Properties

Label 231.4.a.h.1.2
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.56155 q^{2} -3.00000 q^{3} +4.68466 q^{4} -5.68466 q^{5} -10.6847 q^{6} +7.00000 q^{7} -11.8078 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+3.56155 q^{2} -3.00000 q^{3} +4.68466 q^{4} -5.68466 q^{5} -10.6847 q^{6} +7.00000 q^{7} -11.8078 q^{8} +9.00000 q^{9} -20.2462 q^{10} -11.0000 q^{11} -14.0540 q^{12} -39.3002 q^{13} +24.9309 q^{14} +17.0540 q^{15} -79.5312 q^{16} -64.2462 q^{17} +32.0540 q^{18} -82.9157 q^{19} -26.6307 q^{20} -21.0000 q^{21} -39.1771 q^{22} -11.5076 q^{23} +35.4233 q^{24} -92.6847 q^{25} -139.970 q^{26} -27.0000 q^{27} +32.7926 q^{28} +128.501 q^{29} +60.7386 q^{30} -101.400 q^{31} -188.793 q^{32} +33.0000 q^{33} -228.816 q^{34} -39.7926 q^{35} +42.1619 q^{36} +188.086 q^{37} -295.309 q^{38} +117.901 q^{39} +67.1231 q^{40} +198.294 q^{41} -74.7926 q^{42} +231.386 q^{43} -51.5312 q^{44} -51.1619 q^{45} -40.9848 q^{46} -285.533 q^{47} +238.594 q^{48} +49.0000 q^{49} -330.101 q^{50} +192.739 q^{51} -184.108 q^{52} +202.570 q^{53} -96.1619 q^{54} +62.5312 q^{55} -82.6543 q^{56} +248.747 q^{57} +457.663 q^{58} +103.762 q^{59} +79.8920 q^{60} -382.924 q^{61} -361.140 q^{62} +63.0000 q^{63} -36.1449 q^{64} +223.408 q^{65} +117.531 q^{66} -259.348 q^{67} -300.972 q^{68} +34.5227 q^{69} -141.723 q^{70} +352.553 q^{71} -106.270 q^{72} +490.012 q^{73} +669.879 q^{74} +278.054 q^{75} -388.432 q^{76} -77.0000 q^{77} +419.909 q^{78} +141.633 q^{79} +452.108 q^{80} +81.0000 q^{81} +706.233 q^{82} -192.847 q^{83} -98.3778 q^{84} +365.218 q^{85} +824.095 q^{86} -385.503 q^{87} +129.885 q^{88} -423.295 q^{89} -182.216 q^{90} -275.101 q^{91} -53.9091 q^{92} +304.199 q^{93} -1016.94 q^{94} +471.348 q^{95} +566.378 q^{96} -1095.89 q^{97} +174.516 q^{98} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 6 q^{3} - 3 q^{4} + q^{5} - 9 q^{6} + 14 q^{7} - 3 q^{8} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{2} - 6 q^{3} - 3 q^{4} + q^{5} - 9 q^{6} + 14 q^{7} - 3 q^{8} + 18 q^{9} - 24 q^{10} - 22 q^{11} + 9 q^{12} - 25 q^{13} + 21 q^{14} - 3 q^{15} - 23 q^{16} - 112 q^{17} + 27 q^{18} - 71 q^{19} - 78 q^{20} - 42 q^{21} - 33 q^{22} - 56 q^{23} + 9 q^{24} - 173 q^{25} - 148 q^{26} - 54 q^{27} - 21 q^{28} - 11 q^{29} + 72 q^{30} - 310 q^{31} - 291 q^{32} + 66 q^{33} - 202 q^{34} + 7 q^{35} - 27 q^{36} - 65 q^{37} - 302 q^{38} + 75 q^{39} + 126 q^{40} + 42 q^{41} - 63 q^{42} - 32 q^{43} + 33 q^{44} + 