0.669287\pi\)
−0.507113 + 0.861880i \(0.669287\pi\)
\(644\) 5858.27 0.358460
\(645\) −8339.62 −0.509104
\(646\) −1182.73 −0.0720337
\(647\) −6600.54 −0.401073 −0.200536 0.979686i \(-0.564268\pi\)
−0.200536 + 0.979686i \(0.564268\pi\)
\(648\) −300.830 −0.0182372
\(649\) −9811.97 −0.593457
\(650\) −897.920 −0.0541836
\(651\) −6622.64 −0.398712
\(652\) −17416.3 −1.04613
\(653\) −22720.9 −1.36162 −0.680810 0.732460i \(-0.738372\pi\)
−0.680810 + 0.732460i \(0.738372\pi\)
\(654\) 367.306 0.0219615
\(655\) −4282.48 −0.255466
\(656\) 30594.6 1.82091
\(657\) −3116.29 −0.185050
\(658\) −335.626 −0.0198846
\(659\) 916.372 0.0541681 0.0270841 0.999633i \(-0.491378\pi\)
0.0270841 + 0.999633i \(0.491378\pi\)
\(660\) −2034.08 −0.119964
\(661\) −10592.7 −0.623312 −0.311656 0.950195i \(-0.600884\pi\)
−0.311656 + 0.950195i \(0.600884\pi\)
\(662\) −1452.71 −0.0852886
\(663\) −8107.46 −0.474913
\(664\) −3865.80 −0.225937
\(665\) −6068.36 −0.353866
\(666\) −381.879 −0.0222185
\(667\) 1055.83 0.0612924
\(668\) −317.838 −0.0184095
\(669\) −8218.62 −0.474963
\(670\) −184.832 −0.0106577
\(671\) 7200.74 0.414279
\(672\) −930.624 −0.0534220
\(673\) 10778.2 0.617336 0.308668 0.951170i \(-0.400117\pi\)
0.308668 + 0.951170i \(0.400117\pi\)
\(674\) −1280.14 −0.0731587
\(675\) −1750.19 −0.0997998
\(676\) −10648.2 −0.605839
\(677\) 24654.1 1.39960 0.699802 0.714336i \(-0.253271\pi\)
0.699802 + 0.714336i \(0.253271\pi\)
\(678\) −1382.16 −0.0782915
\(679\) 6575.00 0.371613
\(680\) 1309.17 0.0738298
\(681\) 10120.7 0.569495
\(682\) 807.972 0.0453649
\(683\) −21152.8 −1.18505 −0.592524 0.805553i \(-0.701868\pi\)
−0.592524 + 0.805553i \(0.701868\pi\)
\(684\) −7991.56 −0.446732
\(685\) 6161.48 0.343676
\(686\) −79.8888 −0.00444631
\(687\) 1047.30 0.0581615
\(688\) −22468.8 −1.24508
\(689\) 8000.29 0.442361
\(690\) 570.911 0.0314989
\(691\) 3359.89 0.184973 0.0924865 0.995714i \(-0.470519\pi\)
0.0924865 + 0.995714i \(0.470519\pi\)
\(692\) −33780.8 −1.85572
\(693\) −693.000 −0.0379869
\(694\) −2461.02 −0.134609
\(695\) 3343.23 0.182469
\(696\) −111.691 −0.00608279
\(697\) −22172.2 −1.20492
\(698\) −594.659 −0.0322467
\(699\) 6631.77 0.358851
\(700\) −3605.41 −0.194674
\(701\) −20003.4 −1.07777 −0.538887 0.842378i \(-0.681155\pi\)
−0.538887 + 0.842378i \(0.681155\pi\)
\(702\) 374.007 0.0201083
\(703\) −20358.5 −1.09223
\(704\) −5404.15 −0.289313
\(705\) 4790.78 0.255931
\(706\) 401.688 0.0214132
\(707\) 4649.75 0.247344
\(708\) 21262.8 1.12868
\(709\) 6330.56 0.335331 0.167665 0.985844i \(-0.446377\pi\)
0.167665 + 0.985844i \(0.446377\pi\)
\(710\) 215.237 0.0113770
\(711\) −6973.50 −0.367830
\(712\) −1867.84 −0.0983149
\(713\) 33216.1 1.74467
\(714\) 222.254 0.0116494
\(715\) 5075.01 0.265447
