Properties

Label 231.4.a.i.1.2
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{37}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.54138\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.54138 q^{2} +3.00000 q^{3} +12.6241 q^{4} +13.1655 q^{5} +13.6241 q^{6} +7.00000 q^{7} +21.0000 q^{8} +9.00000 q^{9} +59.7897 q^{10} -11.0000 q^{11} +37.8724 q^{12} -54.8345 q^{13} +31.7897 q^{14} +39.4966 q^{15} -5.62414 q^{16} -79.9104 q^{17} +40.8724 q^{18} +21.2551 q^{19} +166.203 q^{20} +21.0000 q^{21} -49.9552 q^{22} +119.414 q^{23} +63.0000 q^{24} +48.3311 q^{25} -249.024 q^{26} +27.0000 q^{27} +88.3690 q^{28} -87.4829 q^{29} +179.369 q^{30} +191.248 q^{31} -193.541 q^{32} -33.0000 q^{33} -362.904 q^{34} +92.1587 q^{35} +113.617 q^{36} +91.6484 q^{37} +96.5277 q^{38} -164.503 q^{39} +276.476 q^{40} -60.4829 q^{41} +95.3690 q^{42} -213.552 q^{43} -138.866 q^{44} +118.490 q^{45} +542.304 q^{46} +417.421 q^{47} -16.8724 q^{48} +49.0000 q^{49} +219.490 q^{50} -239.731 q^{51} -692.238 q^{52} -414.904 q^{53} +122.617 q^{54} -144.821 q^{55} +147.000 q^{56} +63.7654 q^{57} -397.293 q^{58} -358.069 q^{59} +498.610 q^{60} +515.297 q^{61} +868.531 q^{62} +63.0000 q^{63} -833.952 q^{64} -721.925 q^{65} -149.866 q^{66} -107.572 q^{67} -1008.80 q^{68} +358.241 q^{69} +418.528 q^{70} -711.793 q^{71} +189.000 q^{72} +131.773 q^{73} +416.210 q^{74} +144.993 q^{75} +268.328 q^{76} -77.0000 q^{77} -747.073 q^{78} +10.4966 q^{79} -74.0448 q^{80} +81.0000 q^{81} -274.676 q^{82} -618.352 q^{83} +265.107 q^{84} -1052.06 q^{85} -969.821 q^{86} -262.449 q^{87} -231.000 q^{88} +1376.44 q^{89} +538.107 q^{90} -383.841 q^{91} +1507.50 q^{92} +573.745 q^{93} +1895.67 q^{94} +279.835 q^{95} -580.624 q^{96} -534.752 q^{97} +222.528 q^{98} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + 6 q^{3} + 7 q^{4} + 2 q^{5} + 9 q^{6} + 14 q^{7} + 42 q^{8} + 18 q^{9} + 77 q^{10} - 22 q^{11} + 21 q^{12} - 134 q^{13} + 21 q^{14} + 6 q^{15} + 7 q^{16} - 26 q^{17} + 27 q^{18} + 152 q^{19}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.54138 1.60562 0.802810 0.596234i \(-0.203337\pi\)
0.802810 + 0.596234i \(0.203337\pi\)
\(3\) 3.00000 0.577350
\(4\) 12.6241 1.57802
\(5\) 13.1655 1.17756 0.588780 0.808293i \(-0.299608\pi\)
0.588780 + 0.808293i \(0.299608\pi\)
\(6\) 13.6241 0.927006
\(7\) 7.00000 0.377964
\(8\) 21.0000 0.928078
\(9\) 9.00000 0.333333
\(10\) 59.7897 1.89072
\(11\) −11.0000 −0.301511
\(12\) 37.8724 0.911069
\(13\) −54.8345 −1.16987 −0.584936 0.811079i \(-0.698881\pi\)
−0.584936 + 0.811079i \(0.698881\pi\)
\(14\) 31.7897 0.606868
\(15\) 39.4966 0.679865
\(16\) −5.62414 −0.0878772
\(17\) −79.9104 −1.14007 −0.570033 0.821622i \(-0.693070\pi\)
−0.570033 + 0.821622i \(0.693070\pi\)
\(18\) 40.8724 0.535207
\(19\) 21.2551 0.256645 0.128323 0.991732i \(-0.459041\pi\)
0.128323 + 0.991732i \(0.459041\pi\)
\(20\) 166.203 1.85821
\(21\) 21.0000 0.218218
\(22\) −49.9552 −0.484113
\(23\) 119.414 1.08259 0.541294 0.840834i \(-0.317935\pi\)
0.541294 + 0.840834i \(0.317935\pi\)
\(24\) 63.0000 0.535826
\(25\) 48.3311 0.386648
\(26\) −249.024 −1.87837
\(27\) 27.0000 0.192450
\(28\) 88.3690 0.596435
\(29\) −87.4829 −0.560178 −0.280089 0.959974i \(-0.590364\pi\)
−0.280089 + 0.959974i \(0.590364\pi\)
\(30\) 179.369 1.09161
\(31\) 191.248 1.10804 0.554019 0.832504i \(-0.313093\pi\)
0.554019 + 0.832504i \(0.313093\pi\)
\(32\) −193.541 −1.06918
\(33\) −33.0000 −0.174078
\(34\) −362.904 −1.83051
\(35\) 92.1587 0.445076
\(36\) 113.617 0.526006
\(37\) 91.6484 0.407214 0.203607 0.979053i \(-0.434734\pi\)
0.203607 + 0.979053i \(0.434734\pi\)
\(38\) 96.5277 0.412075
\(39\) −164.503 −0.675426
\(40\) 276.476 1.09287
\(41\) −60.4829 −0.230386 −0.115193 0.993343i \(-0.536749\pi\)
−0.115193 + 0.993343i \(0.536749\pi\)
\(42\) 95.3690 0.350375
\(43\) −213.552 −0.757357 −0.378679 0.925528i \(-0.623621\pi\)
−0.378679 + 0.925528i \(0.623621\pi\)
\(44\) −138.866 −0.475790
\(45\) 118.490 0.392520
\(46\) 542.304 1.73822
\(47\) 417.421 1.29547 0.647735 0.761866i \(-0.275717\pi\)
0.647735 + 0.761866i \(0.275717\pi\)
\(48\) −16.8724 −0.0507360
\(49\) 49.0000 0.142857
\(50\) 219.490 0.620811
\(51\) −239.731 −0.658217
\(52\) −692.238 −1.84608
\(53\) −414.904 −1.07531 −0.537655 0.843165i \(-0.680690\pi\)
−0.537655 + 0.843165i \(0.680690\pi\)
\(54\) 122.617 0.309002
\(55\) −144.821 −0.355048
\(56\) 147.000 0.350780
\(57\) 63.7654 0.148174
\(58\) −397.293 −0.899433
\(59\) −358.069 −0.790112 −0.395056 0.918657i \(-0.629275\pi\)
−0.395056 + 0.918657i \(0.629275\pi\)
\(60\) 498.610 1.07284
\(61\) 515.297 1.08159 0.540795 0.841154i \(-0.318123\pi\)
0.540795 + 0.841154i \(0.318123\pi\)
\(62\) 868.531 1.77909
\(63\) 63.0000 0.125988
\(64\) −833.952 −1.62881
\(65\) −721.925 −1.37760
\(66\) −149.866 −0.279503
\(67\) −107.572 −0.196150 −0.0980752 0.995179i \(-0.531269\pi\)
−0.0980752 + 0.995179i \(0.531269\pi\)
\(68\) −1008.80 −1.79904
\(69\) 358.241 0.625032
\(70\) 418.528 0.714623
\(71\) −711.793 −1.18978 −0.594890 0.803807i \(-0.702804\pi\)
−0.594890 + 0.803807i \(0.702804\pi\)
\(72\) 189.000 0.309359
