Properties

Label 231.4.a.j.1.5
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 21x^{2} + 103x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-5.02173\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.02173 q^{2} -3.00000 q^{3} +17.2178 q^{4} +20.4371 q^{5} -15.0652 q^{6} -7.00000 q^{7} +46.2894 q^{8} +9.00000 q^{9} +102.630 q^{10} -11.0000 q^{11} -51.6534 q^{12} -0.0115563 q^{13} -35.1521 q^{14} -61.3113 q^{15} +94.7106 q^{16} -9.52800 q^{17} +45.1956 q^{18} -93.4260 q^{19} +351.882 q^{20} +21.0000 q^{21} -55.2391 q^{22} +99.9552 q^{23} -138.868 q^{24} +292.676 q^{25} -0.0580324 q^{26} -27.0000 q^{27} -120.525 q^{28} +276.183 q^{29} -307.889 q^{30} -181.425 q^{31} +105.296 q^{32} +33.0000 q^{33} -47.8471 q^{34} -143.060 q^{35} +154.960 q^{36} -404.794 q^{37} -469.160 q^{38} +0.0346688 q^{39} +946.022 q^{40} -27.8263 q^{41} +105.456 q^{42} +76.9875 q^{43} -189.396 q^{44} +183.934 q^{45} +501.948 q^{46} -136.979 q^{47} -284.132 q^{48} +49.0000 q^{49} +1469.74 q^{50} +28.5840 q^{51} -0.198973 q^{52} +170.391 q^{53} -135.587 q^{54} -224.808 q^{55} -324.026 q^{56} +280.278 q^{57} +1386.92 q^{58} -585.593 q^{59} -1055.65 q^{60} -530.953 q^{61} -911.070 q^{62} -63.0000 q^{63} -228.916 q^{64} -0.236177 q^{65} +165.717 q^{66} -354.952 q^{67} -164.051 q^{68} -299.866 q^{69} -718.408 q^{70} +1119.80 q^{71} +416.605 q^{72} -785.389 q^{73} -2032.77 q^{74} -878.027 q^{75} -1608.59 q^{76} +77.0000 q^{77} +0.174097 q^{78} -937.289 q^{79} +1935.61 q^{80} +81.0000 q^{81} -139.736 q^{82} +471.454 q^{83} +361.574 q^{84} -194.725 q^{85} +386.611 q^{86} -828.548 q^{87} -509.183 q^{88} +563.040 q^{89} +923.668 q^{90} +0.0808938 q^{91} +1721.01 q^{92} +544.276 q^{93} -687.874 q^{94} -1909.36 q^{95} -315.888 q^{96} +895.067 q^{97} +246.065 q^{98} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - 15 q^{3} + 21 q^{4} + 7 q^{5} + 3 q^{6} - 35 q^{7} - 12 q^{8} + 45 q^{9} + 113 q^{10} - 55 q^{11} - 63 q^{12} + 23 q^{13} + 7 q^{14} - 21 q^{15} + 281 q^{16} - 102 q^{17} - 9 q^{18} - 155 q^{19}+ \cdots - 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.02173 1.77545 0.887726 0.460373i \(-0.152284\pi\)
0.887726 + 0.460373i \(0.152284\pi\)
\(3\) −3.00000 −0.577350
\(4\) 17.2178 2.15223
\(5\) 20.4371 1.82795 0.913975 0.405769i \(-0.132996\pi\)
0.913975 + 0.405769i \(0.132996\pi\)
\(6\) −15.0652 −1.02506
\(7\) −7.00000 −0.377964
\(8\) 46.2894 2.04572
\(9\) 9.00000 0.333333
\(10\) 102.630 3.24544
\(11\) −11.0000 −0.301511
\(12\) −51.6534 −1.24259
\(13\) −0.0115563 −0.000246548 0 −0.000123274 1.00000i \(-0.500039\pi\)
−0.000123274 1.00000i \(0.500039\pi\)
\(14\) −35.1521 −0.671057
\(15\) −61.3113 −1.05537
\(16\) 94.7106 1.47985
\(17\) −9.52800 −0.135934 −0.0679670 0.997688i \(-0.521651\pi\)
−0.0679670 + 0.997688i \(0.521651\pi\)
\(18\) 45.1956 0.591817
\(19\) −93.4260 −1.12807 −0.564037 0.825750i \(-0.690752\pi\)
−0.564037 + 0.825750i \(0.690752\pi\)
\(20\) 351.882 3.93416
\(21\) 21.0000 0.218218
\(22\) −55.2391 −0.535319
\(23\) 99.9552 0.906178 0.453089 0.891465i \(-0.350322\pi\)
0.453089 + 0.891465i \(0.350322\pi\)
\(24\) −138.868 −1.18110
\(25\) 292.676 2.34140
\(26\) −0.0580324 −0.000437735 0
\(27\) −27.0000 −0.192450
\(28\) −120.525 −0.813465
\(29\) 276.183 1.76848 0.884239 0.467035i \(-0.154678\pi\)
0.884239 + 0.467035i \(0.154678\pi\)
\(30\) −307.889 −1.87375
\(31\) −181.425 −1.05113 −0.525564 0.850754i \(-0.676146\pi\)
−0.525564 + 0.850754i \(0.676146\pi\)
\(32\) 105.296 0.581684
\(33\) 33.0000 0.174078
\(34\) −47.8471 −0.241344
\(35\) −143.060 −0.690901
\(36\) 154.960 0.717409
\(37\) −404.794 −1.79859 −0.899294 0.437344i \(-0.855919\pi\)
−0.899294 + 0.437344i \(0.855919\pi\)
\(38\) −469.160 −2.00284
\(39\) 0.0346688 0.000142345 0
\(40\) 946.022 3.73948
\(41\) −27.8263 −0.105993 −0.0529967 0.998595i \(-0.516877\pi\)
−0.0529967 + 0.998595i \(0.516877\pi\)
\(42\) 105.456 0.387435
\(43\) 76.9875 0.273034 0.136517 0.990638i \(-0.456409\pi\)
0.136517 + 0.990638i \(0.456409\pi\)
\(44\) −189.396 −0.648921
\(45\) 183.934 0.609317
\(46\) 501.948 1.60887
\(47\) −136.979 −0.425117 −0.212559 0.977148i \(-0.568180\pi\)
−0.212559 + 0.977148i \(0.568180\pi\)
\(48\) −284.132 −0.854393
\(49\) 49.0000 0.142857
\(50\) 1469.74 4.15705
\(51\) 28.5840 0.0784816
\(52\) −0.198973 −0.000530628 0
\(53\) 170.391 0.441604 0.220802 0.975319i \(-0.429133\pi\)
0.220802 + 0.975319i \(0.429133\pi\)
\(54\) −135.587 −0.341686
\(55\) −224.808 −0.551148
\(56\) −324.026 −0.773210
\(57\) 280.278 0.651293
\(58\) 1386.92 3.13985
\(59\) −585.593 −1.29216 −0.646082 0.763268i \(-0.723594\pi\)
−0.646082 + 0.763268i \(0.723594\pi\)
\(60\) −1055.65 −2.27139
\(61\) −530.953 −1.11445 −0.557226 0.830361i \(-0.688134\pi\)
−0.557226 + 0.830361i \(0.688134\pi\)
\(62\) −911.070 −1.86623
\(63\) −63.0000 −0.125988
\(64\) −228.916 −0.447101
\(65\) −0.236177 −0.000450678 0
\(66\) 165.717 0.309066
\(67\) −354.952 −0.647228 −0.323614 0.946189i \(-0.604898\pi\)
−0.323614 + 0.946189i \(0.604898\pi\)
\(68\) −164.051 −0.292561
\(69\) −299.866 −0.523182
\(70\) −718.408 −1.22666
\(71\) 1119.80 1.87177 0.935887 0.352301i \(-0.114601\pi\)