\(716\) −37888.0 −1.97757
\(717\) −12219.1 −0.636445
\(718\) 625.784 0.0325265
\(719\) −111.791 −0.00579845 −0.00289923 0.999996i \(-0.500923\pi\)
−0.00289923 + 0.999996i \(0.500923\pi\)
\(720\) 4377.60 0.226588
\(721\) 10504.6 0.542597
\(722\) 1311.16 0.0675849
\(723\) 5902.80 0.303634
\(724\) 23480.0 1.20528
\(725\) −649.801 −0.0332869
\(726\) 84.5470 0.00432209
\(727\) −17266.8 −0.880867 −0.440433 0.897785i \(-0.645175\pi\)
−0.440433 + 0.897785i \(0.645175\pi\)
\(728\) 1546.18 0.0787159
\(729\) 729.000 0.0370370
\(730\) −625.614 −0.0317192
\(731\) 16283.4 0.823888
\(732\) −15604.2 −0.787906
\(733\) −858.639 −0.0432668 −0.0216334 0.999766i \(-0.506887\pi\)
−0.0216334 + 0.999766i \(0.506887\pi\)
\(734\) −554.146 −0.0278664
\(735\) 1140.35 0.0572276
\(736\) 4667.58 0.233762
\(737\) −1125.27 −0.0562415
\(738\) 1022.83 0.0510176
\(739\) 16141.2 0.803471 0.401736 0.915756i \(-0.368407\pi\)
0.401736 + 0.915756i \(0.368407\pi\)
\(740\) 11229.1 0.557825
\(741\) 19938.8 0.988490
\(742\) −219.316 −0.0108509
\(743\) 1249.50 0.0616953 0.0308476 0.999524i \(-0.490179\pi\)
0.0308476 + 0.999524i \(0.490179\pi\)
\(744\) −3513.74 −0.173145
\(745\) 20525.8 1.00941
\(746\) 2325.00 0.114107
\(747\) 9367.97 0.458843
\(748\) 3971.61 0.194140
\(749\) 7634.23 0.372428
\(750\) −1028.91 −0.0500941
\(751\) 82.9863 0.00403224 0.00201612 0.999998i \(-0.499358\pi\)
0.00201612 + 0.999998i \(0.499358\pi\)
\(752\) 12907.4 0.625912
\(753\) −21059.9 −1.01921
\(754\) 138.859 0.00670685
\(755\) −4174.06 −0.201205
\(756\) 1501.75 0.0722461
\(757\) −3439.65 −0.165147 −0.0825735 0.996585i \(-0.526314\pi\)
−0.0825735 + 0.996585i \(0.526314\pi\)
\(758\) −278.952 −0.0133667
\(759\) 3475.76 0.166222
\(760\) −3219.66 −0.153670
\(761\) 5651.24 0.269195 0.134597 0.990900i \(-0.457026\pi\)
0.134597 + 0.990900i \(0.457026\pi\)
\(762\) −1722.34 −0.0818814
\(763\) −3679.71 −0.174593
\(764\) −5685.20 −0.269219
\(765\) −3172.49 −0.149937
\(766\) −921.111 −0.0434479
\(767\) −53050.3 −2.49744
\(768\) 11463.2 0.538597
\(769\) 14381.1 0.674378 0.337189 0.941437i \(-0.390524\pi\)
0.337189 + 0.941437i \(0.390524\pi\)
\(770\) −139.124 −0.00651127
\(771\) −8430.39 −0.393791
\(772\) −14297.4 −0.666547
\(773\) −31316.0 −1.45713 −0.728563 0.684979i \(-0.759811\pi\)
−0.728563 + 0.684979i \(0.759811\pi\)
\(774\) −751.172 −0.0348841
\(775\) −20442.5 −0.947503
\(776\) 3488.46 0.161377
\(777\) 3825.70 0.176636
\(778\) −3305.45 −0.152321
\(779\) 54528.6 2.50794
\(780\) −10997.7 −0.504845
\(781\) 1310.38 0.0600374
\(782\) −1114.72 −0.0509749
\(783\) 270.659 0.0123532
\(784\) 3072.35 0.139958
\(785\) 15921.6 0.723907
\(786\) −385.735 −0.0175047
\(787\) 29847.6 1.35191 0.675954 0.736944i \(-0.263732\pi\)
