Properties

Label 231.4.a.j
Level $231$
Weight $4$
Character orbit 231.a
Self dual yes
Analytic conductor $13.629$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [231,4,Mod(1,231)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(231, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("231.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-1,-15,21,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 21x^{2} + 103x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 3 q^{3} + (\beta_{2} + 4) q^{4} + ( - \beta_{3} - 2 \beta_1 + 2) q^{5} + 3 \beta_1 q^{6} - 7 q^{7} + ( - \beta_{4} - 2 \beta_{3} + \cdots - 7 \beta_1) q^{8} + 9 q^{9} + (\beta_{3} + 4 \beta_{2} - 7 \beta_1 + 23) q^{10}+ \cdots - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - 15 q^{3} + 21 q^{4} + 7 q^{5} + 3 q^{6} - 35 q^{7} - 12 q^{8} + 45 q^{9} + 113 q^{10} - 55 q^{11} - 63 q^{12} + 23 q^{13} + 7 q^{14} - 21 q^{15} + 281 q^{16} - 102 q^{17} - 9 q^{18} - 155 q^{19}+ \cdots - 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 30x^{3} + 21x^{2} + 103x + 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 30\nu^{2} - \nu + 82 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{4} + 2\nu^{3} + 28\nu^{2} - 45\nu - 58 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + 2\beta_{3} + \beta_{2} + 23\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{3} + 30\beta_{2} + \beta _1 + 278 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.22587
2.48454
−0.183399
−1.50528
−5.02173
−5.22587 −3.00000 19.3097 −9.27763 15.6776 −7.00000 −59.1032 9.00000 48.4837
1.2 −2.48454 −3.00000 −1.82705 13.9229 7.45363 −7.00000 24.4157 9.00000 −34.5919
1.3 0.183399 −3.00000 −7.96636 −17.9271 −0.550196 −7.00000 −2.92821 9.00000 −3.28780
1.4 1.50528 −3.00000 −5.73413 −0.155265 −4.51584 −7.00000 −20.6737 9.00000 −0.233718
1.5 5.02173 −3.00000 17.2178 20.4371 −15.0652 −7.00000 46.2894 9.00000 102.630
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 231.4.a.j 5
3.b odd 2 1 693.4.a.q 5
7.b odd 2 1 1617.4.a.o 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.4.a.j 5 1.a even 1 1 trivial
693.4.a.q 5 3.b odd 2 1
1617.4.a.o 5 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(231))\):

\( T_{2}^{5} + T_{2}^{4} - 30T_{2}^{3} - 21T_{2}^{2} + 103T_{2} - 18 \) Copy content Toggle raw display
\( T_{5}^{5} - 7T_{5}^{4} - 485T_{5}^{3} + 1951T_{5}^{2} + 47640T_{5} + 7348 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + T^{4} + \cdots - 18 \) Copy content Toggle raw display
$3$ \( (T + 3)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 7 T^{4} + \cdots + 7348 \) Copy content Toggle raw display
$7$ \( (T + 7)^{5} \) Copy content Toggle raw display
$11$ \( (T + 11)^{5} \) Copy content Toggle raw display
$13$ \( T^{5} - 23 T^{4} + \cdots + 122236 \) Copy content Toggle raw display
$17$ \( T^{5} + 102 T^{4} + \cdots - 159061888 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 1688336424 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 2862756736 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 144277546716 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 131921372032 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 244887003636 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 1412698624 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 7075944192 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 384442814216 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 299252301984 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 896870843568 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 10265429183328 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 1110831992688 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 27412560709632 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 25877686218916 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 264536335362048 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 11601305339904 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 7305960217248 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 2636714723104 \) Copy content Toggle raw display
show more
show less