0.935887 + 0.352301i \(0.114601\pi\)
\(72\) 416.605 0.681907
\(73\) −785.389 −1.25922 −0.629608 0.776913i \(-0.716785\pi\)
−0.629608 + 0.776913i \(0.716785\pi\)
\(74\) −2032.77 −3.19331
\(75\) −878.027 −1.35181
\(76\) −1608.59 −2.42787
\(77\) 77.0000 0.113961
\(78\) 0.174097 0.000252726 0
\(79\) −937.289 −1.33485 −0.667425 0.744677i \(-0.732604\pi\)
−0.667425 + 0.744677i \(0.732604\pi\)
\(80\) 1935.61 2.70510
\(81\) 81.0000 0.111111
\(82\) −139.736 −0.188186
\(83\) 471.454 0.623479 0.311740 0.950168i \(-0.399088\pi\)
0.311740 + 0.950168i \(0.399088\pi\)
\(84\) 361.574 0.469654
\(85\) −194.725 −0.248481
\(86\) 386.611 0.484759
\(87\) −828.548 −1.02103
\(88\) −509.183 −0.616808
\(89\) 563.040 0.670586 0.335293 0.942114i \(-0.391165\pi\)
0.335293 + 0.942114i \(0.391165\pi\)
\(90\) 923.668 1.08181
\(91\) 0.0808938 9.31865e−5 0
\(92\) 1721.01 1.95030
\(93\) 544.276 0.606869
\(94\) −687.874 −0.754775
\(95\) −1909.36 −2.06206
\(96\) −315.888 −0.335835
\(97\) 895.067 0.936910 0.468455 0.883487i \(-0.344811\pi\)
0.468455 + 0.883487i \(0.344811\pi\)
\(98\) 246.065 0.253636
\(99\) −99.0000 −0.100504
\(100\) 5039.23 5.03923
\(101\) −409.088 −0.403027 −0.201514 0.979486i \(-0.564586\pi\)
−0.201514 + 0.979486i \(0.564586\pi\)
\(102\) 143.541 0.139340
\(103\) 207.199 0.198213 0.0991065 0.995077i \(-0.468402\pi\)
0.0991065 + 0.995077i \(0.468402\pi\)
\(104\) −0.534932 −0.000504369 0
\(105\) 429.179 0.398892
\(106\) 855.658 0.784046
\(107\) −1475.53 −1.33313 −0.666566 0.745446i \(-0.732236\pi\)
−0.666566 + 0.745446i \(0.732236\pi\)
\(108\) −464.881 −0.414196
\(109\) 1457.82 1.28104 0.640520 0.767941i \(-0.278719\pi\)
0.640520 + 0.767941i \(0.278719\pi\)
\(110\) −1128.93 −0.978536
\(111\) 1214.38 1.03842
\(112\) −662.974 −0.559332
\(113\) −1307.55 −1.08853 −0.544265 0.838913i \(-0.683192\pi\)
−0.544265 + 0.838913i \(0.683192\pi\)
\(114\) 1407.48 1.15634
\(115\) 2042.80 1.65645
\(116\) 4755.26 3.80616
\(117\) −0.104006 −8.21828e−5 0
\(118\) −2940.69 −2.29417
\(119\) 66.6960 0.0513783
\(120\) −2838.07 −2.15899
\(121\) 121.000 0.0909091
\(122\) −2666.31 −1.97866
\(123\) 83.4788 0.0611954
\(124\) −3123.75 −2.26226
\(125\) 3426.80 2.45202
\(126\) −316.369 −0.223686
\(127\) 2156.17 1.50653 0.753265 0.657717i \(-0.228478\pi\)
0.753265 + 0.657717i \(0.228478\pi\)
\(128\) −1991.92 −1.37549
\(129\) −230.962 −0.157636
\(130\) −1.18602 −0.000800157 0
\(131\) −1630.72 −1.08761 −0.543803 0.839213i \(-0.683016\pi\)
−0.543803 + 0.839213i \(0.683016\pi\)
\(132\) 568.188 0.374655
\(133\) 653.982 0.426372
\(134\) −1782.47 −1.14912
\(135\) −551.802 −0.351789
\(136\) −441.045 −0.278083
\(137\) 2939.97 1.83342 0.916711 0.399552i \(-0.130834\pi\)
0.916711 + 0.399552i \(0.130834\pi\)
\(138\) −1505.85 −0.928884
\(139\) 1519.07 0.926948 0.463474 0.886111i \(-0.346603\pi\)
0.463474 + 0.886111i \(0.346603\pi\)
\(140\) −2463.18 −1.48697
\(141\) 410.938 0.245441
\(142\) 5623.34 3.32324
\(143\) 0.127119 7.43371e−5 0
\(144\) 852.395 0.493284
\(145\) 5644.38 3.23269
\(146\) −3944.01 −2.23568
\(147\) −147.000 −0.0824786
\(148\) −6969.67 −3.87097
\(149\) −223.829 −0.123066 −0.0615329 0.998105i \(-0.519599\pi\)
−0.0615329 + 0.998105i \(0.519599\pi\)
\(150\) −4409.22 −2.40007
\(151\) −3170.98 −1.70895 −0.854474 0.519495i \(-0.826120\pi\)
−0.854474 + 0.519495i \(0.826120\pi\)
\(152\) −4324.63 −2.30772
\(153\) −85.7520 −0.0453114
\(154\) 386.674 0.202331
\(155\) −3707.81 −1.92141
\(156\) 0.596920 0.000306358 0
\(157\) 2358.25 1.19878 0.599392 0.800456i \(-0.295409\pi\)
0.599392 + 0.800456i \(0.295409\pi\)
\(158\) −4706.81 −2.36996
\(159\) −511.173 −0.254960
\(160\) 2151.95 1.06329
\(161\) −699.686 −0.342503
\(162\) 406.760 0.197272
\(163\) 2284.80 1.09791 0.548956 0.835851i \(-0.315025\pi\)
0.548956 + 0.835851i \(0.315025\pi\)
\(164\) −479.107 −0.228122
\(165\) 674.425 0.318205
\(166\) 2367.51 1.10696
\(167\) 2330.48 1.07987 0.539934 0.841707i \(-0.318449\pi\)
0.539934 + 0.841707i \(0.318449\pi\)
\(168\) 972.077 0.446413
\(169\) −2197.00 −1.00000
\(170\) −977.856 −0.441166
\(171\) −840.834 −0.376024
\(172\) 1325.56 0.587632
\(173\) −1943.53 −0.854125 −0.427062 0.904222i \(-0.640451\pi\)
−0.427062 + 0.904222i \(0.640451\pi\)
\(174\) −4160.75 −1.81279
\(175\) −2048.73 −0.884968
\(176\) −1041.82 −0.446192
\(177\) 1756.78 0.746031
\(178\) 2827.44 1.19059
\(179\) 3511.90 1.46643 0.733217 0.679995i \(-0.238018\pi\)
0.733217 + 0.679995i \(0.238018\pi\)
\(180\) 3166.94 1.31139
\(181\) 3058.76 1.25611 0.628055 0.778169i \(-0.283851\pi\)
0.628055 + 0.778169i \(0.283851\pi\)
\(182\) 0.406227 0.000165448 0
\(183\) 1592.86 0.643430
\(184\) 4626.87 1.85379
\(185\) −8272.83 −3.28773
\(186\) 2733.21 1.07747
\(187\) 104.808 0.0409857
\(188\) −2358.49 −0.914948
\(189\) 189.000 0.0727393
\(190\) −9588.29 −3.66109
\(191\) 4586.39 1.73749 0.868743 0.495264i \(-0.164929\pi\)
0.868743 + 0.495264i \(0.164929\pi\)
\(192\) 686.747 0.258134
\(193\) 693.335 0.258587 0.129294 0.991606i \(-0.458729\pi\)
0.129294 + 0.991606i \(0.458729\pi\)
\(194\) 4494.79 1.66344
\(195\) 0.708530 0.000260199 0
\(196\) 843.673 0.307461
\(197\) −239.271 −0.0865346 −0.0432673 0.999064i \(-0.513777\pi\)