0.675954 + 0.736944i \(0.263732\pi\)
\(788\) −23666.8 −1.06992
\(789\) 16165.0 0.729391
\(790\) −1399.97 −0.0630491
\(791\) 13846.6 0.622415
\(792\) −367.682 −0.0164962
\(793\) 38932.2 1.74341
\(794\) −2032.13 −0.0908283
\(795\) 3130.56 0.139660
\(796\) 18300.3 0.814871
\(797\) 7581.40 0.336947 0.168474 0.985706i \(-0.446116\pi\)
0.168474 + 0.985706i \(0.446116\pi\)
\(798\) −546.594 −0.0242471
\(799\) −9354.15 −0.414175
\(800\) −2872.61 −0.126953
\(801\) 4526.32 0.199663
\(802\) 2267.67 0.0998432
\(803\) −3808.80 −0.167384
\(804\) 2438.49 0.106964
\(805\) −5719.44 −0.250415
\(806\) 4368.46 0.190909
\(807\) −2517.04 −0.109794
\(808\) 2467.00 0.107412
\(809\) −25260.6 −1.09779 −0.548896 0.835891i \(-0.684952\pi\)
−0.548896 + 0.835891i \(0.684952\pi\)
\(810\) 146.351 0.00634846
\(811\) −25594.8 −1.10821 −0.554103 0.832448i \(-0.686939\pi\)
−0.554103 + 0.832448i \(0.686939\pi\)
\(812\) 557.561 0.0240967
\(813\) 11494.3 0.495846
\(814\) −466.741 −0.0200974
\(815\) 17003.6 0.730808
\(816\) −8547.41 −0.366690
\(817\) −40046.0 −1.71485
\(818\) −2395.48 −0.102391
\(819\) −3746.84 −0.159860
\(820\) −30076.3 −1.28087
\(821\) −19077.2 −0.810959 −0.405480 0.914104i \(-0.632895\pi\)
−0.405480 + 0.914104i \(0.632895\pi\)
\(822\) 554.981 0.0235489
\(823\) 13889.2 0.588270 0.294135 0.955764i \(-0.404969\pi\)
0.294135 + 0.955764i \(0.404969\pi\)
\(824\) 5573.39 0.235629
\(825\) −2139.12 −0.0902723
\(826\) 1454.30 0.0612609
\(827\) 1354.92 0.0569714 0.0284857 0.999594i \(-0.490931\pi\)
0.0284857 + 0.999594i \(0.490931\pi\)
\(828\) −7532.06 −0.316132
\(829\) 29760.9 1.24685 0.623426 0.781882i \(-0.285740\pi\)
0.623426 + 0.781882i \(0.285740\pi\)
\(830\) 1880.68 0.0786496
\(831\) −2401.79 −0.100261
\(832\) −29218.6 −1.21752
\(833\) −2226.56 −0.0926120
\(834\) 301.134 0.0125029
\(835\) 310.306 0.0128606
\(836\) −9767.46 −0.404084
\(837\) 8514.82 0.351631
\(838\) 2990.01 0.123256
\(839\) 33789.1 1.39038 0.695191 0.718825i \(-0.255320\pi\)
0.695191 + 0.718825i \(0.255320\pi\)
\(840\) 605.028 0.0248517
\(841\) −24288.5 −0.995880
\(842\) 723.995 0.0296324
\(843\) 11964.3 0.488816
\(844\) 33837.7 1.38003
\(845\) 10395.9 0.423230
\(846\) 431.519 0.0175365
\(847\) −847.000 −0.0343604
\(848\) 8434.42 0.341556
\(849\) 654.108 0.0264416
\(850\) 686.044 0.0276837
\(851\) −19187.9 −0.772918
\(852\) −2839.63 −0.114183
\(853\) 22293.3 0.894851 0.447426 0.894321i \(-0.352341\pi\)
0.447426 + 0.894321i \(0.352341\pi\)
\(854\) −1067.27 −0.0427649
\(855\) 7802.18 0.312080
\(856\) 4050.46 0.161731
\(857\) −43972.3 −1.75270 −0.876352 0.481672i \(-0.840030\pi\)
−0.876352 + 0.481672i \(0.840030\pi\)
\(858\) 457.120 0.0181886
\(859\) −34582.5 −1.37362 −0.686810 0.726837i \(-0.740990\pi\)