9 q^{45} - 16 q^{46} + 101 q^{47} + 69 q^{48} + 98 q^{49} - 285 q^{50} + 336 q^{51} - 294 q^{52} + 166 q^{53} - 81 q^{54} - 11 q^{55} - 21 q^{56} + 213 q^{57} + 536 q^{58} - 11 q^{59} + 234 q^{60} - 436 q^{61} - 244 q^{62} + 126 q^{63} - 431 q^{64} + 319 q^{65} + 99 q^{66} - 127 q^{67} + 66 q^{68} + 168 q^{69} - 168 q^{70} + 936 q^{71} - 27 q^{72} - 327 q^{73} + 812 q^{74} + 519 q^{75} - 480 q^{76} - 154 q^{77} + 444 q^{78} - 228 q^{79} + 830 q^{80} + 162 q^{81} + 794 q^{82} - 262 q^{83} + 63 q^{84} + 46 q^{85} + 972 q^{86} + 33 q^{87} + 33 q^{88} + 44 q^{89} - 216 q^{90} - 175 q^{91} + 288 q^{92} + 930 q^{93} - 1234 q^{94} + 551 q^{95} + 873 q^{96} - 2266 q^{97} + 147 q^{98} - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.56155 1.25920 0.629600 0.776920i \(-0.283219\pi\)
0.629600 + 0.776920i \(0.283219\pi\)
\(3\) −3.00000 −0.577350
\(4\) 4.68466 0.585582
\(5\) −5.68466 −0.508451 −0.254226 0.967145i \(-0.581821\pi\)
−0.254226 + 0.967145i \(0.581821\pi\)
\(6\) −10.6847 −0.726999
\(7\) 7.00000 0.377964
\(8\) −11.8078 −0.521834
\(9\) 9.00000 0.333333
\(10\) −20.2462 −0.640241
\(11\) −11.0000 −0.301511
\(12\) −14.0540 −0.338086
\(13\) −39.3002 −0.838455 −0.419227 0.907881i \(-0.637699\pi\)
−0.419227 + 0.907881i \(0.637699\pi\)
\(14\) 24.9309 0.475933
\(15\) 17.0540 0.293554
\(16\) −79.5312 −1.24268
\(17\) −64.2462 −0.916588 −0.458294 0.888801i \(-0.651539\pi\)
−0.458294 + 0.888801i \(0.651539\pi\)
\(18\) 32.0540 0.419733
\(19\) −82.9157 −1.00117 −0.500583 0.865688i \(-0.666881\pi\)
−0.500583 + 0.865688i \(0.666881\pi\)
\(20\) −26.6307 −0.297740
\(21\) −21.0000 −0.218218
\(22\) −39.1771 −0.379663
\(23\) −11.5076 −0.104326 −0.0521630 0.998639i \(-0.516612\pi\)
−0.0521630 + 0.998639i \(0.516612\pi\)
\(24\) 35.4233 0.301281
\(25\) −92.6847 −0.741477
\(26\) −139.970 −1.05578
\(27\) −27.0000 −0.192450
\(28\) 32.7926 0.221329
\(29\) 128.501 0.822828 0.411414 0.911448i \(-0.365035\pi\)
0.411414 + 0.911448i \(0.365035\pi\)
\(30\) 60.7386 0.369644
\(31\) −101.400 −0.587481 −0.293740 0.955885i \(-0.594900\pi\)
−0.293740 + 0.955885i \(0.594900\pi\)
\(32\) −188.793 −1.04294
\(33\) 33.0000 0.174078
\(34\) −228.816 −1.15417
\(35\) −39.7926 −0.192177
\(36\) 42.1619 0.195194
\(37\) 188.086 0.835707 0.417854 0.908514i \(-0.362782\pi\)
0.417854 + 0.908514i \(0.362782\pi\)
\(38\) −295.309 −1.26067
\(39\) 117.901 0.484082
\(40\) 67.1231 0.265327
\(41\) 198.294 0.755323 0.377662 0.925944i \(-0.376728\pi\)