\(73\) 131.773 0.211272 0.105636 0.994405i \(-0.466312\pi\)
0.105636 + 0.994405i \(0.466312\pi\)
\(74\) 416.210 0.653831
\(75\) 144.993 0.223232
\(76\) 268.328 0.404991
\(77\) −77.0000 −0.113961
\(78\) −747.073 −1.08448
\(79\) 10.4966 0.0149488 0.00747441 0.999972i \(-0.497621\pi\)
0.00747441 + 0.999972i \(0.497621\pi\)
\(80\) −74.0448 −0.103481
\(81\) 81.0000 0.111111
\(82\) −274.676 −0.369913
\(83\) −618.352 −0.817747 −0.408873 0.912591i \(-0.634078\pi\)
−0.408873 + 0.912591i \(0.634078\pi\)
\(84\) 265.107 0.344352
\(85\) −1052.06 −1.34250
\(86\) −969.821 −1.21603
\(87\) −262.449 −0.323419
\(88\) −231.000 −0.279826
\(89\) 1376.44 1.63935 0.819677 0.572826i \(-0.194153\pi\)
0.819677 + 0.572826i \(0.194153\pi\)
\(90\) 538.107 0.630238
\(91\) −383.841 −0.442170
\(92\) 1507.50 1.70834
\(93\) 573.745 0.639727
\(94\) 1895.67 2.08003
\(95\) 279.835 0.302215
\(96\) −580.624 −0.617289
\(97\) −534.752 −0.559751 −0.279875 0.960036i \(-0.590293\pi\)
−0.279875 + 0.960036i \(0.590293\pi\)
\(98\) 222.528 0.229374
\(99\) −99.0000 −0.100504
\(100\) 610.138 0.610138
\(101\) 1620.01 1.59601 0.798004 0.602652i \(-0.205889\pi\)
0.798004 + 0.602652i \(0.205889\pi\)
\(102\) −1088.71 −1.05685
\(103\) 822.814 0.787129 0.393564 0.919297i \(-0.371242\pi\)
0.393564 + 0.919297i \(0.371242\pi\)
\(104\) −1151.52 −1.08573
\(105\) 276.476 0.256965
\(106\) −1884.24 −1.72654
\(107\) −1749.78 −1.58091 −0.790456 0.612518i \(-0.790157\pi\)
−0.790456 + 0.612518i \(0.790157\pi\)
\(108\) 340.852 0.303690
\(109\) −647.607 −0.569078 −0.284539 0.958665i \(-0.591840\pi\)
−0.284539 + 0.958665i \(0.591840\pi\)
\(110\) −657.686 −0.570072
\(111\) 274.945 0.235105
\(112\) −39.3690 −0.0332145
\(113\) 1151.50 0.958622 0.479311 0.877645i \(-0.340887\pi\)
0.479311 + 0.877645i \(0.340887\pi\)
\(114\) 289.583 0.237912
\(115\) 1572.15 1.27481
\(116\) −1104.40 −0.883971
\(117\) −493.510 −0.389958
\(118\) −1626.13 −1.26862
\(119\) −559.373 −0.430904
\(120\) 829.428 0.630967
\(121\) 121.000 0.0909091
\(122\) 2340.16 1.73662
\(123\) −181.449 −0.133014
\(124\) 2414.35 1.74851
\(125\) −1009.39 −0.722259
\(126\) 286.107 0.202289
\(127\) 278.146 0.194342 0.0971710 0.995268i \(-0.469021\pi\)
0.0971710 + 0.995268i \(0.469021\pi\)
\(128\) −2238.96 −1.54608
\(129\) −640.656 −0.437260
\(130\) −3278.54 −2.21190
\(131\) 2332.22 1.55547 0.777737 0.628590i \(-0.216367\pi\)
0.777737 + 0.628590i \(0.216367\pi\)
\(132\) −416.597 −0.274698
\(133\) 148.786 0.0970028
\(134\) −488.528 −0.314943
\(135\) 355.469 0.226622
\(136\) −1678.12 −1.05807
\(137\) 2612.23 1.62903 0.814517 0.580139i \(-0.197002\pi\)
0.814517 + 0.580139i \(0.197002\pi\)
\(138\) 1626.91 1.00356
\(139\) −2884.68 −1.76025 −0.880126 0.474740i \(-0.842542\pi\)
−0.880126 + 0.474740i \(0.842542\pi\)
\(140\) 1163.42 0.702338
\(141\) 1252.26 0.747940
\(142\) −3232.53 −1.91033
\(143\) 603.179 0.352730
\(144\) −50.6173 −0.0292924
\(145\) −1151.76 −0.659643
\(146\) 598.431 0.339222
\(147\) 147.000 0.0824786
\(148\) 1156.98 0.642590
\(149\) 2909.54 1.59972 0.799862 0.600184i \(-0.204906\pi\)
0.799862 + 0.600184i \(0.204906\pi\)
\(150\) 658.469 0.358425
\(151\) −2327.06 −1.25413 −0.627063 0.778968i \(-0.715743\pi\)
−0.627063 + 0.778968i \(0.715743\pi\)
\(152\) 446.358 0.238187
\(153\) −719.193 −0.380022
\(154\) −349.686 −0.182977
\(155\) 2517.88 1.30478
\(156\) −2076.71 −1.06584
\(157\) −927.572 −0.471518 −0.235759 0.971812i \(-0.575758\pi\)
−0.235759 + 0.971812i \(0.575758\pi\)
\(158\) 47.6689 0.0240021
\(159\) −1244.71 −0.620830
\(160\) −2548.07 −1.25902
\(161\) 835.897 0.409179
\(162\) 367.852 0.178402
\(163\) −2966.31 −1.42539 −0.712696 0.701473i \(-0.752526\pi\)
−0.712696 + 0.701473i \(0.752526\pi\)
\(164\) −763.545 −0.363554
\(165\) −434.462 −0.204987
\(166\) −2808.17 −1.31299
\(167\) 3856.35 1.78691 0.893454 0.449156i \(-0.148275\pi\)
0.893454 + 0.449156i \(0.148275\pi\)
\(168\) 441.000 0.202523
\(169\) 809.820 0.368602
\(170\) −4777.82 −2.15554
\(171\) 191.296 0.0855485
\(172\) −2695.91 −1.19512
\(173\) −2699.52 −1.18636 −0.593181 0.805069i \(-0.702128\pi\)
−0.593181 + 0.805069i \(0.702128\pi\)
\(174\) −1191.88 −0.519288
\(175\) 338.317 0.146139
\(176\) 61.8656 0.0264960
\(177\) −1074.21 −0.456172
\(178\) 6250.95 2.63218
\(179\) 1328.58 0.554764 0.277382 0.960760i \(-0.410533\pi\)
0.277382 + 0.960760i \(0.410533\pi\)
\(180\) 1495.83 0.619404
\(181\) 534.944 0.219680 0.109840 0.993949i \(-0.464966\pi\)
0.109840 + 0.993949i \(0.464966\pi\)
\(182\) −1743.17 −0.709958
\(183\) 1545.89 0.624456
\(184\) 2507.69 1.00472
\(185\) 1206.60 0.479519
\(186\) 2605.59 1.02716
\(187\) 879.014 0.343743
\(188\) 5269.58 2.04427
\(189\) 189.000 0.0727393
\(190\) 1270.84 0.485243
\(191\) −3456.20 −1.30933 −0.654665 0.755919i \(-0.727190\pi\)
−0.654665 + 0.755919i \(0.727190\pi\)
\(192\) −2501.86 −0.940395
\(193\) −3106.02 −1.15843 −0.579213 0.815176i \(-0.696640\pi\)
−0.579213 + 0.815176i \(0.696640\pi\)
\(194\) −2428.51 −0.898747
\(195\) −2165.77 −0.795355
\(196\) 618.583 0.225431
\(197\) 4886.49 1.76725 0.883623 0.468198i \(-0.155097\pi\)
0.883623 + 0.468198i \(0.155097\pi\)