−0.0432673 + 0.999064i \(0.513777\pi\)
\(198\) −497.152 −0.178440
\(199\) −677.963 −0.241505 −0.120753 0.992683i \(-0.538531\pi\)
−0.120753 + 0.992683i \(0.538531\pi\)
\(200\) 13547.8 4.78986
\(201\) 1064.86 0.373677
\(202\) −2054.33 −0.715555
\(203\) −1933.28 −0.668422
\(204\) 492.154 0.168910
\(205\) −568.688 −0.193751
\(206\) 1040.50 0.351917
\(207\) 899.597 0.302059
\(208\) −1.09450 −0.000364855 0
\(209\) 1027.69 0.340127
\(210\) 2155.22 0.708213
\(211\) 736.355 0.240250 0.120125 0.992759i \(-0.461670\pi\)
0.120125 + 0.992759i \(0.461670\pi\)
\(212\) 2933.76 0.950431
\(213\) −3359.40 −1.08067
\(214\) −7409.73 −2.36691
\(215\) 1573.40 0.499093
\(216\) −1249.81 −0.393699
\(217\) 1269.98 0.397289
\(218\) 7320.76 2.27442
\(219\) 2356.17 0.727009
\(220\) −3870.71 −1.18620
\(221\) 0.110108 3.35143e−5 0
\(222\) 6098.31 1.84366
\(223\) −1229.51 −0.369210 −0.184605 0.982813i \(-0.559101\pi\)
−0.184605 + 0.982813i \(0.559101\pi\)
\(224\) −737.072 −0.219856
\(225\) 2634.08 0.780468
\(226\) −6566.17 −1.93263
\(227\) −3582.28 −1.04742 −0.523710 0.851897i \(-0.675452\pi\)
−0.523710 + 0.851897i \(0.675452\pi\)
\(228\) 4825.77 1.40173
\(229\) 4732.43 1.36562 0.682812 0.730594i \(-0.260757\pi\)
0.682812 + 0.730594i \(0.260757\pi\)
\(230\) 10258.4 2.94094
\(231\) −231.000 −0.0657952
\(232\) 12784.3 3.61781
\(233\) −3018.63 −0.848744 −0.424372 0.905488i \(-0.639505\pi\)
−0.424372 + 0.905488i \(0.639505\pi\)
\(234\) −0.522292 −0.000145912 0
\(235\) −2799.46 −0.777093
\(236\) −10082.6 −2.78103
\(237\) 2811.87 0.770677
\(238\) 334.930 0.0912196
\(239\) −2915.73 −0.789133 −0.394567 0.918867i \(-0.629105\pi\)
−0.394567 + 0.918867i \(0.629105\pi\)
\(240\) −5806.83 −1.56179
\(241\) 5714.30 1.52735 0.763674 0.645603i \(-0.223394\pi\)
0.763674 + 0.645603i \(0.223394\pi\)
\(242\) 607.630 0.161405
\(243\) −243.000 −0.0641500
\(244\) −9141.86 −2.39855
\(245\) 1001.42 0.261136
\(246\) 419.208 0.108649
\(247\) 1.07965 0.000278125 0
\(248\) −8398.07 −2.15031
\(249\) −1414.36 −0.359966
\(250\) 17208.5 4.35344
\(251\) 1047.71 0.263471 0.131735 0.991285i \(-0.457945\pi\)
0.131735 + 0.991285i \(0.457945\pi\)
\(252\) −1084.72 −0.271155
\(253\) −1099.51 −0.273223
\(254\) 10827.7 2.67477
\(255\) 584.174 0.143460
\(256\) −8171.58 −1.99501
\(257\) −2805.01 −0.680825 −0.340412 0.940276i \(-0.610567\pi\)
−0.340412 + 0.940276i \(0.610567\pi\)
\(258\) −1159.83 −0.279876
\(259\) 2833.56 0.679803
\(260\) −4.06644 −0.000969962 0
\(261\) 2485.64 0.589492
\(262\) −8189.03 −1.93099
\(263\) 2178.21 0.510699 0.255350 0.966849i \(-0.417809\pi\)
0.255350 + 0.966849i \(0.417809\pi\)
\(264\) 1527.55 0.356114
\(265\) 3482.30 0.807230
\(266\) 3284.12 0.757002
\(267\) −1689.12 −0.387163
\(268\) −6111.49 −1.39298
\(269\) 4036.85 0.914985 0.457493 0.889213i \(-0.348748\pi\)
0.457493 + 0.889213i \(0.348748\pi\)
\(270\) −2771.00 −0.624585
\(271\) −2166.33 −0.485591 −0.242796 0.970077i \(-0.578064\pi\)
−0.242796 + 0.970077i \(0.578064\pi\)
\(272\) −902.402 −0.201162
\(273\) −0.242681 −5.38013e−5 0
\(274\) 14763.8 3.25515
\(275\) −3219.43 −0.705960
\(276\) −5163.03 −1.12601
\(277\) 2336.41 0.506791 0.253396 0.967363i \(-0.418453\pi\)
0.253396 + 0.967363i \(0.418453\pi\)
\(278\) 7628.36 1.64575
\(279\) −1632.83 −0.350376
\(280\) −6622.15 −1.41339
\(281\) −1200.61 −0.254883 −0.127442 0.991846i \(-0.540677\pi\)
−0.127442 + 0.991846i \(0.540677\pi\)
\(282\) 2063.62 0.435769
\(283\) 6393.02 1.34285 0.671423 0.741074i \(-0.265683\pi\)
0.671423 + 0.741074i \(0.265683\pi\)
\(284\) 19280.5 4.02848
\(285\) 5728.07 1.19053
\(286\) 0.638357 0.000131982 0
\(287\) 194.784 0.0400618
\(288\) 947.664 0.193895
\(289\) −4822.22 −0.981522
\(290\) 28344.6 5.73948
\(291\) −2685.20 −0.540925
\(292\) −13522.7 −2.71012
\(293\) −6037.85 −1.20387 −0.601936 0.798544i \(-0.705604\pi\)
−0.601936 + 0.798544i \(0.705604\pi\)
\(294\) −738.195 −0.146437
\(295\) −11967.8 −2.36201
\(296\) −18737.7 −3.67941
\(297\) 297.000 0.0580259
\(298\) −1124.01 −0.218497
\(299\) −1.15511 −0.000223417 0
\(300\) −15117.7 −2.90940
\(301\) −538.912 −0.103197
\(302\) −15923.8 −3.03415
\(303\) 1227.26 0.232688
\(304\) −8848.43 −1.66938
\(305\) −10851.2 −2.03717
\(306\) −430.624 −0.0804481
\(307\) −2792.13 −0.519073 −0.259536 0.965733i \(-0.583570\pi\)
−0.259536 + 0.965733i \(0.583570\pi\)
\(308\) 1325.77 0.245269
\(309\) −621.597 −0.114438
\(310\) −18619.6 −3.41137
\(311\) 5360.40 0.977364 0.488682 0.872462i \(-0.337478\pi\)
0.488682 + 0.872462i \(0.337478\pi\)
\(312\) 1.60480 0.000291198 0
\(313\) −9998.72 −1.80563 −0.902813 0.430033i \(-0.858502\pi\)
−0.902813 + 0.430033i \(0.858502\pi\)
\(314\) 11842.5 2.12838
\(315\) −1287.54 −0.230300
\(316\) −16138.1 −2.87290
\(317\) 1043.98 0.184971 0.0924855 0.995714i \(-0.470519\pi\)
0.0924855 + 0.995714i \(0.470519\pi\)
\(318\) −2566.97 −0.452669
\(319\) −3038.01 −0.533216
\(320\) −4678.38 −0.817279
\(321\) 4426.60 0.769684
\(322\) −3513.64 −0.608098
\(323\) 890.163 0.153344
\(324\) 1394.64 0.239136
\(325\) −3.38223 −0.000577269 0
\(326\) 11473.7 1.94929
\(327\) −4373.45 −0.739609
\(328\) −1288.06 −0.216833