0.377662 + 0.925944i \(0.376728\pi\)
\(42\) −74.7926 −0.274780
\(43\) 231.386 0.820607 0.410303 0.911949i \(-0.365423\pi\)
0.410303 + 0.911949i \(0.365423\pi\)
\(44\) −51.5312 −0.176560
\(45\) −51.1619 −0.169484
\(46\) −40.9848 −0.131367
\(47\) −285.533 −0.886155 −0.443077 0.896483i \(-0.646113\pi\)
−0.443077 + 0.896483i \(0.646113\pi\)
\(48\) 238.594 0.717459
\(49\) 49.0000 0.142857
\(50\) −330.101 −0.933667
\(51\) 192.739 0.529192
\(52\) −184.108 −0.490984
\(53\) 202.570 0.525003 0.262501 0.964932i \(-0.415453\pi\)
0.262501 + 0.964932i \(0.415453\pi\)
\(54\) −96.1619 −0.242333
\(55\) 62.5312 0.153304
\(56\) −82.6543 −0.197235
\(57\) 248.747 0.578024
\(58\) 457.663 1.03610
\(59\) 103.762 0.228961 0.114481 0.993425i \(-0.463480\pi\)
0.114481 + 0.993425i \(0.463480\pi\)
\(60\) 79.8920 0.171900
\(61\) −382.924 −0.803745 −0.401872 0.915696i \(-0.631640\pi\)
−0.401872 + 0.915696i \(0.631640\pi\)
\(62\) −361.140 −0.739756
\(63\) 63.0000 0.125988
\(64\) −36.1449 −0.0705955
\(65\) 223.408 0.426313
\(66\) 117.531 0.219198
\(67\) −259.348 −0.472901 −0.236450 0.971644i \(-0.575984\pi\)
−0.236450 + 0.971644i \(0.575984\pi\)
\(68\) −300.972 −0.536738
\(69\) 34.5227 0.0602326
\(70\) −141.723 −0.241989
\(71\) 352.553 0.589301 0.294650 0.955605i \(-0.404797\pi\)
0.294650 + 0.955605i \(0.404797\pi\)
\(72\) −106.270 −0.173945
\(73\) 490.012 0.785638 0.392819 0.919616i \(-0.371500\pi\)
0.392819 + 0.919616i \(0.371500\pi\)
\(74\) 669.879 1.05232
\(75\) 278.054 0.428092
\(76\) −388.432 −0.586266
\(77\) −77.0000 −0.113961
\(78\) 419.909 0.609556
\(79\) 141.633 0.201708 0.100854 0.994901i \(-0.467843\pi\)
0.100854 + 0.994901i \(0.467843\pi\)
\(80\) 452.108 0.631840
\(81\) 81.0000 0.111111
\(82\) 706.233 0.951102
\(83\) −192.847 −0.255032 −0.127516 0.991837i \(-0.540700\pi\)
−0.127516 + 0.991837i \(0.540700\pi\)
\(84\) −98.3778 −0.127785
\(85\) 365.218 0.466040
\(86\) 824.095 1.03331
\(87\) −385.503 −0.475060
\(88\) 129.885 0.157339
\(89\) −423.295 −0.504149 −0.252074 0.967708i \(-0.581113\pi\)
−0.252074 + 0.967708i \(0.581113\pi\)
\(90\) −182.216 −0.213414
\(91\) −275.101 −0.316906
\(92\) −53.9091 −0.0610914
\(93\) 304.199 0.339182
\(94\) −1016.94 −1.11585
\(95\) 471.348 0.509045
\(96\) 566.378 0.602143
\(97\) −1095.89 −1.14712 −0.573562 0.819162i \(-0.694439\pi\)
−0.573562 + 0.819162i \(0.694439\pi\)
\(98\) 174.516 0.179886
\(99\) −99.0000 −0.100504
\(100\) −434.196 −0.434196
\(101\) −1781.30 −1.75491 −0.877455 0.479659i \(-0.840760\pi\)