\(198\) −449.597 −0.161371
\(199\) 3319.74 1.18257 0.591283 0.806464i \(-0.298622\pi\)
0.591283 + 0.806464i \(0.298622\pi\)
\(200\) 1014.95 0.358840
\(201\) −322.717 −0.113247
\(202\) 7357.07 2.56258
\(203\) −612.380 −0.211727
\(204\) −3026.40 −1.03868
\(205\) −796.289 −0.271294
\(206\) 3736.71 1.26383
\(207\) 1074.72 0.360862
\(208\) 308.397 0.102805
\(209\) −233.807 −0.0773815
\(210\) 1255.58 0.412588
\(211\) 4262.51 1.39073 0.695364 0.718658i \(-0.255243\pi\)
0.695364 + 0.718658i \(0.255243\pi\)
\(212\) −5237.80 −1.69686
\(213\) −2135.38 −0.686919
\(214\) −7946.42 −2.53835
\(215\) −2811.52 −0.891834
\(216\) 567.000 0.178609
\(217\) 1338.74 0.418799
\(218\) −2941.03 −0.913723
\(219\) 395.318 0.121978
\(220\) −1828.24 −0.560272
\(221\) 4381.84 1.33373
\(222\) 1248.63 0.377489
\(223\) 2766.16 0.830655 0.415328 0.909672i \(-0.363667\pi\)
0.415328 + 0.909672i \(0.363667\pi\)
\(224\) −1354.79 −0.404110
\(225\) 434.979 0.128883
\(226\) 5229.42 1.53918
\(227\) 545.724 0.159564 0.0797818 0.996812i \(-0.474578\pi\)
0.0797818 + 0.996812i \(0.474578\pi\)
\(228\) 804.984 0.233822
\(229\) 3197.48 0.922688 0.461344 0.887221i \(-0.347367\pi\)
0.461344 + 0.887221i \(0.347367\pi\)
\(230\) 7139.71 2.04686
\(231\) −231.000 −0.0657952
\(232\) −1837.14 −0.519889
\(233\) 4203.76 1.18196 0.590982 0.806684i \(-0.298740\pi\)
0.590982 + 0.806684i \(0.298740\pi\)
\(234\) −2241.22 −0.626124
\(235\) 5495.56 1.52549
\(236\) −4520.32 −1.24681
\(237\) 31.4897 0.00863071
\(238\) −2540.32 −0.691869
\(239\) 5720.73 1.54830 0.774150 0.633003i \(-0.218178\pi\)
0.774150 + 0.633003i \(0.218178\pi\)
\(240\) −222.134 −0.0597446
\(241\) 5191.77 1.38768 0.693841 0.720128i \(-0.255917\pi\)
0.693841 + 0.720128i \(0.255917\pi\)
\(242\) 549.507 0.145966
\(243\) 243.000 0.0641500
\(244\) 6505.18 1.70677
\(245\) 645.111 0.168223
\(246\) −824.027 −0.213569
\(247\) −1165.51 −0.300243
\(248\) 4016.21 1.02835
\(249\) −1855.06 −0.472126
\(250\) −4584.01 −1.15967
\(251\) 847.944 0.213234 0.106617 0.994300i \(-0.465998\pi\)
0.106617 + 0.994300i \(0.465998\pi\)
\(252\) 795.321 0.198812
\(253\) −1313.55 −0.326412
\(254\) 1263.16 0.312039
\(255\) −3156.19 −0.775090
\(256\) −3496.37 −0.853606
\(257\) −1493.87 −0.362588 −0.181294 0.983429i \(-0.558029\pi\)
−0.181294 + 0.983429i \(0.558029\pi\)
\(258\) −2909.46 −0.702074
\(259\) 641.539 0.153912
\(260\) −9113.68 −2.17387
\(261\) −787.346 −0.186726
\(262\) 10591.5 2.49750
\(263\) 135.848 0.0318507 0.0159253 0.999873i \(-0.494931\pi\)
0.0159253 + 0.999873i \(0.494931\pi\)
\(264\) −693.000 −0.161558
\(265\) −5462.42 −1.26624
\(266\) 675.694 0.155750
\(267\) 4129.33 0.946482
\(268\) −1358.01 −0.309529
\(269\) −739.406 −0.167593 −0.0837963 0.996483i \(-0.526705\pi\)
−0.0837963 + 0.996483i \(0.526705\pi\)
\(270\) 1614.32 0.363868
\(271\) 4360.29 0.977375 0.488688 0.872459i \(-0.337476\pi\)
0.488688 + 0.872459i \(0.337476\pi\)
\(272\) 449.428 0.100186
\(273\) −1151.52 −0.255287
\(274\) 11863.1 2.61561
\(275\) −531.642 −0.116579
\(276\) 4522.49 0.986312
\(277\) −5779.74 −1.25369 −0.626843 0.779146i \(-0.715653\pi\)
−0.626843 + 0.779146i \(0.715653\pi\)
\(278\) −13100.4 −2.82630
\(279\) 1721.23 0.369346
\(280\) 1935.33 0.413065
\(281\) −4366.84 −0.927059 −0.463530 0.886081i \(-0.653417\pi\)
−0.463530 + 0.886081i \(0.653417\pi\)
\(282\) 5687.00 1.20091
\(283\) −8294.14 −1.74218 −0.871088 0.491128i \(-0.836585\pi\)
−0.871088 + 0.491128i \(0.836585\pi\)
\(284\) −8985.78 −1.87749
\(285\) 839.505 0.174484
\(286\) 2739.27 0.566351
\(287\) −423.380 −0.0870778
\(288\) −1741.87 −0.356392
\(289\) 1472.67 0.299750
\(290\) −5230.57 −1.05914
\(291\) −1604.26 −0.323172
\(292\) 1663.52 0.333391
\(293\) 2434.82 0.485473 0.242736 0.970092i \(-0.421955\pi\)
0.242736 + 0.970092i \(0.421955\pi\)
\(294\) 667.583 0.132429
\(295\) −4714.17 −0.930405
\(296\) 1924.62 0.377926
\(297\) −297.000 −0.0580259
\(298\) 13213.3 2.56855
\(299\) −6547.99 −1.26649
\(300\) 1830.41 0.352263
\(301\) −1494.86 −0.286254
\(302\) −10568.1 −2.01365
\(303\) 4860.02 0.921455
\(304\) −119.542 −0.0225533
\(305\) 6784.15 1.27364
\(306\) −3266.13 −0.610171
\(307\) −5972.33 −1.11029 −0.555145 0.831754i \(-0.687337\pi\)
−0.555145 + 0.831754i \(0.687337\pi\)
\(308\) −972.059 −0.179832
\(309\) 2468.44 0.454449
\(310\) 11434.7 2.09499
\(311\) −8278.65 −1.50945 −0.754725 0.656041i \(-0.772230\pi\)
−0.754725 + 0.656041i \(0.772230\pi\)
\(312\) −3454.57 −0.626848
\(313\) −1386.60 −0.250400 −0.125200 0.992131i \(-0.539957\pi\)
−0.125200 + 0.992131i \(0.539957\pi\)
\(314\) −4212.46 −0.757079
\(315\) 829.428 0.148359
\(316\) 132.510 0.0235895
\(317\) 11.2346 0.00199053 0.000995264 1.00000i \(-0.499683\pi\)
0.000995264 1.00000i \(0.499683\pi\)
\(318\) −5652.71 −0.996818
\(319\) 962.312 0.168900
\(320\) −10979.4 −1.91803
\(321\) −5249.34 −0.912740
\(322\) 3796.13 0.656987
\(323\) −1698.51 −0.292593
\(324\) 1022.56 0.175335
\(325\) −2650.21 −0.452329
\(326\) −13471.1 −2.28864
\(327\) −1942.82 −0.328557
\(328\) −1270.14 −0.213816
\(329\) 2921.94 0.489641
\(330\) −1973.06 −0.329131