\(329\) 958.856 0.160679
\(330\) 3386.78 0.564958
\(331\) −826.343 −0.137220 −0.0686102 0.997644i \(-0.521856\pi\)
−0.0686102 + 0.997644i \(0.521856\pi\)
\(332\) 8117.40 1.34187
\(333\) −3643.15 −0.599530
\(334\) 11703.0 1.91725
\(335\) −7254.19 −1.18310
\(336\) 1988.92 0.322930
\(337\) 460.594 0.0744515 0.0372258 0.999307i \(-0.488148\pi\)
0.0372258 + 0.999307i \(0.488148\pi\)
\(338\) −11032.7 −1.77545
\(339\) 3922.65 0.628464
\(340\) −3352.74 −0.534787
\(341\) 1995.68 0.316927
\(342\) −4222.44 −0.667613
\(343\) −343.000 −0.0539949
\(344\) 3563.70 0.558552
\(345\) −6128.39 −0.956351
\(346\) −9759.87 −1.51646
\(347\) 4459.48 0.689906 0.344953 0.938620i \(-0.387895\pi\)
0.344953 + 0.938620i \(0.387895\pi\)
\(348\) −14265.8 −2.19749
\(349\) 7902.74 1.21210 0.606051 0.795426i \(-0.292753\pi\)
0.606051 + 0.795426i \(0.292753\pi\)
\(350\) −10288.2 −1.57122
\(351\) 0.312019 4.74483e−5 0
\(352\) −1158.26 −0.175384
\(353\) −1159.24 −0.174787 −0.0873936 0.996174i \(-0.527854\pi\)
−0.0873936 + 0.996174i \(0.527854\pi\)
\(354\) 8822.07 1.32454
\(355\) 22885.5 3.42151
\(356\) 9694.32 1.44325
\(357\) −200.088 −0.0296632
\(358\) 17635.8 2.60358
\(359\) 3164.04 0.465158 0.232579 0.972577i \(-0.425284\pi\)
0.232579 + 0.972577i \(0.425284\pi\)
\(360\) 8514.20 1.24649
\(361\) 1869.42 0.272549
\(362\) 15360.3 2.23016
\(363\) −363.000 −0.0524864
\(364\) 1.39281 0.000200559 0
\(365\) −16051.1 −2.30179
\(366\) 7998.92 1.14238
\(367\) 6586.11 0.936763 0.468382 0.883526i \(-0.344837\pi\)
0.468382 + 0.883526i \(0.344837\pi\)
\(368\) 9466.81 1.34101
\(369\) −250.436 −0.0353312
\(370\) −41543.9 −5.83721
\(371\) −1192.74 −0.166911
\(372\) 9371.24 1.30612
\(373\) 1210.44 0.168027 0.0840135 0.996465i \(-0.473226\pi\)
0.0840135 + 0.996465i \(0.473226\pi\)
\(374\) 526.318 0.0727680
\(375\) −10280.4 −1.41568
\(376\) −6340.70 −0.869671
\(377\) −3.19164 −0.000436015 0
\(378\) 949.108 0.129145
\(379\) −5802.28 −0.786393 −0.393197 0.919454i \(-0.628631\pi\)
−0.393197 + 0.919454i \(0.628631\pi\)
\(380\) −32875.0 −4.43803
\(381\) −6468.51 −0.869795
\(382\) 23031.6 3.08482
\(383\) −3704.97 −0.494295 −0.247147 0.968978i \(-0.579493\pi\)
−0.247147 + 0.968978i \(0.579493\pi\)
\(384\) 5975.77 0.794140
\(385\) 1573.66 0.208314
\(386\) 3481.74 0.459109
\(387\) 692.887 0.0910115
\(388\) 15411.1 2.01644
\(389\) 3365.36 0.438638 0.219319 0.975653i \(-0.429616\pi\)
0.219319 + 0.975653i \(0.429616\pi\)
\(390\) 3.55805 0.000461971 0
\(391\) −952.373 −0.123180
\(392\) 2268.18 0.292246
\(393\) 4892.15 0.627930
\(394\) −1201.55 −0.153638
\(395\) −19155.5 −2.44004
\(396\) −1704.56 −0.216307
\(397\) −10914.1 −1.37976 −0.689879 0.723925i \(-0.742336\pi\)
−0.689879 + 0.723925i \(0.742336\pi\)
\(398\) −3404.55 −0.428781
\(399\) −1961.95 −0.246166
\(400\) 27719.5 3.46493
\(401\) 4980.45 0.620228 0.310114 0.950699i \(-0.399633\pi\)
0.310114 + 0.950699i \(0.399633\pi\)
\(402\) 5347.42 0.663446
\(403\) 2.09660 0.000259154 0
\(404\) −7043.59 −0.867406
\(405\) 1655.41 0.203106
\(406\) −9708.41 −1.18675
\(407\) 4452.74 0.542295
\(408\) 1323.14 0.160551
\(409\) −9813.28 −1.18639 −0.593197 0.805057i \(-0.702135\pi\)
−0.593197 + 0.805057i \(0.702135\pi\)
\(410\) −2855.80 −0.343995
\(411\) −8819.92 −1.05853
\(412\) 3567.51 0.426599
\(413\) 4099.15 0.488392
\(414\) 4517.54 0.536292
\(415\) 9635.15 1.13969
\(416\) −1.21683 −0.000143413 0
\(417\) −4557.21 −0.535174
\(418\) 5160.77 0.603879
\(419\) 14050.0 1.63815 0.819077 0.573683i \(-0.194486\pi\)
0.819077 + 0.573683i \(0.194486\pi\)
\(420\) 7389.53 0.858505
\(421\) 10403.9 1.20441 0.602203 0.798343i \(-0.294290\pi\)
0.602203 + 0.798343i \(0.294290\pi\)
\(422\) 3697.78 0.426553
\(423\) −1232.81 −0.141706
\(424\) 7887.29 0.903398
\(425\) −2788.61 −0.318277
\(426\) −16870.0 −1.91867
\(427\) 3716.67 0.421224
\(428\) −25405.4 −2.86920
\(429\) −0.381356 −4.29186e−5 0
\(430\) 7901.20 0.886116
\(431\) 1181.89 0.132087 0.0660437 0.997817i \(-0.478962\pi\)
0.0660437 + 0.997817i \(0.478962\pi\)
\(432\) −2557.19 −0.284798
\(433\) −7028.94 −0.780113 −0.390057 0.920791i \(-0.627545\pi\)
−0.390057 + 0.920791i \(0.627545\pi\)
\(434\) 6377.49 0.705367
\(435\) −16933.1 −1.86639
\(436\) 25100.4 2.75709
\(437\) −9338.41 −1.02224
\(438\) 11832.0 1.29077
\(439\) 5758.63 0.626069 0.313034 0.949742i \(-0.398654\pi\)
0.313034 + 0.949742i \(0.398654\pi\)
\(440\) −10406.2 −1.12750
\(441\) 441.000 0.0476190
\(442\) 0.552933 5.95030e−5 0
\(443\) −13270.7 −1.42327 −0.711636 0.702548i \(-0.752045\pi\)
−0.711636 + 0.702548i \(0.752045\pi\)
\(444\) 20909.0 2.23491
\(445\) 11506.9 1.22580
\(446\) −6174.25 −0.655514
\(447\) 671.487 0.0710520
\(448\) 1602.41 0.168988
\(449\) 8609.07 0.904871 0.452435 0.891797i \(-0.350555\pi\)
0.452435 + 0.891797i \(0.350555\pi\)
\(450\) 13227.6 1.38568
\(451\) 306.089 0.0319582
\(452\) −22513.2 −2.34276
\(453\) 9512.95 0.986661
\(454\) −17989.3 −1.85964
\(455\) 1.65324 0.000170340 0
\(456\) 12973.9 1.33237
\(457\) 1112.50 0.113874 0.0569369 0.998378i \(-0.481867\pi\)
0.0569369 + 0.998378i \(0.481867\pi\)
\(458\) 23765.0 2.42460
\(459\) 257.256 0.0261605
\(460\) 35172.5 3.56505