−0.877455 + 0.479659i \(0.840760\pi\)
\(102\) 686.449 0.666358
\(103\) 10.3239 0.00987611 0.00493806 0.999988i \(-0.498428\pi\)
0.00493806 + 0.999988i \(0.498428\pi\)
\(104\) 464.047 0.437534
\(105\) 119.378 0.110953
\(106\) 721.464 0.661083
\(107\) 1518.89 1.37230 0.686152 0.727458i \(-0.259298\pi\)
0.686152 + 0.727458i \(0.259298\pi\)
\(108\) −126.486 −0.112695
\(109\) −1648.93 −1.44898 −0.724489 0.689286i \(-0.757924\pi\)
−0.724489 + 0.689286i \(0.757924\pi\)
\(110\) 222.708 0.193040
\(111\) −564.258 −0.482496
\(112\) −556.719 −0.469687
\(113\) −188.739 −0.157124 −0.0785621 0.996909i \(-0.525033\pi\)
−0.0785621 + 0.996909i \(0.525033\pi\)
\(114\) 885.926 0.727847
\(115\) 65.4166 0.0530446
\(116\) 601.983 0.481834
\(117\) −353.702 −0.279485
\(118\) 369.555 0.288308
\(119\) −449.723 −0.346438
\(120\) −201.369 −0.153187
\(121\) 121.000 0.0909091
\(122\) −1363.80 −1.01207
\(123\) −594.881 −0.436086
\(124\) −475.023 −0.344018
\(125\) 1237.46 0.885456
\(126\) 224.378 0.158644
\(127\) −2398.92 −1.67614 −0.838069 0.545564i \(-0.816316\pi\)
−0.838069 + 0.545564i \(0.816316\pi\)
\(128\) 1381.61 0.954048
\(129\) −694.159 −0.473777
\(130\) 795.680 0.536813
\(131\) 1560.96 1.04108 0.520540 0.853837i \(-0.325731\pi\)
0.520540 + 0.853837i \(0.325731\pi\)
\(132\) 154.594 0.101937
\(133\) −580.410 −0.378405
\(134\) −923.680 −0.595476
\(135\) 153.486 0.0978515
\(136\) 758.604 0.478307
\(137\) 821.595 0.512362 0.256181 0.966629i \(-0.417536\pi\)
0.256181 + 0.966629i \(0.417536\pi\)
\(138\) 122.955 0.0758448
\(139\) −1158.44 −0.706886 −0.353443 0.935456i \(-0.614989\pi\)
−0.353443 + 0.935456i \(0.614989\pi\)
\(140\) −186.415 −0.112535
\(141\) 856.599 0.511622
\(142\) 1255.64 0.742047
\(143\) 432.302 0.252804
\(144\) −715.781 −0.414225
\(145\) −730.484 −0.418368
\(146\) 1745.20 0.989275
\(147\) −147.000 −0.0824786
\(148\) 881.119 0.489375
\(149\) 1234.82 0.678926 0.339463 0.940619i \(-0.389755\pi\)
0.339463 + 0.940619i \(0.389755\pi\)
\(150\) 990.304 0.539053
\(151\) −1154.58 −0.622242 −0.311121 0.950370i \(-0.600704\pi\)
−0.311121 + 0.950370i \(0.600704\pi\)
\(152\) 979.049 0.522443
\(153\) −578.216 −0.305529
\(154\) −274.240 −0.143499
\(155\) 576.422 0.298705
\(156\) 552.324 0.283470
\(157\) −2830.17 −1.43868 −0.719339 0.694660i \(-0.755555\pi\)
−0.719339 + 0.694660i \(0.755555\pi\)
\(158\) 504.432 0.253990
\(159\) −607.710 −0.303110
\(160\) 1073.22 0.530285
\(161\) −80.5530 −0.0394315
\(162\) 288.486 0.139911