\(331\) −4516.29 −0.749963 −0.374981 0.927032i \(-0.622351\pi\)
−0.374981 + 0.927032i \(0.622351\pi\)
\(332\) −7806.17 −1.29042
\(333\) 824.836 0.135738
\(334\) 17513.2 2.86910
\(335\) −1416.25 −0.230979
\(336\) −118.107 −0.0191764
\(337\) −676.780 −0.109396 −0.0546982 0.998503i \(-0.517420\pi\)
−0.0546982 + 0.998503i \(0.517420\pi\)
\(338\) 3677.70 0.591836
\(339\) 3454.51 0.553461
\(340\) −13281.4 −2.11848
\(341\) −2103.73 −0.334086
\(342\) 868.749 0.137358
\(343\) 343.000 0.0539949
\(344\) −4484.59 −0.702886
\(345\) 4716.44 0.736013
\(346\) −12259.5 −1.90485
\(347\) 7619.43 1.17877 0.589384 0.807853i \(-0.299371\pi\)
0.589384 + 0.807853i \(0.299371\pi\)
\(348\) −3313.19 −0.510361
\(349\) 3178.35 0.487488 0.243744 0.969840i \(-0.421624\pi\)
0.243744 + 0.969840i \(0.421624\pi\)
\(350\) 1536.43 0.234644
\(351\) −1480.53 −0.225142
\(352\) 2128.96 0.322368
\(353\) 1776.12 0.267800 0.133900 0.990995i \(-0.457250\pi\)
0.133900 + 0.990995i \(0.457250\pi\)
\(354\) −4878.38 −0.732438
\(355\) −9371.13 −1.40104
\(356\) 17376.4 2.58693
\(357\) −1678.12 −0.248783
\(358\) 6033.59 0.890740
\(359\) −11425.3 −1.67968 −0.839838 0.542838i \(-0.817350\pi\)
−0.839838 + 0.542838i \(0.817350\pi\)
\(360\) 2488.28 0.364289
\(361\) −6407.22 −0.934133
\(362\) 2429.38 0.352722
\(363\) 363.000 0.0524864
\(364\) −4845.67 −0.697753
\(365\) 1734.86 0.248785
\(366\) 7020.48 1.00264
\(367\) −1321.34 −0.187938 −0.0939689 0.995575i \(-0.529955\pi\)
−0.0939689 + 0.995575i \(0.529955\pi\)
\(368\) −671.600 −0.0951348
\(369\) −544.346 −0.0767954
\(370\) 5479.63 0.769925
\(371\) −2904.32 −0.406429
\(372\) 7243.04 1.00950
\(373\) −2011.16 −0.279180 −0.139590 0.990209i \(-0.544578\pi\)
−0.139590 + 0.990209i \(0.544578\pi\)
\(374\) 3991.94 0.551920
\(375\) −3028.16 −0.416996
\(376\) 8765.83 1.20230
\(377\) 4797.08 0.655337
\(378\) 858.321 0.116792
\(379\) −1376.20 −0.186519 −0.0932597 0.995642i \(-0.529729\pi\)
−0.0932597 + 0.995642i \(0.529729\pi\)
\(380\) 3532.68 0.476901
\(381\) 834.437 0.112203
\(382\) −15695.9 −2.10229
\(383\) 68.4429 0.00913125 0.00456563 0.999990i \(-0.498547\pi\)
0.00456563 + 0.999990i \(0.498547\pi\)
\(384\) −6716.89 −0.892630
\(385\) −1013.75 −0.134195
\(386\) −14105.6 −1.85999
\(387\) −1921.97 −0.252452
\(388\) −6750.78 −0.883297
\(389\) −1796.33 −0.234133 −0.117066 0.993124i \(-0.537349\pi\)
−0.117066 + 0.993124i \(0.537349\pi\)
\(390\) −9835.61 −1.27704
\(391\) −9542.40 −1.23422
\(392\) 1029.00 0.132583
\(393\) 6996.66 0.898054
\(394\) 22191.4 2.83753
\(395\) 138.193 0.0176031
\(396\) −1249.79 −0.158597
\(397\) 4175.59 0.527876 0.263938 0.964540i \(-0.414978\pi\)
0.263938 + 0.964540i \(0.414978\pi\)
\(398\) 15076.2 1.89875
\(399\) 446.358 0.0560046
\(400\) −271.821 −0.0339776
\(401\) −5735.25 −0.714226 −0.357113 0.934061i \(-0.616239\pi\)
−0.357113 + 0.934061i \(0.616239\pi\)
\(402\) −1465.58 −0.181832
\(403\) −10487.0 −1.29626
\(404\) 20451.2 2.51853
\(405\) 1066.41 0.130840
\(406\) −2781.05 −0.339954
\(407\) −1008.13 −0.122780
\(408\) −5034.35 −0.610877
\(409\) 4552.26 0.550355 0.275177 0.961394i \(-0.411263\pi\)
0.275177 + 0.961394i \(0.411263\pi\)
\(410\) −3616.25 −0.435595
\(411\) 7836.69 0.940524
\(412\) 10387.3 1.24210
\(413\) −2506.48 −0.298634
\(414\) 4880.73 0.579408
\(415\) −8140.93 −0.962946
\(416\) 10612.7 1.25080
\(417\) −8654.03 −1.01628
\(418\) −1061.80 −0.124245
\(419\) 12761.1 1.48788 0.743940 0.668247i \(-0.232955\pi\)
0.743940 + 0.668247i \(0.232955\pi\)
\(420\) 3490.27 0.405495
\(421\) −2838.93 −0.328649 −0.164324 0.986406i \(-0.552544\pi\)
−0.164324 + 0.986406i \(0.552544\pi\)
\(422\) 19357.7 2.23298
\(423\) 3756.79 0.431823
\(424\) −8712.97 −0.997970
\(425\) −3862.15 −0.440805
\(426\) −9697.58 −1.10293
\(427\) 3607.08 0.408803
\(428\) −22089.5 −2.49471
\(429\) 1809.54 0.203649
\(430\) −12768.2 −1.43195
\(431\) −12820.2 −1.43277 −0.716387 0.697704i \(-0.754205\pi\)
−0.716387 + 0.697704i \(0.754205\pi\)
\(432\) −151.852 −0.0169120
\(433\) −12570.9 −1.39519 −0.697595 0.716493i \(-0.745746\pi\)
−0.697595 + 0.716493i \(0.745746\pi\)
\(434\) 6079.72 0.672433
\(435\) −3455.27 −0.380845
\(436\) −8175.48 −0.898015
\(437\) 2538.16 0.277841
\(438\) 1795.29 0.195850
\(439\) −11589.8 −1.26003 −0.630013 0.776585i \(-0.716950\pi\)
−0.630013 + 0.776585i \(0.716950\pi\)
\(440\) −3041.24 −0.329512
\(441\) 441.000 0.0476190
\(442\) 19899.6 2.14147
\(443\) 15298.1 1.64071 0.820355 0.571855i \(-0.193776\pi\)
0.820355 + 0.571855i \(0.193776\pi\)
\(444\) 3470.95 0.371000
\(445\) 18121.6 1.93044
\(446\) 12562.2 1.33372
\(447\) 8728.62 0.923601
\(448\) −5837.66 −0.615633
\(449\) 3370.37 0.354249 0.177125 0.984188i \(-0.443320\pi\)
0.177125 + 0.984188i \(0.443320\pi\)
\(450\) 1975.41 0.206937
\(451\) 665.312 0.0694641
\(452\) 14536.7 1.51272
\(453\) −6981.17 −0.724071
\(454\) 2478.34 0.256199
\(455\) −5053.47 −0.520682
\(456\) 1339.07 0.137517
\(457\) −2682.12 −0.274539 −0.137269 0.990534i \(-0.543833\pi\)
−0.137269 + 0.990534i \(0.543833\pi\)
\(458\) 14521.0 1.48149
\(459\) −2157.58 −0.219406
\(460\) 19847.0 2.01168
\(461\) 1313.76 0.132729 0.0663645 0.997795i \(-0.478860\pi\)