\(461\) 374.302 0.0378155 0.0189078 0.999821i \(-0.493981\pi\)
0.0189078 + 0.999821i \(0.493981\pi\)
\(462\) −1160.02 −0.116816
\(463\) 2731.47 0.274174 0.137087 0.990559i \(-0.456226\pi\)
0.137087 + 0.990559i \(0.456226\pi\)
\(464\) 26157.4 2.61709
\(465\) 11123.4 1.10933
\(466\) −15158.8 −1.50690
\(467\) 5370.18 0.532125 0.266062 0.963956i \(-0.414277\pi\)
0.266062 + 0.963956i \(0.414277\pi\)
\(468\) −1.79076 −0.000176876 0
\(469\) 2484.66 0.244629
\(470\) −14058.2 −1.37969
\(471\) −7074.76 −0.692118
\(472\) −27106.7 −2.64341
\(473\) −846.862 −0.0823230
\(474\) 14120.4 1.36830
\(475\) −27343.5 −2.64128
\(476\) 1148.36 0.110578
\(477\) 1533.52 0.147201
\(478\) −14642.0 −1.40107
\(479\) −3599.62 −0.343363 −0.171681 0.985153i \(-0.554920\pi\)
−0.171681 + 0.985153i \(0.554920\pi\)
\(480\) −6455.84 −0.613891
\(481\) 4.67791 0.000443439 0
\(482\) 28695.7 2.71173
\(483\) 2099.06 0.197744
\(484\) 2083.36 0.195657
\(485\) 18292.6 1.71263
\(486\) −1220.28 −0.113895
\(487\) 13234.4 1.23144 0.615718 0.787966i \(-0.288866\pi\)
0.615718 + 0.787966i \(0.288866\pi\)
\(488\) −24577.5 −2.27986
\(489\) −6854.41 −0.633880
\(490\) 5028.86 0.463634
\(491\) −20613.6 −1.89466 −0.947330 0.320259i \(-0.896230\pi\)
−0.947330 + 0.320259i \(0.896230\pi\)
\(492\) 1437.32 0.131706
\(493\) −2631.47 −0.240396
\(494\) 5.42174 0.000493797 0
\(495\) −2023.27 −0.183716
\(496\) −17182.9 −1.55551
\(497\) −7838.61 −0.707464
\(498\) −7102.54 −0.639102
\(499\) −11615.8 −1.04208 −0.521038 0.853533i \(-0.674455\pi\)
−0.521038 + 0.853533i \(0.674455\pi\)
\(500\) 59002.1 5.27731
\(501\) −6991.44 −0.623462
\(502\) 5261.34 0.467779
\(503\) 5414.81 0.479989 0.239994 0.970774i \(-0.422854\pi\)
0.239994 + 0.970774i \(0.422854\pi\)
\(504\) −2916.23 −0.257737
\(505\) −8360.57 −0.736714
\(506\) −5521.43 −0.485094
\(507\) 6591.00 0.577350
\(508\) 37124.5 3.24239
\(509\) 15370.0 1.33843 0.669216 0.743068i \(-0.266630\pi\)
0.669216 + 0.743068i \(0.266630\pi\)
\(510\) 2933.57 0.254707
\(511\) 5497.72 0.475939
\(512\) −25100.1 −2.16656
\(513\) 2522.50 0.217098
\(514\) −14086.0 −1.20877
\(515\) 4234.55 0.362324
\(516\) −3976.67 −0.339269
\(517\) 1506.77 0.128178
\(518\) 14229.4 1.20696
\(519\) 5830.58 0.493129
\(520\) −10.9325 −0.000921962 0
\(521\) −18605.8 −1.56456 −0.782281 0.622926i \(-0.785944\pi\)
−0.782281 + 0.622926i \(0.785944\pi\)
\(522\) 12482.2 1.04662
\(523\) −1484.42 −0.124109 −0.0620545 0.998073i \(-0.519765\pi\)
−0.0620545 + 0.998073i \(0.519765\pi\)
\(524\) −28077.4 −2.34078
\(525\) 6146.19 0.510936
\(526\) 10938.4 0.906721
\(527\) 1728.62 0.142884
\(528\) 3125.45 0.257609
\(529\) −2175.96 −0.178841
\(530\) 17487.2 1.43320
\(531\) −5270.33 −0.430721
\(532\) 11260.1 0.917648
\(533\) 0.321567 2.61325e−5 0
\(534\) −8482.31 −0.687389
\(535\) −30155.6 −2.43690
\(536\) −16430.5 −1.32405
\(537\) −10535.7 −0.846646
\(538\) 20272.0 1.62451
\(539\) −539.000 −0.0430730
\(540\) −9500.82 −0.757130
\(541\) −3695.09 −0.293649 −0.146825 0.989163i \(-0.546905\pi\)
−0.146825 + 0.989163i \(0.546905\pi\)
\(542\) −10878.7 −0.862144
\(543\) −9176.29 −0.725216
\(544\) −1003.26 −0.0790707
\(545\) 29793.5 2.34168
\(546\) −1.21868 −9.55215e−5 0
\(547\) −24243.6 −1.89503 −0.947516 0.319709i \(-0.896415\pi\)
−0.947516 + 0.319709i \(0.896415\pi\)
\(548\) 50619.9 3.94594
\(549\) −4778.58 −0.371484
\(550\) −16167.1 −1.25340
\(551\) −25802.6 −1.99497
\(552\) −13880.6 −1.07029
\(553\) 6561.02 0.504526
\(554\) 11732.8 0.899783
\(555\) 24818.5 1.89817
\(556\) 26155.0 1.99500
\(557\) 17492.7 1.33068 0.665340 0.746541i \(-0.268287\pi\)
0.665340 + 0.746541i \(0.268287\pi\)
\(558\) −8199.63 −0.622075
\(559\) −0.889687 −6.73162e−5 0
\(560\) −13549.3 −1.02243
\(561\) −314.424 −0.0236631
\(562\) −6029.13 −0.452533
\(563\) −11377.4 −0.851689 −0.425845 0.904796i \(-0.640023\pi\)
−0.425845 + 0.904796i \(0.640023\pi\)
\(564\) 7075.46 0.528246
\(565\) −26722.6 −1.98978
\(566\) 32104.0 2.38416
\(567\) −567.000 −0.0419961
\(568\) 51834.9 3.82913
\(569\) 13028.1 0.959868 0.479934 0.877305i \(-0.340661\pi\)
0.479934 + 0.877305i \(0.340661\pi\)
\(570\) 28764.9 2.11373
\(571\) −15448.5 −1.13223 −0.566113 0.824327i \(-0.691554\pi\)
−0.566113 + 0.824327i \(0.691554\pi\)
\(572\) 2.18871 0.000159990 0
\(573\) −13759.2 −1.00314
\(574\) 978.153 0.0711277
\(575\) 29254.4 2.12173
\(576\) −2060.24 −0.149034
\(577\) −24253.5 −1.74989 −0.874944 0.484224i \(-0.839102\pi\)
−0.874944 + 0.484224i \(0.839102\pi\)
\(578\) −24215.9 −1.74264
\(579\) −2080.00 −0.149295
\(580\) 97183.8 6.95748
\(581\) −3300.18 −0.235653
\(582\) −13484.4 −0.960387
\(583\) −1874.30 −0.133149
\(584\) −36355.2 −2.57601
\(585\) −2.12559 −0.000150226 0
\(586\) −30320.5 −2.13742
\(587\) 3081.95 0.216705 0.108352 0.994113i \(-0.465443\pi\)
0.108352 + 0.994113i \(0.465443\pi\)
\(588\) −2531.02 −0.177513
\(589\) 16949.8 1.18575
\(590\) −60099.2 −4.19364
\(591\) 717.812 0.0499608
\(592\) −38338.3 −2.66165
\(593\) −1806.94 −0.125130 −0.0625649 0.998041i \(-0.519928\pi\)
−0.0625649 + 0.998041i \(0.519928\pi\)
\(594\) 1491.45 0.103022
\(595\) 1363.07 0.0939169
\(596\) −3853.85 −0.264865
\(597\) 2033.89 0.139433