\(163\) 3418.64 1.64275 0.821377 0.570386i \(-0.193206\pi\)
0.821377 + 0.570386i \(0.193206\pi\)
\(164\) 928.938 0.442304
\(165\) −187.594 −0.0885100
\(166\) −686.833 −0.321136
\(167\) 1575.50 0.730033 0.365017 0.931001i \(-0.381063\pi\)
0.365017 + 0.931001i \(0.381063\pi\)
\(168\) 247.963 0.113874
\(169\) −652.495 −0.296994
\(170\) 1300.74 0.586838
\(171\) −746.241 −0.333722
\(172\) 1083.97 0.480533
\(173\) 3597.33 1.58092 0.790462 0.612510i \(-0.209840\pi\)
0.790462 + 0.612510i \(0.209840\pi\)
\(174\) −1372.99 −0.598195
\(175\) −648.793 −0.280252
\(176\) 874.844 0.374681
\(177\) −311.287 −0.132191
\(178\) −1507.59 −0.634823
\(179\) 1812.71 0.756917 0.378459 0.925618i \(-0.376454\pi\)
0.378459 + 0.925618i \(0.376454\pi\)
\(180\) −239.676 −0.0992467
\(181\) 2239.16 0.919535 0.459767 0.888039i \(-0.347933\pi\)
0.459767 + 0.888039i \(0.347933\pi\)
\(182\) −979.788 −0.399048
\(183\) 1148.77 0.464042
\(184\) 135.879 0.0544408
\(185\) −1069.21 −0.424917
\(186\) 1083.42 0.427098
\(187\) 706.708 0.276362
\(188\) −1337.63 −0.518917
\(189\) −189.000 −0.0727393
\(190\) 1678.73 0.640988
\(191\) −3960.32 −1.50031 −0.750153 0.661264i \(-0.770020\pi\)
−0.750153 + 0.661264i \(0.770020\pi\)
\(192\) 108.435 0.0407583
\(193\) −4740.22 −1.76792 −0.883961 0.467561i \(-0.845133\pi\)
−0.883961 + 0.467561i \(0.845133\pi\)
\(194\) −3903.08 −1.44446
\(195\) −670.224 −0.246132
\(196\) 229.548 0.0836546
\(197\) −5144.18 −1.86045 −0.930223 0.366996i \(-0.880386\pi\)
−0.930223 + 0.366996i \(0.880386\pi\)
\(198\) −352.594 −0.126554
\(199\) −2232.02 −0.795094 −0.397547 0.917582i \(-0.630138\pi\)
−0.397547 + 0.917582i \(0.630138\pi\)
\(200\) 1094.40 0.386928
\(201\) 778.043 0.273029
\(202\) −6344.19 −2.20978
\(203\) 899.507 0.311000
\(204\) 902.915 0.309886
\(205\) −1127.23 −0.384045
\(206\) 36.7689 0.0124360
\(207\) −103.568 −0.0347753
\(208\) 3125.59 1.04193
\(209\) 912.073 0.301863
\(210\) 425.170 0.139712
\(211\) −3119.05 −1.01765 −0.508825 0.860870i \(-0.669920\pi\)
−0.508825 + 0.860870i \(0.669920\pi\)
\(212\) 948.972 0.307432
\(213\) −1057.66 −0.340233
\(214\) 5409.60 1.72800
\(215\) −1315.35 −0.417239
\(216\) 318.810 0.100427
\(217\) −709.797 −0.222047
\(218\) −5872.74 −1.82455
\(219\) −1470.04 −0.453588
\(220\) 292.938 0.0897720
\(221\) 2524.89 0.768517
\(222\) −2009.64 −0.607558
\(223\) −1138.94 −0.342015 −0.171008 0.985270i \(-0.554702\pi\)
−0.171008 + 0.985270i \(0.554702\pi\)
\(224\) −1321.55 −0.394195