0.0663645 + 0.997795i \(0.478860\pi\)
\(462\) −1049.06 −0.105642
\(463\) 17339.2 1.74043 0.870215 0.492672i \(-0.163980\pi\)
0.870215 + 0.492672i \(0.163980\pi\)
\(464\) 492.016 0.0492269
\(465\) 7553.65 0.753317
\(466\) 19090.9 1.89779
\(467\) −8810.22 −0.872995 −0.436497 0.899706i \(-0.643781\pi\)
−0.436497 + 0.899706i \(0.643781\pi\)
\(468\) −6230.14 −0.615360
\(469\) −753.007 −0.0741379
\(470\) 24957.4 2.44936
\(471\) −2782.72 −0.272231
\(472\) −7519.45 −0.733285
\(473\) 2349.07 0.228352
\(474\) 143.007 0.0138576
\(475\) 1027.28 0.0992315
\(476\) −7061.60 −0.679975
\(477\) −3734.13 −0.358436
\(478\) 25980.0 2.48598
\(479\) −708.948 −0.0676256 −0.0338128 0.999428i \(-0.510765\pi\)
−0.0338128 + 0.999428i \(0.510765\pi\)
\(480\) −7644.22 −0.726895
\(481\) −5025.49 −0.476388
\(482\) 23577.8 2.22809
\(483\) 2507.69 0.236240
\(484\) 1527.52 0.143456
\(485\) −7040.29 −0.659140
\(486\) 1103.56 0.103001
\(487\) 12253.6 1.14017 0.570085 0.821586i \(-0.306910\pi\)
0.570085 + 0.821586i \(0.306910\pi\)
\(488\) 10821.2 1.00380
\(489\) −8898.92 −0.822951
\(490\) 2929.69 0.270102
\(491\) −5429.37 −0.499031 −0.249515 0.968371i \(-0.580271\pi\)
−0.249515 + 0.968371i \(0.580271\pi\)
\(492\) −2290.63 −0.209898
\(493\) 6990.79 0.638640
\(494\) −5293.04 −0.482076
\(495\) −1303.39 −0.118349
\(496\) −1075.61 −0.0973714
\(497\) −4982.55 −0.449694
\(498\) −8424.52 −0.758056
\(499\) −14531.6 −1.30366 −0.651829 0.758366i \(-0.725998\pi\)
−0.651829 + 0.758366i \(0.725998\pi\)
\(500\) −12742.6 −1.13974
\(501\) 11569.1 1.03167
\(502\) 3850.83 0.342373
\(503\) −6349.27 −0.562823 −0.281412 0.959587i \(-0.590803\pi\)
−0.281412 + 0.959587i \(0.590803\pi\)
\(504\) 1323.00 0.116927
\(505\) 21328.2 1.87940
\(506\) −5965.34 −0.524094
\(507\) 2429.46 0.212813
\(508\) 3511.35 0.306675
\(509\) −2082.16 −0.181317 −0.0906585 0.995882i \(-0.528897\pi\)
−0.0906585 + 0.995882i \(0.528897\pi\)
\(510\) −14333.4 −1.24450
\(511\) 922.410 0.0798532
\(512\) 2033.36 0.175513
\(513\) 573.889 0.0493914
\(514\) −6784.24 −0.582179
\(515\) 10832.8 0.926892
\(516\) −8087.73 −0.690005
\(517\) −4591.63 −0.390599
\(518\) 2913.47 0.247125
\(519\) −8098.55 −0.684946
\(520\) −15160.4 −1.27852
\(521\) −17339.3 −1.45806 −0.729030 0.684481i \(-0.760029\pi\)
−0.729030 + 0.684481i \(0.760029\pi\)
\(522\) −3575.64 −0.299811
\(523\) −11310.6 −0.945660 −0.472830 0.881154i \(-0.656768\pi\)
−0.472830 + 0.881154i \(0.656768\pi\)
\(524\) 29442.3 2.45457
\(525\) 1014.95 0.0843736
\(526\) 616.936 0.0511401
\(527\) −15282.7 −1.26324
\(528\) 185.597 0.0152975
\(529\) 2092.66 0.171995
\(530\) −24806.9 −2.03310
\(531\) −3222.62 −0.263371
\(532\) 1878.30 0.153072
\(533\) 3316.55 0.269523
\(534\) 18752.8 1.51969
\(535\) −23036.8 −1.86162
\(536\) −2259.02 −0.182043
\(537\) 3985.74 0.320293
\(538\) −3357.93 −0.269090
\(539\) −539.000 −0.0430730
\(540\) 4487.49 0.357613
\(541\) −1483.01 −0.117855 −0.0589275 0.998262i \(-0.518768\pi\)
−0.0589275 + 0.998262i \(0.518768\pi\)
\(542\) 19801.7 1.56929
\(543\) 1604.83 0.126832
\(544\) 15466.0 1.21893
\(545\) −8526.08 −0.670123
\(546\) −5229.51 −0.409894
\(547\) 3512.31 0.274544 0.137272 0.990533i \(-0.456167\pi\)
0.137272 + 0.990533i \(0.456167\pi\)
\(548\) 32977.2 2.57065
\(549\) 4637.67 0.360530
\(550\) −2414.39 −0.187181
\(551\) −1859.46 −0.143767
\(552\) 7523.07 0.580078
\(553\) 73.4760 0.00565012
\(554\) −26248.0 −2.01294
\(555\) 3619.80 0.276850
\(556\) −36416.6 −2.77771
\(557\) 14069.1 1.07025 0.535123 0.844774i \(-0.320265\pi\)
0.535123 + 0.844774i \(0.320265\pi\)
\(558\) 7816.78 0.593030
\(559\) 11710.0 0.886012
\(560\) −518.314 −0.0391121
\(561\) 2637.04 0.198460
\(562\) −19831.5 −1.48851
\(563\) 12982.7 0.971860 0.485930 0.873998i \(-0.338481\pi\)
0.485930 + 0.873998i \(0.338481\pi\)
\(564\) 15808.7 1.18026
\(565\) 15160.1 1.12884
\(566\) −37666.9 −2.79727
\(567\) 567.000 0.0419961
\(568\) −14947.7 −1.10421
\(569\) −1668.21 −0.122909 −0.0614545 0.998110i \(-0.519574\pi\)
−0.0614545 + 0.998110i \(0.519574\pi\)
\(570\) 3812.51 0.280155
\(571\) −22037.1 −1.61510 −0.807552 0.589797i \(-0.799208\pi\)
−0.807552 + 0.589797i \(0.799208\pi\)
\(572\) 7614.62 0.556614
\(573\) −10368.6 −0.755942
\(574\) −1922.73 −0.139814
\(575\) 5771.39 0.418581
\(576\) −7505.57 −0.542938
\(577\) 22415.8 1.61730 0.808649 0.588292i \(-0.200199\pi\)
0.808649 + 0.588292i \(0.200199\pi\)
\(578\) 6687.96 0.481284
\(579\) −9318.07 −0.668818
\(580\) −14540.0 −1.04093
\(581\) −4328.47 −0.309079
\(582\) −7285.53 −0.518892
\(583\) 4563.94 0.324218
\(584\) 2767.23 0.196077
\(585\) −6497.32 −0.459199
\(586\) 11057.4 0.779485
\(587\) −24252.2 −1.70527 −0.852636 0.522506i \(-0.824997\pi\)
−0.852636 + 0.522506i \(0.824997\pi\)
\(588\) 1855.75 0.130153
\(589\) 4065.01 0.284373
\(590\) −21408.8 −1.49388
\(591\) 14659.5 1.02032
\(592\) −515.444 −0.0357848
\(593\) 18666.9 1.29268 0.646340 0.763050i \(-0.276299\pi\)
0.646340 + 0.763050i \(0.276299\pi\)
\(594\) −1348.79 −0.0931676
\(595\) −7364.44 −0.507416
\(596\) 36730.5 2.52439
\(597\) 9959.23 0.682754
\(598\) −29736.9 −2.03350