\(598\) −5.80064 −0.000396665 0
\(599\) −16213.0 −1.10592 −0.552958 0.833209i \(-0.686501\pi\)
−0.552958 + 0.833209i \(0.686501\pi\)
\(600\) −40643.3 −2.76543
\(601\) 28306.2 1.92119 0.960594 0.277957i \(-0.0896572\pi\)
0.960594 + 0.277957i \(0.0896572\pi\)
\(602\) −2706.27 −0.183222
\(603\) −3194.57 −0.215743
\(604\) −54597.4 −3.67804
\(605\) 2472.89 0.166177
\(606\) 6162.99 0.413126
\(607\) 13513.0 0.903587 0.451794 0.892122i \(-0.350784\pi\)
0.451794 + 0.892122i \(0.350784\pi\)
\(608\) −9837.39 −0.656182
\(609\) 5799.84 0.385913
\(610\) −54491.6 −3.61689
\(611\) 1.58297 0.000104812 0
\(612\) −1476.46 −0.0975203
\(613\) −6645.66 −0.437873 −0.218936 0.975739i \(-0.570259\pi\)
−0.218936 + 0.975739i \(0.570259\pi\)
\(614\) −14021.3 −0.921588
\(615\) 1706.07 0.111862
\(616\) 3564.28 0.233132
\(617\) −6054.73 −0.395063 −0.197532 0.980297i \(-0.563293\pi\)
−0.197532 + 0.980297i \(0.563293\pi\)
\(618\) −3121.50 −0.203180
\(619\) 2193.31 0.142418 0.0712089 0.997461i \(-0.477314\pi\)
0.0712089 + 0.997461i \(0.477314\pi\)
\(620\) −63840.4 −4.13531
\(621\) −2698.79 −0.174394
\(622\) 26918.5 1.73526
\(623\) −3941.28 −0.253458
\(624\) 3.28350 0.000210649 0
\(625\) 33449.5 2.14077
\(626\) −50210.9 −3.20580
\(627\) −3083.06 −0.196372
\(628\) 40603.9 2.58005
\(629\) 3856.88 0.244490
\(630\) −6465.67 −0.408887
\(631\) 22314.2 1.40778 0.703892 0.710307i \(-0.251444\pi\)
0.703892 + 0.710307i \(0.251444\pi\)
\(632\) −43386.5 −2.73073
\(633\) −2209.07 −0.138709
\(634\) 5242.59 0.328407
\(635\) 44065.9 2.75386
\(636\) −8801.28 −0.548732
\(637\) −0.566257 −3.52212e−5 0
\(638\) −15256.1 −0.946699
\(639\) 10078.2 0.623925
\(640\) −40709.1 −2.51433
\(641\) −1276.44 −0.0786524 −0.0393262 0.999226i \(-0.512521\pi\)
−0.0393262 + 0.999226i \(0.512521\pi\)
\(642\) 22229.2 1.36654
\(643\) 19610.9 1.20276 0.601382 0.798961i \(-0.294617\pi\)
0.601382 + 0.798961i \(0.294617\pi\)
\(644\) −12047.1 −0.737144
\(645\) −4720.20 −0.288152
\(646\) 4470.16 0.272254
\(647\) −1351.52 −0.0821232 −0.0410616 0.999157i \(-0.513074\pi\)
−0.0410616 + 0.999157i \(0.513074\pi\)
\(648\) 3749.44 0.227302
\(649\) 6441.52 0.389602
\(650\) −16.9847 −0.00102491
\(651\) −3809.93 −0.229375
\(652\) 39339.3 2.36296
\(653\) −2697.61 −0.161662 −0.0808312 0.996728i \(-0.525757\pi\)
−0.0808312 + 0.996728i \(0.525757\pi\)
\(654\) −21962.3 −1.31314
\(655\) −33327.2 −1.98809
\(656\) −2635.44 −0.156855
\(657\) −7068.50 −0.419739
\(658\) 4815.12 0.285278
\(659\) −22130.4 −1.30816 −0.654080 0.756426i \(-0.726944\pi\)
−0.654080 + 0.756426i \(0.726944\pi\)
\(660\) 11612.1 0.684850
\(661\) −12681.1 −0.746199 −0.373100 0.927791i \(-0.621705\pi\)
−0.373100 + 0.927791i \(0.621705\pi\)
\(662\) −4149.68 −0.243628
\(663\) −0.330324 −1.93495e−5 0
\(664\) 21823.3 1.27546
\(665\) 13365.5 0.779386
\(666\) −18294.9 −1.06444
\(667\) 27605.9 1.60256
\(668\) 40125.8 2.32412
\(669\) 3688.52 0.213164
\(670\) −36428.6 −2.10054
\(671\) 5840.49 0.336020
\(672\) 2211.22 0.126934
\(673\) 5000.12 0.286390 0.143195 0.989694i \(-0.454262\pi\)
0.143195 + 0.989694i \(0.454262\pi\)
\(674\) 2312.98 0.132185
\(675\) −7902.24 −0.450604
\(676\) −37827.5 −2.15223
\(677\) 6004.13 0.340853 0.170427 0.985370i \(-0.445485\pi\)
0.170427 + 0.985370i \(0.445485\pi\)
\(678\) 19698.5 1.11581
\(679\) −6265.47 −0.354119
\(680\) −9013.69 −0.508323
\(681\) 10746.8 0.604728
\(682\) 10021.8 0.562688
\(683\) 15747.3 0.882217 0.441109 0.897454i \(-0.354585\pi\)
0.441109 + 0.897454i \(0.354585\pi\)
\(684\) −14477.3 −0.809290
\(685\) 60084.5 3.35140
\(686\) −1722.45 −0.0958653
\(687\) −14197.3 −0.788443
\(688\) 7291.53 0.404051
\(689\) −1.96908 −0.000108877 0
\(690\) −30775.1 −1.69795
\(691\) −206.020 −0.0113421 −0.00567105 0.999984i \(-0.501805\pi\)
−0.00567105 + 0.999984i \(0.501805\pi\)
\(692\) −33463.3 −1.83827
\(693\) 693.000 0.0379869
\(694\) 22394.3 1.22489
\(695\) 31045.4 1.69442
\(696\) −38353.0 −2.08875
\(697\) 265.129 0.0144081
\(698\) 39685.4 2.15203
\(699\) 9055.90 0.490022
\(700\) −35274.6 −1.90465
\(701\) −2413.37 −0.130031 −0.0650154 0.997884i \(-0.520710\pi\)
−0.0650154 + 0.997884i \(0.520710\pi\)
\(702\) 1.56688 8.42421e−5 0
\(703\) 37818.3 2.02894
\(704\) 2518.07 0.134806
\(705\) 8398.39 0.448655
\(706\) −5821.37 −0.310326
\(707\) 2863.61 0.152330
\(708\) 30247.9 1.60563
\(709\) 13211.5 0.699817 0.349908 0.936784i \(-0.386213\pi\)
0.349908 + 0.936784i \(0.386213\pi\)
\(710\) 114925. 6.07472
\(711\) −8435.60 −0.444950
\(712\) 26062.8 1.37183
\(713\) −18134.4 −0.952509
\(714\) −1004.79 −0.0526656
\(715\) 2.59794 0.000135885 0
\(716\) 60467.2 3.15610
\(717\) 8747.19 0.455606
\(718\) 15889.0 0.825866
\(719\) 16242.1 0.842458 0.421229 0.906954i \(-0.361599\pi\)
0.421229 + 0.906954i \(0.361599\pi\)
\(720\) 17420.5 0.901699
\(721\) −1450.39 −0.0749174
\(722\) 9387.71 0.483898
\(723\) −17142.9 −0.881814
\(724\) 52665.2 2.70344
\(725\) 80831.9 4.14072
\(726\) −1822.89 −0.0931870
\(727\) −247.150 −0.0126084 −0.00630418 0.999980i \(-0.502007\pi\)
−0.00630418 + 0.999980i \(0.502007\pi\)
\(728\) 3.74453 0.000190634 0
\(729\) 729.000 0.0370370
\(730\) −80604.3 −4.08671
\(731\) −733.537 −0.0371147