\(225\) −834.162 −0.247159
\(226\) −672.203 −0.197851
\(227\) −1754.97 −0.513133 −0.256567 0.966527i \(-0.582591\pi\)
−0.256567 + 0.966527i \(0.582591\pi\)
\(228\) 1165.30 0.338481
\(229\) 304.271 0.0878025 0.0439013 0.999036i \(-0.486021\pi\)
0.0439013 + 0.999036i \(0.486021\pi\)
\(230\) 232.985 0.0667938
\(231\) 231.000 0.0657952
\(232\) −1517.31 −0.429380
\(233\) −3908.74 −1.09901 −0.549506 0.835490i \(-0.685184\pi\)
−0.549506 + 0.835490i \(0.685184\pi\)
\(234\) −1259.73 −0.351927
\(235\) 1623.16 0.450567
\(236\) 486.091 0.134076
\(237\) −424.898 −0.116456
\(238\) −1601.71 −0.436234
\(239\) −170.995 −0.0462794 −0.0231397 0.999732i \(-0.507366\pi\)
−0.0231397 + 0.999732i \(0.507366\pi\)
\(240\) −1356.32 −0.364793
\(241\) −6654.70 −1.77870 −0.889351 0.457226i \(-0.848843\pi\)
−0.889351 + 0.457226i \(0.848843\pi\)
\(242\) 430.948 0.114473
\(243\) −243.000 −0.0641500
\(244\) −1793.87 −0.470659
\(245\) −278.548 −0.0726359
\(246\) −2118.70 −0.549119
\(247\) 3258.60 0.839433
\(248\) 1197.30 0.306568
\(249\) 578.540 0.147243
\(250\) 4407.29 1.11497
\(251\) 1019.50 0.256376 0.128188 0.991750i \(-0.459084\pi\)
0.128188 + 0.991750i \(0.459084\pi\)
\(252\) 295.133 0.0737764
\(253\) 126.583 0.0314554
\(254\) −8543.87 −2.11059
\(255\) −1095.65 −0.269069
\(256\) 5209.83 1.27193
\(257\) −6742.31 −1.63647 −0.818237 0.574881i \(-0.805048\pi\)
−0.818237 + 0.574881i \(0.805048\pi\)
\(258\) −2472.28 −0.596580
\(259\) 1316.60 0.315868
\(260\) 1046.59 0.249642
\(261\) 1156.51 0.274276
\(262\) 5559.44 1.31093
\(263\) 1282.62 0.300721 0.150360 0.988631i \(-0.451957\pi\)
0.150360 + 0.988631i \(0.451957\pi\)
\(264\) −389.656 −0.0908397
\(265\) −1151.54 −0.266938
\(266\) −2067.16 −0.476488
\(267\) 1269.89 0.291070
\(268\) −1214.95 −0.276922
\(269\) −930.364 −0.210875 −0.105437 0.994426i \(-0.533624\pi\)
−0.105437 + 0.994426i \(0.533624\pi\)
\(270\) 546.648 0.123215
\(271\) 8335.61 1.86846 0.934230 0.356672i \(-0.116089\pi\)
0.934230 + 0.356672i \(0.116089\pi\)
\(272\) 5109.58 1.13902
\(273\) 825.304 0.182966
\(274\) 2926.15 0.645166
\(275\) 1019.53 0.223564
\(276\) 161.727 0.0352711
\(277\) 3493.35 0.757744 0.378872 0.925449i \(-0.376312\pi\)
0.378872 + 0.925449i \(0.376312\pi\)
\(278\) −4125.83 −0.890111
\(279\) −912.597 −0.195827
\(280\) 469.862 0.100284
\(281\) −1031.25 −0.218929 −0.109465 0.993991i \(-0.534914\pi\)
−0.109465 + 0.993991i \(0.534914\pi\)
\(282\) 3050.82 0.644234
\(283\) −2380.71 −0.500066 −0.250033 0.968237i \(-0.580441\pi\)