\(599\) −11400.1 −0.777620 −0.388810 0.921318i \(-0.627114\pi\)
−0.388810 + 0.921318i \(0.627114\pi\)
\(600\) 3044.86 0.207176
\(601\) −9722.11 −0.659856 −0.329928 0.944006i \(-0.607024\pi\)
−0.329928 + 0.944006i \(0.607024\pi\)
\(602\) −6788.75 −0.459616
\(603\) −968.152 −0.0653834
\(604\) −29377.1 −1.97903
\(605\) 1593.03 0.107051
\(606\) 22071.2 1.47951
\(607\) −20616.5 −1.37858 −0.689291 0.724484i \(-0.742078\pi\)
−0.689291 + 0.724484i \(0.742078\pi\)
\(608\) −4113.75 −0.274399
\(609\) −1837.14 −0.122241
\(610\) 30809.4 2.04498
\(611\) −22889.0 −1.51553
\(612\) −9079.20 −0.599681
\(613\) −363.351 −0.0239406 −0.0119703 0.999928i \(-0.503810\pi\)
−0.0119703 + 0.999928i \(0.503810\pi\)
\(614\) −27122.6 −1.78270
\(615\) −2388.87 −0.156632
\(616\) −1617.00 −0.105764
\(617\) −19599.7 −1.27886 −0.639429 0.768850i \(-0.720829\pi\)
−0.639429 + 0.768850i \(0.720829\pi\)
\(618\) 11210.1 0.729673
\(619\) 10178.6 0.660926 0.330463 0.943819i \(-0.392795\pi\)
0.330463 + 0.943819i \(0.392795\pi\)
\(620\) 31786.1 2.05897
\(621\) 3224.17 0.208344
\(622\) −37596.5 −2.42361
\(623\) 9635.09 0.619618
\(624\) 925.191 0.0593546
\(625\) −19330.5 −1.23715
\(626\) −6297.08 −0.402048
\(627\) −701.420 −0.0446762
\(628\) −11709.8 −0.744064
\(629\) −7323.66 −0.464250
\(630\) 3766.75 0.238208
\(631\) −13503.9 −0.851949 −0.425975 0.904735i \(-0.640069\pi\)
−0.425975 + 0.904735i \(0.640069\pi\)
\(632\) 220.428 0.0138737
\(633\) 12787.5 0.802937
\(634\) 51.0205 0.00319603
\(635\) 3661.93 0.228849
\(636\) −15713.4 −0.979681
\(637\) −2686.89 −0.167125
\(638\) 4370.22 0.271189
\(639\) −6406.14 −0.396593
\(640\) −29477.1 −1.82060
\(641\) 29389.5 1.81095 0.905473 0.424404i \(-0.139517\pi\)
0.905473 + 0.424404i \(0.139517\pi\)
\(642\) −23839.3 −1.46551
\(643\) −11632.9 −0.713461 −0.356730 0.934207i \(-0.616108\pi\)
−0.356730 + 0.934207i \(0.616108\pi\)
\(644\) 10552.5 0.645692
\(645\) −8434.57 −0.514901
\(646\) −7713.56 −0.469793
\(647\) −7522.70 −0.457106 −0.228553 0.973531i \(-0.573399\pi\)
−0.228553 + 0.973531i \(0.573399\pi\)
\(648\) 1701.00 0.103120
\(649\) 3938.76 0.238228
\(650\) −12035.6 −0.726270
\(651\) 4016.21 0.241794
\(652\) −37447.1 −2.24929
\(653\) 31890.8 1.91115 0.955577 0.294743i \(-0.0952341\pi\)
0.955577 + 0.294743i \(0.0952341\pi\)
\(654\) −8823.09 −0.527538
\(655\) 30704.9 1.83166
\(656\) 340.164 0.0202457
\(657\) 1185.96 0.0704239
\(658\) 13269.7 0.786178
\(659\) 20234.0 1.19606 0.598029 0.801474i \(-0.295951\pi\)
0.598029 + 0.801474i \(0.295951\pi\)
\(660\) −5484.71 −0.323473
\(661\) 16493.0 0.970505 0.485252 0.874374i \(-0.338728\pi\)
0.485252 + 0.874374i \(0.338728\pi\)
\(662\) −20510.2 −1.20416
\(663\) 13145.5 0.770030
\(664\) −12985.4 −0.758932
\(665\) 1958.85 0.114227
\(666\) 3745.89 0.217944
\(667\) −10446.7 −0.606441
\(668\) 48683.1 2.81977
\(669\) 8298.49 0.479579
\(670\) −6431.72 −0.370864
\(671\) −5668.26 −0.326112
\(672\) −4064.37 −0.233313
\(673\) 7338.87 0.420346 0.210173 0.977664i \(-0.432597\pi\)
0.210173 + 0.977664i \(0.432597\pi\)
\(674\) −3073.52 −0.175649
\(675\) 1304.94 0.0744105
\(676\) 10223.3 0.581661
\(677\) 10296.8 0.584549 0.292274 0.956334i \(-0.405588\pi\)
0.292274 + 0.956334i \(0.405588\pi\)
\(678\) 15688.2 0.888648
\(679\) −3743.26 −0.211566
\(680\) −22093.3 −1.24594
\(681\) 1637.17 0.0921241
\(682\) −9553.85 −0.536416
\(683\) 19884.5 1.11400 0.556998 0.830514i \(-0.311953\pi\)
0.556998 + 0.830514i \(0.311953\pi\)
\(684\) 2414.95 0.134997
\(685\) 34391.4 1.91829
\(686\) 1557.69 0.0866954
\(687\) 9592.45 0.532714
\(688\) 1201.05 0.0665545
\(689\) 22751.0 1.25797
\(690\) 21419.1 1.18176
\(691\) 26756.6 1.47304 0.736519 0.676417i \(-0.236468\pi\)
0.736519 + 0.676417i \(0.236468\pi\)
\(692\) −34079.1 −1.87210
\(693\) −693.000 −0.0379869
\(694\) 34602.7 1.89265
\(695\) −37978.3 −2.07280
\(696\) −5511.42 −0.300158
\(697\) 4833.21 0.262656
\(698\) 14434.1 0.782720
\(699\) 12611.3 0.682408
\(700\) 4270.97 0.230611
\(701\) −7556.29 −0.407128 −0.203564 0.979062i \(-0.565253\pi\)
−0.203564 + 0.979062i \(0.565253\pi\)
\(702\) −6723.65 −0.361493
\(703\) 1948.00 0.104510
\(704\) 9173.47 0.491105
\(705\) 16486.7 0.880744
\(706\) 8066.03 0.429985
\(707\) 11340.1 0.603234
\(708\) −13560.9 −0.719847
\(709\) 18371.1 0.973117 0.486558 0.873648i \(-0.338252\pi\)
0.486558 + 0.873648i \(0.338252\pi\)
\(710\) −42557.9 −2.24953
\(711\) 94.4692 0.00498294
\(712\) 28905.3 1.52145
\(713\) 22837.7 1.19955
\(714\) −7620.97 −0.399451
\(715\) 7941.17 0.415361
\(716\) 16772.2 0.875427
\(717\) 17162.2 0.893911
\(718\) −51886.6 −2.69692
\(719\) 24627.6 1.27740 0.638702 0.769454i \(-0.279472\pi\)
0.638702 + 0.769454i \(0.279472\pi\)
\(720\) −666.403 −0.0344936
\(721\) 5759.70 0.297507
\(722\) −29097.6 −1.49986
\(723\) 15575.3 0.801179
\(724\) 6753.20 0.346659
\(725\) −4228.14 −0.216592
\(726\) 1648.52 0.0842732
\(727\) 19040.6 0.971360 0.485680 0.874137i \(-0.338572\pi\)
0.485680 + 0.874137i \(0.338572\pi\)
\(728\) −8060.67 −0.410368
\(729\) 729.000 0.0370370
\(730\) 7878.65 0.399455
\(731\) 17065.0 0.863437
\(732\) 19515.5 0.985403