\(732\) 27425.6 1.38481
\(733\) 27692.4 1.39542 0.697711 0.716380i \(-0.254202\pi\)
0.697711 + 0.716380i \(0.254202\pi\)
\(734\) 33073.7 1.66318
\(735\) −3004.26 −0.150767
\(736\) 10524.9 0.527109
\(737\) 3904.47 0.195147
\(738\) −1257.62 −0.0627287
\(739\) −30513.8 −1.51890 −0.759451 0.650564i \(-0.774532\pi\)
−0.759451 + 0.650564i \(0.774532\pi\)
\(740\) −142440. −7.07594
\(741\) −3.23896 −0.000160575 0
\(742\) −5989.61 −0.296341
\(743\) −10527.8 −0.519822 −0.259911 0.965633i \(-0.583693\pi\)
−0.259911 + 0.965633i \(0.583693\pi\)
\(744\) 25194.2 1.24148
\(745\) −4574.42 −0.224958
\(746\) 6078.49 0.298324
\(747\) 4243.08 0.207826
\(748\) 1804.56 0.0882104
\(749\) 10328.7 0.503876
\(750\) −51625.5 −2.51346
\(751\) 9111.92 0.442741 0.221371 0.975190i \(-0.428947\pi\)
0.221371 + 0.975190i \(0.428947\pi\)
\(752\) −12973.4 −0.629111
\(753\) −3143.14 −0.152115
\(754\) −16.0276 −0.000774124 0
\(755\) −64805.8 −3.12387
\(756\) 3254.17 0.156551
\(757\) −2875.38 −0.138055 −0.0690273 0.997615i \(-0.521990\pi\)
−0.0690273 + 0.997615i \(0.521990\pi\)
\(758\) −29137.5 −1.39620
\(759\) 3298.52 0.157745
\(760\) −88383.0 −4.21841
\(761\) −1580.96 −0.0753084 −0.0376542 0.999291i \(-0.511989\pi\)
−0.0376542 + 0.999291i \(0.511989\pi\)
\(762\) −32483.2 −1.54428
\(763\) −10204.7 −0.484188
\(764\) 78967.6 3.73946
\(765\) −1752.52 −0.0828269
\(766\) −18605.3 −0.877596
\(767\) 6.76726 0.000318581 0
\(768\) 24514.7 1.15182
\(769\) −24477.4 −1.14783 −0.573913 0.818916i \(-0.694575\pi\)
−0.573913 + 0.818916i \(0.694575\pi\)
\(770\) 7902.49 0.369852
\(771\) 8415.04 0.393074
\(772\) 11937.7 0.556538
\(773\) −40144.4 −1.86791 −0.933954 0.357393i \(-0.883666\pi\)
−0.933954 + 0.357393i \(0.883666\pi\)
\(774\) 3479.50 0.161586
\(775\) −53098.8 −2.46111
\(776\) 41432.1 1.91666
\(777\) −8500.68 −0.392484
\(778\) 16899.9 0.778781
\(779\) 2599.70 0.119568
\(780\) 12.1993 0.000560008 0
\(781\) −12317.8 −0.564361
\(782\) −4782.56 −0.218701
\(783\) −7456.93 −0.340344
\(784\) 4640.82 0.211408
\(785\) 48195.9 2.19132
\(786\) 24567.1 1.11486
\(787\) −38095.3 −1.72548 −0.862739 0.505650i \(-0.831253\pi\)
−0.862739 + 0.505650i \(0.831253\pi\)
\(788\) −4119.72 −0.186242
\(789\) −6534.62 −0.294852
\(790\) −96193.7 −4.33217
\(791\) 9152.85 0.411426
\(792\) −4582.65 −0.205603
\(793\) 6.13583 0.000274767 0
\(794\) −54807.8 −2.44969
\(795\) −10446.9 −0.466054
\(796\) −11673.0 −0.519774
\(797\) −13196.7 −0.586511 −0.293256 0.956034i \(-0.594739\pi\)
−0.293256 + 0.956034i \(0.594739\pi\)
\(798\) −9852.37 −0.437055
\(799\) 1305.14 0.0577879
\(800\) 30817.6 1.36196
\(801\) 5067.36 0.223529
\(802\) 25010.5 1.10119
\(803\) 8639.28 0.379668
\(804\) 18334.5 0.804238
\(805\) −14299.6 −0.626079
\(806\) 10.5286 0.000460115 0
\(807\) −12110.5 −0.528267
\(808\) −18936.4 −0.824481
\(809\) −39595.8 −1.72078 −0.860392 0.509633i \(-0.829781\pi\)
−0.860392 + 0.509633i \(0.829781\pi\)
\(810\) 8313.01 0.360604
\(811\) 7072.51 0.306226 0.153113 0.988209i \(-0.451070\pi\)
0.153113 + 0.988209i \(0.451070\pi\)
\(812\) −33286.8 −1.43859
\(813\) 6498.99 0.280356
\(814\) 22360.5 0.962818
\(815\) 46694.8 2.00693
\(816\) 2707.21 0.116141
\(817\) −7192.63 −0.308003
\(818\) −49279.7 −2.10639
\(819\) 0.728044 3.10622e−5 0
\(820\) −9791.57 −0.416996
\(821\) 3770.85 0.160297 0.0801484 0.996783i \(-0.474461\pi\)
0.0801484 + 0.996783i \(0.474461\pi\)
\(822\) −44291.3 −1.87936
\(823\) 34875.3 1.47713 0.738565 0.674182i \(-0.235504\pi\)
0.738565 + 0.674182i \(0.235504\pi\)
\(824\) 9591.12 0.405489
\(825\) 9658.29 0.407586
\(826\) 20584.8 0.867116
\(827\) 13104.1 0.550995 0.275497 0.961302i \(-0.411157\pi\)
0.275497 + 0.961302i \(0.411157\pi\)
\(828\) 15489.1 0.650100
\(829\) 25672.5 1.07556 0.537782 0.843084i \(-0.319262\pi\)
0.537782 + 0.843084i \(0.319262\pi\)
\(830\) 48385.2 2.02346
\(831\) −7009.23 −0.292596
\(832\) 2.64541 0.000110232 0
\(833\) −466.872 −0.0194192
\(834\) −22885.1 −0.950174
\(835\) 47628.3 1.97395
\(836\) 17694.5 0.732030
\(837\) 4898.48 0.202290
\(838\) 70555.3 2.90846
\(839\) −12972.5 −0.533804 −0.266902 0.963724i \(-0.586000\pi\)
−0.266902 + 0.963724i \(0.586000\pi\)
\(840\) 19866.5 0.816021
\(841\) 51887.9 2.12751
\(842\) 52245.6 2.13836
\(843\) 3601.82 0.147157
\(844\) 12678.4 0.517073
\(845\) −44900.3 −1.82795
\(846\) −6190.87 −0.251592
\(847\) −847.000 −0.0343604
\(848\) 16137.8 0.653508
\(849\) −19179.1 −0.775293
\(850\) −14003.7 −0.565085
\(851\) −40461.3 −1.62984
\(852\) −57841.6 −2.32584
\(853\) −38411.5 −1.54183 −0.770917 0.636936i \(-0.780202\pi\)
−0.770917 + 0.636936i \(0.780202\pi\)
\(854\) 18664.1 0.747862
\(855\) −17184.2 −0.687354
\(856\) −68301.5 −2.72722
\(857\) 29840.9 1.18943 0.594717 0.803935i \(-0.297264\pi\)
0.594717 + 0.803935i \(0.297264\pi\)
\(858\) −1.91507 −7.61998e−5 0
\(859\) −6603.57 −0.262294 −0.131147 0.991363i \(-0.541866\pi\)
−0.131147 + 0.991363i \(0.541866\pi\)
\(860\) 27090.5 1.07416
\(861\) −584.352 −0.0231297
\(862\) 5935.14 0.234515
\(863\) −35177.7 −1.38756 −0.693780 0.720187i \(-0.744056\pi\)
−0.693780 + 0.720187i \(0.744056\pi\)
\(864\) −2842.99 −0.111945
\(865\) −39720.1 −1.56130