−0.686810 + 0.726837i \(0.740990\pi\)
\(860\) 22088.2 0.875814
\(861\) −10246.8 −0.405588
\(862\) −96.5395 −0.00381456
\(863\) 48984.4 1.93215 0.966077 0.258254i \(-0.0831472\pi\)
0.966077 + 0.258254i \(0.0831472\pi\)
\(864\) 1196.52 0.0471138
\(865\) 32980.3 1.29638
\(866\) 1768.24 0.0693847
\(867\) −8544.61 −0.334706
\(868\) 17540.6 0.685907
\(869\) −8523.17 −0.332714
\(870\) 54.3365 0.00211745
\(871\) −6084.01 −0.236681
\(872\) −1952.33 −0.0758189
\(873\) −8453.57 −0.327732
\(874\) 2741.46 0.106100
\(875\) 10307.7 0.398246
\(876\) 8253.76 0.318343
\(877\) 3914.98 0.150741 0.0753703 0.997156i \(-0.475986\pi\)
0.0753703 + 0.997156i \(0.475986\pi\)
\(878\) −369.332 −0.0141963
\(879\) 8659.41 0.332281
\(880\) 5350.40 0.204957
\(881\) 4908.77 0.187719 0.0938597 0.995585i \(-0.470079\pi\)
0.0938597 + 0.995585i \(0.470079\pi\)
\(882\) 102.714 0.00392128
\(883\) 8791.82 0.335072 0.167536 0.985866i \(-0.446419\pi\)
0.167536 + 0.985866i \(0.446419\pi\)
\(884\) 21473.3 0.816996
\(885\) −20758.9 −0.788477
\(886\) 769.865 0.0291920
\(887\) −10011.0 −0.378958 −0.189479 0.981885i \(-0.560680\pi\)
−0.189479 + 0.981885i \(0.560680\pi\)
\(888\) 2029.78 0.0767061
\(889\) 17254.5 0.650954
\(890\) 908.686 0.0342239
\(891\) 891.000 0.0335013
\(892\) 21767.7 0.817082
\(893\) 23004.8 0.862069
\(894\) 1848.82 0.0691651
\(895\) 36990.2 1.38150
\(896\) 3282.65 0.122395
\(897\) 18792.4 0.699509
\(898\) −575.471 −0.0213850
\(899\) 3161.34 0.117282
\(900\) 4635.53 0.171686
\(901\) −6112.51 −0.226012
\(902\) 1250.13 0.0461471
\(903\) 7525.32 0.277328
\(904\) 7346.55 0.270290
\(905\) −22923.5 −0.841993
\(906\) −375.969 −0.0137867
\(907\) −44587.3 −1.63230 −0.816150 0.577840i \(-0.803896\pi\)
−0.816150 + 0.577840i \(0.803896\pi\)
\(908\) −26805.5 −0.979706
\(909\) −5978.25 −0.218136
\(910\) −752.201 −0.0274013
\(911\) 22201.6 0.807434 0.403717 0.914884i \(-0.367718\pi\)
0.403717 + 0.914884i \(0.367718\pi\)
\(912\) 21020.8 0.763233
\(913\) 11449.7 0.415039
\(914\) 679.370 0.0245860
\(915\) 15234.4 0.550419
\(916\) −2773.86 −0.100056
\(917\) 3864.33 0.139162
\(918\) −285.755 −0.0102738
\(919\) −4755.83 −0.170708 −0.0853538 0.996351i \(-0.527202\pi\)
−0.0853538 + 0.996351i \(0.527202\pi\)
\(920\) −3034.54 −0.108745
\(921\) 4359.15 0.155960
\(922\) −1440.76 −0.0514630
\(923\) 7084.84 0.252655
\(924\) 1835.47 0.0653490
\(925\) 11809.0 0.419759
\(926\) −4433.95 −0.157353
\(927\) −13505.9 −0.478526
\(928\) 444.236 0.0157142
\(929\) −22020.9 −0.777699 −0.388849 0.921301i \(-0.627127\pi\)
−0.388849 + 0.921301i \(0.627127\pi\)
\(930\) 1709.40 0.0602726
\(931\) 5475.83 0.192764
\(932\) −17564.8 −0.617333
\(933\) −32317.0 −1.13399
\(934\) −754.874 −0.0264457
\(935\) −3877.49 −0.135623