\(733\) −35623.2 −1.79505 −0.897526 0.440961i \(-0.854638\pi\)
−0.897526 + 0.440961i \(0.854638\pi\)
\(734\) −6000.69 −0.301757
\(735\) 1935.33 0.0971235
\(736\) −23111.5 −1.15748
\(737\) 1183.30 0.0591415
\(738\) −2472.08 −0.123304
\(739\) 7248.54 0.360814 0.180407 0.983592i \(-0.442258\pi\)
0.180407 + 0.983592i \(0.442258\pi\)
\(740\) 15232.3 0.756689
\(741\) −3496.54 −0.173345
\(742\) −13189.6 −0.652570
\(743\) −29033.2 −1.43354 −0.716772 0.697307i \(-0.754381\pi\)
−0.716772 + 0.697307i \(0.754381\pi\)
\(744\) 12048.6 0.593716
\(745\) 38305.6 1.88377
\(746\) −9133.46 −0.448257
\(747\) −5565.17 −0.272582
\(748\) 11096.8 0.542432
\(749\) −12248.5 −0.597529
\(750\) −13752.0 −0.669538
\(751\) −32062.0 −1.55787 −0.778933 0.627107i \(-0.784239\pi\)
−0.778933 + 0.627107i \(0.784239\pi\)
\(752\) −2347.63 −0.113842
\(753\) 2543.83 0.123111
\(754\) 21785.4 1.05222
\(755\) −30636.9 −1.47681
\(756\) 2385.96 0.114784
\(757\) 16132.9 0.774584 0.387292 0.921957i \(-0.373411\pi\)
0.387292 + 0.921957i \(0.373411\pi\)
\(758\) −6249.87 −0.299479
\(759\) −3940.66 −0.188454
\(760\) 5876.54 0.280479
\(761\) −37232.9 −1.77358 −0.886789 0.462175i \(-0.847069\pi\)
−0.886789 + 0.462175i \(0.847069\pi\)
\(762\) 3789.49 0.180156
\(763\) −4533.25 −0.215091
\(764\) −43631.6 −2.06615
\(765\) −9468.56 −0.447499
\(766\) 310.825 0.0146613
\(767\) 19634.5 0.924331
\(768\) −10489.1 −0.492829
\(769\) 36009.7 1.68861 0.844305 0.535862i \(-0.180013\pi\)
0.844305 + 0.535862i \(0.180013\pi\)
\(770\) −4603.80 −0.215467
\(771\) −4481.61 −0.209340
\(772\) −39210.9 −1.82802
\(773\) 20156.0 0.937856 0.468928 0.883236i \(-0.344640\pi\)
0.468928 + 0.883236i \(0.344640\pi\)
\(774\) −8728.39 −0.405343
\(775\) 9243.23 0.428421
\(776\) −11229.8 −0.519492
\(777\) 1924.62 0.0888613
\(778\) −8157.83 −0.375929
\(779\) −1285.57 −0.0591276
\(780\) −27341.0 −1.25509
\(781\) 7829.73 0.358732
\(782\) −43335.7 −1.98169
\(783\) −2362.04 −0.107806
\(784\) −275.583 −0.0125539
\(785\) −12212.0 −0.555241
\(786\) 31774.5 1.44193
\(787\) −19711.9 −0.892823 −0.446411 0.894828i \(-0.647298\pi\)
−0.446411 + 0.894828i \(0.647298\pi\)
\(788\) 61687.7 2.78875
\(789\) 407.543 0.0183890
\(790\) 627.587 0.0282640
\(791\) 8060.52 0.362325
\(792\) −2079.00 −0.0932753
\(793\) −28256.0 −1.26532
\(794\) 18963.0 0.847569
\(795\) −16387.3 −0.731065
\(796\) 41908.9 1.86611
\(797\) −8274.02 −0.367730 −0.183865 0.982952i \(-0.558861\pi\)
−0.183865 + 0.982952i \(0.558861\pi\)
\(798\) 2027.08 0.0899222
\(799\) −33356.2 −1.47692
\(800\) −9354.06 −0.413395
\(801\) 12388.0 0.546451
\(802\) −26045.9 −1.14678
\(803\) −1449.50 −0.0637009
\(804\) −4074.03 −0.178706
\(805\) 11005.0 0.481833
\(806\) −47625.5 −2.08131
\(807\) −2218.22 −0.0967596
\(808\) 34020.2 1.48122
\(809\) 15039.4 0.653593 0.326797 0.945095i \(-0.394031\pi\)
0.326797 + 0.945095i \(0.394031\pi\)
\(810\) 4842.96 0.210079
\(811\) −31217.1 −1.35164 −0.675820 0.737067i \(-0.736210\pi\)
−0.675820 + 0.737067i \(0.736210\pi\)
\(812\) −7730.77 −0.334110
\(813\) 13080.9 0.564288
\(814\) −4578.31 −0.197137
\(815\) −39053.0 −1.67849
\(816\) 1348.28 0.0578423
\(817\) −4539.08 −0.194372
\(818\) 20673.6 0.883661
\(819\) −3454.57 −0.147390
\(820\) −10052.5 −0.428106
\(821\) 6151.17 0.261483 0.130741 0.991417i \(-0.458264\pi\)
0.130741 + 0.991417i \(0.458264\pi\)
\(822\) 35589.4 1.51012
\(823\) −34084.1 −1.44362 −0.721808 0.692093i \(-0.756689\pi\)
−0.721808 + 0.692093i \(0.756689\pi\)
\(824\) 17279.1 0.730517
\(825\) −1594.92 −0.0673068
\(826\) −11382.9 −0.479494
\(827\) 19451.9 0.817907 0.408953 0.912555i \(-0.365894\pi\)
0.408953 + 0.912555i \(0.365894\pi\)
\(828\) 13567.5 0.569447
\(829\) 26492.7 1.10993 0.554963 0.831875i \(-0.312732\pi\)
0.554963 + 0.831875i \(0.312732\pi\)
\(830\) −36971.1 −1.54613
\(831\) −17339.2 −0.723816
\(832\) 45729.3 1.90550
\(833\) −3915.61 −0.162867
\(834\) −39301.3 −1.63176
\(835\) 50770.9 2.10419
\(836\) −2951.61 −0.122109
\(837\) 5163.70 0.213242
\(838\) 57953.1 2.38897
\(839\) −8978.20 −0.369442 −0.184721 0.982791i \(-0.559138\pi\)
−0.184721 + 0.982791i \(0.559138\pi\)
\(840\) 5806.00 0.238483
\(841\) −16735.7 −0.686201
\(842\) −12892.7 −0.527685
\(843\) −13100.5 −0.535238
\(844\) 53810.6 2.19459
\(845\) 10661.7 0.434052
\(846\) 17061.0 0.693344
\(847\) 847.000 0.0343604
\(848\) 2333.48 0.0944952
\(849\) −24882.4 −1.00585
\(850\) −17539.5 −0.707765
\(851\) 10944.1 0.440844
\(852\) −26957.3 −1.08397
\(853\) −27980.8 −1.12315 −0.561574 0.827427i \(-0.689804\pi\)
−0.561574 + 0.827427i \(0.689804\pi\)
\(854\) 16381.1 0.656382
\(855\) 2518.52 0.100738
\(856\) −36745.4 −1.46721
\(857\) −4175.08 −0.166416 −0.0832078 0.996532i \(-0.526517\pi\)
−0.0832078 + 0.996532i \(0.526517\pi\)
\(858\) 8217.80 0.326983
\(859\) 38793.4 1.54088 0.770439 0.637514i \(-0.220037\pi\)
0.770439 + 0.637514i \(0.220037\pi\)
\(860\) −35493.1 −1.40733
\(861\) −1270.14 −0.0502744
\(862\) −58221.2 −2.30049
\(863\) −19429.6 −0.766385 −0.383193 0.923668i \(-0.625175\pi\)
−0.383193 + 0.923668i \(0.625175\pi\)
\(864\) −5225.62 −0.205763
\(865\) −35540.6 −1.39701
\(866\) −57089.1 −2.24015