\(866\) −35297.4 −1.38505
\(867\) 14466.7 0.566682
\(868\) 21866.2 0.855056
\(869\) 10310.2 0.402473
\(870\) −85033.7 −3.31369
\(871\) 4.10191 0.000159573 0
\(872\) 67481.4 2.62065
\(873\) 8055.60 0.312303
\(874\) −46895.0 −1.81493
\(875\) −23987.6 −0.926777
\(876\) 40568.0 1.56469
\(877\) −22669.6 −0.872860 −0.436430 0.899738i \(-0.643757\pi\)
−0.436430 + 0.899738i \(0.643757\pi\)
\(878\) 28918.3 1.11155
\(879\) 18113.5 0.695056
\(880\) −21291.7 −0.815618
\(881\) 18705.2 0.715317 0.357658 0.933852i \(-0.383575\pi\)
0.357658 + 0.933852i \(0.383575\pi\)
\(882\) 2214.58 0.0845453
\(883\) −768.137 −0.0292750 −0.0146375 0.999893i \(-0.504659\pi\)
−0.0146375 + 0.999893i \(0.504659\pi\)
\(884\) 1.89582 7.21304e−5 0
\(885\) 35903.5 1.36371
\(886\) −66641.9 −2.52695
\(887\) −32827.0 −1.24264 −0.621322 0.783556i \(-0.713404\pi\)
−0.621322 + 0.783556i \(0.713404\pi\)
\(888\) 56213.1 2.12431
\(889\) −15093.2 −0.569415
\(890\) 57784.7 2.17634
\(891\) −891.000 −0.0335013
\(892\) −21169.4 −0.794624
\(893\) 12797.4 0.479563
\(894\) 3372.03 0.126149
\(895\) 71773.1 2.68057
\(896\) 13943.5 0.519886
\(897\) 3.46532 0.000128990 0
\(898\) 43232.4 1.60655
\(899\) −50106.5 −1.85890
\(900\) 45353.1 1.67974
\(901\) −1623.48 −0.0600290
\(902\) 1537.10 0.0567403
\(903\) 1616.74 0.0595810
\(904\) −60525.7 −2.22683
\(905\) 62512.3 2.29611
\(906\) 47771.5 1.75177
\(907\) −12345.2 −0.451945 −0.225972 0.974134i \(-0.572556\pi\)
−0.225972 + 0.974134i \(0.572556\pi\)
\(908\) −61679.0 −2.25428
\(909\) −3681.79 −0.134342
\(910\) 8.30211 0.000302431 0
\(911\) 11001.3 0.400098 0.200049 0.979786i \(-0.435890\pi\)
0.200049 + 0.979786i \(0.435890\pi\)
\(912\) 26545.3 0.963818
\(913\) −5185.99 −0.187986
\(914\) 5586.65 0.202177
\(915\) 32553.5 1.17616
\(916\) 81482.1 2.93913
\(917\) 11415.0 0.411077
\(918\) 1291.87 0.0464467
\(919\) 22345.4 0.802075 0.401037 0.916062i \(-0.368650\pi\)
0.401037 + 0.916062i \(0.368650\pi\)
\(920\) 94559.8 3.38863
\(921\) 8376.39 0.299687
\(922\) 1879.64 0.0671396
\(923\) −12.9407 −0.000461483 0
\(924\) −3977.31 −0.141606
\(925\) −118473. −4.21122
\(926\) 13716.7 0.486782
\(927\) 1864.79 0.0660710
\(928\) 29080.9 1.02869
\(929\) 41802.6 1.47632 0.738160 0.674626i \(-0.235695\pi\)
0.738160 + 0.674626i \(0.235695\pi\)
\(930\) 55858.9 1.96955
\(931\) −4577.87 −0.161153
\(932\) −51974.3 −1.82669
\(933\) −16081.2 −0.564282
\(934\) 26967.6 0.944761
\(935\) 2141.97 0.0749198
\(936\) −4.81439 −0.000168123 0
\(937\) 30060.9 1.04808 0.524038 0.851695i \(-0.324425\pi\)
0.524038 + 0.851695i \(0.324425\pi\)
\(938\) 12477.3 0.434327
\(939\) 29996.2 1.04248
\(940\) −48200.6 −1.67248
\(941\) −35821.3 −1.24096 −0.620479 0.784223i \(-0.713062\pi\)
−0.620479 + 0.784223i \(0.713062\pi\)
\(942\) −35527.5 −1.22882
\(943\) −2781.38 −0.0960490
\(944\) −55461.8 −1.91221
\(945\) 3862.61 0.132964
\(946\) −4252.72 −0.146160
\(947\) −6919.22 −0.237428 −0.118714 0.992928i \(-0.537877\pi\)
−0.118714 + 0.992928i \(0.537877\pi\)
\(948\) 48414.2 1.65867
\(949\) 9.07616 0.000310458 0
\(950\) −137312. −4.68946
\(951\) −3131.94 −0.106793
\(952\) 3087.32 0.105106
\(953\) −29103.4 −0.989248 −0.494624 0.869107i \(-0.664694\pi\)
−0.494624 + 0.869107i \(0.664694\pi\)
\(954\) 7700.92 0.261349
\(955\) 93732.6 3.17604
\(956\) −50202.5 −1.69839
\(957\) 9114.03 0.307852
\(958\) −18076.3 −0.609624
\(959\) −20579.8 −0.692968
\(960\) 14035.1 0.471856
\(961\) 3124.15 0.104869
\(962\) 23.4912 0.000787304 0
\(963\) −13279.8 −0.444377
\(964\) 98387.8 3.28720
\(965\) 14169.8 0.472685
\(966\) 10540.9 0.351085
\(967\) −8723.55 −0.290104 −0.145052 0.989424i \(-0.546335\pi\)
−0.145052 + 0.989424i \(0.546335\pi\)
\(968\) 5601.02 0.185975
\(969\) −2670.49 −0.0885330
\(970\) 91860.5 3.04068
\(971\) 23959.2 0.791850 0.395925 0.918283i \(-0.370424\pi\)
0.395925 + 0.918283i \(0.370424\pi\)
\(972\) −4183.93 −0.138065
\(973\) −10633.5 −0.350353
\(974\) 66459.8 2.18636
\(975\) 10.1467 0.000333287 0
\(976\) −50286.9 −1.64923
\(977\) 3709.07 0.121457 0.0607286 0.998154i \(-0.480658\pi\)
0.0607286 + 0.998154i \(0.480658\pi\)
\(978\) −34421.0 −1.12542
\(979\) −6193.44 −0.202189
\(980\) 17242.2 0.562023
\(981\) 13120.3 0.427013
\(982\) −103516. −3.36388
\(983\) −29542.7 −0.958561 −0.479281 0.877662i \(-0.659102\pi\)
−0.479281 + 0.877662i \(0.659102\pi\)
\(984\) 3864.18 0.125189
\(985\) −4890.00 −0.158181
\(986\) −13214.5 −0.426812
\(987\) −2876.57 −0.0927681
\(988\) 18.5893 0.000598587 0
\(989\) 7695.30 0.247418
\(990\) −10160.3 −0.326179
\(991\) −37600.9 −1.20528 −0.602640 0.798013i \(-0.705885\pi\)
−0.602640 + 0.798013i \(0.705885\pi\)
\(992\) −19103.4 −0.611424
\(993\) 2479.03 0.0792242
\(994\) −39363.4 −1.25607
\(995\) −13855.6 −0.441460
\(996\) −24352.2 −0.774728
\(997\) 24918.4 0.791547 0.395774 0.918348i \(-0.370476\pi\)
0.395774 + 0.918348i \(0.370476\pi\)
\(998\) −58331.6 −1.85016
\(999\) 10929.4 0.346139
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.j.1.5 5
3.2 odd 2 693.4.a.q.1.1 5
7.6 odd 2 1617.4.a.o.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.j.1.5 5 1.1 even 1 trivial
693.4.a.q.1.1 5 3.2 odd 2
1617.4.a.o.1.5 5 7.6 odd 2