\(936\) −1987.94 −0.0694209
\(937\) 29862.2 1.04115 0.520573 0.853817i \(-0.325718\pi\)
0.520573 + 0.853817i \(0.325718\pi\)
\(938\) 166.784 0.00580565
\(939\) −7146.32 −0.248362
\(940\) −12688.8 −0.440279
\(941\) −8090.56 −0.280281 −0.140141 0.990132i \(-0.544755\pi\)
−0.140141 + 0.990132i \(0.544755\pi\)
\(942\) 1434.10 0.0496026
\(943\) 51393.3 1.77476
\(944\) −55929.1 −1.92832
\(945\) −1466.16 −0.0504700
\(946\) −918.099 −0.0315539
\(947\) 4398.75 0.150940 0.0754700 0.997148i \(-0.475954\pi\)
0.0754700 + 0.997148i \(0.475954\pi\)
\(948\) 18469.9 0.632779
\(949\) −20593.0 −0.704402
\(950\) −1687.20 −0.0576211
\(951\) −23610.8 −0.805083
\(952\) −1181.34 −0.0402178
\(953\) −4288.91 −0.145783 −0.0728917 0.997340i \(-0.523223\pi\)
−0.0728917 + 0.997340i \(0.523223\pi\)
\(954\) 281.978 0.00956957
\(955\) 5550.48 0.188073
\(956\) 32363.3 1.09488
\(957\) 330.806 0.0111739
\(958\) 4113.69 0.138734
\(959\) −5559.85 −0.187213
\(960\) −11433.4 −0.384387
\(961\) 69663.3 2.33840
\(962\) −2523.53 −0.0845756
\(963\) −9815.44 −0.328451
\(964\) −15634.1 −0.522344
\(965\) 13958.6 0.465640
\(966\) −515.166 −0.0171586
\(967\) 34271.8 1.13972 0.569858 0.821743i \(-0.306998\pi\)
0.569858 + 0.821743i \(0.306998\pi\)
\(968\) −449.389 −0.0149214
\(969\) −15234.0 −0.505043
\(970\) −1697.10 −0.0561760
\(971\) 36628.3 1.21056 0.605282 0.796011i \(-0.293060\pi\)
0.605282 + 0.796011i \(0.293060\pi\)
\(972\) −1930.82 −0.0637150
\(973\) −3016.79 −0.0993977
\(974\) −2595.48 −0.0853845
\(975\) −11565.6 −0.379892
\(976\) 41044.9 1.34612
\(977\) 29087.7 0.952504 0.476252 0.879309i \(-0.341995\pi\)
0.476252 + 0.879309i \(0.341995\pi\)
\(978\) 1531.56 0.0500755
\(979\) 5532.17 0.180602
\(980\) −3020.30 −0.0984490
\(981\) 4731.06 0.153977
\(982\) 1682.46 0.0546737
\(983\) −32900.7 −1.06752 −0.533758 0.845637i \(-0.679221\pi\)
−0.533758 + 0.845637i \(0.679221\pi\)
\(984\) −5436.61 −0.176131
\(985\) 23106.0 0.747429
\(986\) −106.094 −0.00342668
\(987\) −4322.99 −0.139415
\(988\) −52809.7 −1.70051
\(989\) −37743.5 −1.21352
\(990\) 178.874 0.00574240
\(991\) 7288.46 0.233628 0.116814 0.993154i \(-0.462732\pi\)
0.116814 + 0.993154i \(0.462732\pi\)
\(992\) 13975.5 0.447301
\(993\) −18711.4 −0.597976
\(994\) −194.221 −0.00619749
\(995\) −17866.6 −0.569257
\(996\) −24811.8 −0.789351
\(997\) 2983.80 0.0947822 0.0473911 0.998876i \(-0.484909\pi\)
0.0473911 + 0.998876i \(0.484909\pi\)
\(998\) −3207.51 −0.101735
\(999\) −4918.76 −0.155778
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.l.1.3 5
3.2 odd 2 693.4.a.n.1.3 5
7.6 odd 2 1617.4.a.p.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.l.1.3 5 1.1 even 1 trivial
693.4.a.n.1.3 5 3.2 odd 2
1617.4.a.p.1.3 5 7.6 odd 2