\(867\) 4418.01 0.173061
\(868\) 16900.4 0.660873
\(869\) −115.462 −0.00450724
\(870\) −15691.7 −0.611493
\(871\) 5898.68 0.229471
\(872\) −13599.7 −0.528148
\(873\) −4812.77 −0.186584
\(874\) 11526.7 0.446107
\(875\) −7065.71 −0.272988
\(876\) 4990.56 0.192483
\(877\) −17547.9 −0.675656 −0.337828 0.941208i \(-0.609692\pi\)
−0.337828 + 0.941208i \(0.609692\pi\)
\(878\) −52633.8 −2.02312
\(879\) 7304.45 0.280288
\(880\) 814.493 0.0312006
\(881\) −44948.7 −1.71891 −0.859455 0.511212i \(-0.829197\pi\)
−0.859455 + 0.511212i \(0.829197\pi\)
\(882\) 2002.75 0.0764581
\(883\) −37819.3 −1.44136 −0.720680 0.693268i \(-0.756170\pi\)
−0.720680 + 0.693268i \(0.756170\pi\)
\(884\) 55317.0 2.10465
\(885\) −14142.5 −0.537169
\(886\) 69474.4 2.63436
\(887\) −7203.82 −0.272695 −0.136348 0.990661i \(-0.543536\pi\)
−0.136348 + 0.990661i \(0.543536\pi\)
\(888\) 5773.85 0.218196
\(889\) 1947.02 0.0734543
\(890\) 82297.0 3.09955
\(891\) −891.000 −0.0335013
\(892\) 34920.5 1.31079
\(893\) 8872.33 0.332476
\(894\) 39640.0 1.48295
\(895\) 17491.5 0.653268
\(896\) −15672.7 −0.584363
\(897\) −19644.0 −0.731208
\(898\) 15306.2 0.568790
\(899\) −16731.0 −0.620699
\(900\) 5491.24 0.203379
\(901\) 33155.1 1.22592
\(902\) 3021.43 0.111533
\(903\) −4484.59 −0.165269
\(904\) 24181.6 0.889676
\(905\) 7042.81 0.258686
\(906\) −31704.2 −1.16258
\(907\) 9420.96 0.344893 0.172446 0.985019i \(-0.444833\pi\)
0.172446 + 0.985019i \(0.444833\pi\)
\(908\) 6889.30 0.251794
\(909\) 14580.1 0.532003
\(910\) −22949.7 −0.836018
\(911\) 40045.0 1.45637 0.728184 0.685382i \(-0.240365\pi\)
0.728184 + 0.685382i \(0.240365\pi\)
\(912\) −358.626 −0.0130211
\(913\) 6801.87 0.246560
\(914\) −12180.5 −0.440805
\(915\) 20352.5 0.735335
\(916\) 40365.5 1.45602
\(917\) 16325.6 0.587914
\(918\) −9798.40 −0.352282
\(919\) −8881.69 −0.318803 −0.159402 0.987214i \(-0.550956\pi\)
−0.159402 + 0.987214i \(0.550956\pi\)
\(920\) 33015.1 1.18312
\(921\) −17917.0 −0.641026
\(922\) 5966.30 0.213112
\(923\) 39030.8 1.39189
\(924\) −2916.18 −0.103826
\(925\) 4429.46 0.157448
\(926\) 78743.7 2.79447
\(927\) 7405.33 0.262376
\(928\) 16931.6 0.598928
\(929\) 39037.4 1.37866 0.689331 0.724447i \(-0.257905\pi\)
0.689331 + 0.724447i \(0.257905\pi\)
\(930\) 34304.0 1.20954
\(931\) 1041.50 0.0366636
\(932\) 53068.9 1.86516
\(933\) −24836.0 −0.871482
\(934\) −40010.6 −1.40170
\(935\) 11572.7 0.404778
\(936\) −10363.7 −0.361911
\(937\) 17549.7 0.611870 0.305935 0.952052i \(-0.401031\pi\)
0.305935 + 0.952052i \(0.401031\pi\)
\(938\) −3419.69 −0.119037
\(939\) −4159.80 −0.144569
\(940\) 69376.8 2.40726
\(941\) −28176.8 −0.976128 −0.488064 0.872808i \(-0.662297\pi\)
−0.488064 + 0.872808i \(0.662297\pi\)
\(942\) −12637.4 −0.437100
\(943\) −7222.49 −0.249413
\(944\) 2013.83 0.0694329
\(945\) 2488.28 0.0856549
\(946\) 10668.0 0.366646
\(947\) −11092.6 −0.380636 −0.190318 0.981722i \(-0.560952\pi\)
−0.190318 + 0.981722i \(0.560952\pi\)
\(948\) 397.531 0.0136194
\(949\) −7225.69 −0.247161
\(950\) 4665.28 0.159328
\(951\) 33.7038 0.00114923
\(952\) −11746.8 −0.399913
\(953\) 21883.0 0.743820 0.371910 0.928269i \(-0.378703\pi\)
0.371910 + 0.928269i \(0.378703\pi\)
\(954\) −16958.1 −0.575513
\(955\) −45502.7 −1.54181
\(956\) 72219.4 2.44324
\(957\) 2886.93 0.0975145
\(958\) −3219.60 −0.108581
\(959\) 18285.6 0.615717
\(960\) −32938.2 −1.10737
\(961\) 6784.91 0.227750
\(962\) −22822.7 −0.764899
\(963\) −15748.0 −0.526971
\(964\) 65541.7 2.18979
\(965\) −40892.4 −1.36412
\(966\) 11388.4 0.379312
\(967\) 40235.4 1.33804 0.669019 0.743245i \(-0.266714\pi\)
0.669019 + 0.743245i \(0.266714\pi\)
\(968\) 2541.00 0.0843707
\(969\) −5095.52 −0.168928
\(970\) −31972.6 −1.05833
\(971\) 44470.2 1.46974 0.734870 0.678208i \(-0.237243\pi\)
0.734870 + 0.678208i \(0.237243\pi\)
\(972\) 3067.67 0.101230
\(973\) −20192.7 −0.665313
\(974\) 55648.2 1.83068
\(975\) −7950.62 −0.261153
\(976\) −2898.10 −0.0950472
\(977\) −55989.4 −1.83343 −0.916715 0.399542i \(-0.869169\pi\)
−0.916715 + 0.399542i \(0.869169\pi\)
\(978\) −40413.4 −1.32135
\(979\) −15140.9 −0.494284
\(980\) 8143.97 0.265459
\(981\) −5828.46 −0.189693
\(982\) −24656.8 −0.801254
\(983\) −5987.22 −0.194265 −0.0971326 0.995271i \(-0.530967\pi\)
−0.0971326 + 0.995271i \(0.530967\pi\)
\(984\) −3810.42 −0.123447
\(985\) 64333.1 2.08104
\(986\) 31747.8 1.02541
\(987\) 8765.83 0.282695
\(988\) −14713.6 −0.473788
\(989\) −25501.1 −0.819905
\(990\) −5919.18 −0.190024
\(991\) −1965.53 −0.0630043 −0.0315022 0.999504i \(-0.510029\pi\)
−0.0315022 + 0.999504i \(0.510029\pi\)
\(992\) −37014.5 −1.18469
\(993\) −13548.9 −0.432991
\(994\) −22627.7 −0.722039
\(995\) 43706.2 1.39254
\(996\) −23418.5 −0.745024
\(997\) −10802.9 −0.343161 −0.171581 0.985170i \(-0.554887\pi\)
−0.171581 + 0.985170i \(0.554887\pi\)
\(998\) −65993.7 −2.09318
\(999\) 2474.51 0.0783683
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.i.1.2 2
3.2 odd 2 693.4.a.h.1.1 2
7.6 odd 2 1617.4.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.i.1.2 2 1.1 even 1 trivial
693.4.a.h.1.1 2 3.2 odd 2
1617.4.a.l.1.2 2 7.6 odd 2