−0.250033 + 0.968237i \(0.580441\pi\)
\(284\) 1651.59 0.345084
\(285\) −1414.04 −0.293897
\(286\) 1539.67 0.318330
\(287\) 1388.05 0.285485
\(288\) −1699.13 −0.347647
\(289\) −785.424 −0.159867
\(290\) −2601.66 −0.526809
\(291\) 3287.68 0.662292
\(292\) 2295.54 0.460056
\(293\) 7189.97 1.43359 0.716796 0.697283i \(-0.245608\pi\)
0.716796 + 0.697283i \(0.245608\pi\)
\(294\) −523.548 −0.103857
\(295\) −589.853 −0.116416
\(296\) −2220.88 −0.436101
\(297\) 297.000 0.0580259
\(298\) 4397.86 0.854903
\(299\) 452.250 0.0874725
\(300\) 1302.59 0.250683
\(301\) 1619.70 0.310160
\(302\) −4112.10 −0.783526
\(303\) 5343.90 1.01320
\(304\) 6594.39 1.24413
\(305\) 2176.79 0.408665
\(306\) −2059.35 −0.384722
\(307\) −805.946 −0.149830 −0.0749150 0.997190i \(-0.523869\pi\)
−0.0749150 + 0.997190i \(0.523869\pi\)
\(308\) −360.719 −0.0667333
\(309\) −30.9716 −0.00570197
\(310\) 2052.96 0.376130
\(311\) 1526.61 0.278348 0.139174 0.990268i \(-0.455555\pi\)
0.139174 + 0.990268i \(0.455555\pi\)
\(312\) −1392.14 −0.252611
\(313\) 5698.67 1.02910 0.514550 0.857461i \(-0.327959\pi\)
0.514550 + 0.857461i \(0.327959\pi\)
\(314\) −10079.8 −1.81158
\(315\) −358.133 −0.0640588
\(316\) 663.500 0.118116
\(317\) −4036.30 −0.715146 −0.357573 0.933885i \(-0.616396\pi\)
−0.357573 + 0.933885i \(0.616396\pi\)
\(318\) −2164.39 −0.381676
\(319\) −1413.51 −0.248092
\(320\) 205.471 0.0358944
\(321\) −4556.67 −0.792300
\(322\) −286.894 −0.0496521
\(323\) 5327.02 0.917657
\(324\) 379.457 0.0650647
\(325\) 3642.52 0.621695
\(326\) 12175.7 2.06855
\(327\) 4946.78 0.836568
\(328\) −2341.40 −0.394154
\(329\) −1998.73 −0.334935
\(330\) −668.125 −0.111452
\(331\) 2666.48 0.442789 0.221394 0.975184i \(-0.428939\pi\)
0.221394 + 0.975184i \(0.428939\pi\)
\(332\) −903.420 −0.149342
\(333\) 1692.78 0.278569
\(334\) 5611.21 0.919257
\(335\) 1474.30 0.240447
\(336\) 1670.16 0.271174
\(337\) 2057.65 0.332603 0.166302 0.986075i \(-0.446817\pi\)
0.166302 + 0.986075i \(0.446817\pi\)
\(338\) −2323.90 −0.373974
\(339\) 566.216 0.0907157
\(340\) 1710.92 0.272905
\(341\) 1115.40 0.177132
\(342\) −2657.78 −0.420223
\(343\) 343.000 0.0539949
\(344\) −2732.16 −0.428221
\(345\) −196.250 −0.0306253
\(346\) 12812.1 1.99070
\(347\) 8556.95 1.32381 0.661904 0.749589i \(-0.269749\pi\)
0.661904 + 0.749589i \(0.269749\pi\)
\(348\) −1805.95 −0.278187
\(349\) −9298.02 −1.42611 −0.713054 0.701109i \(-0.752689\pi\)
−0.713054 + 0.701109i \(0.752689\pi\)
\(350\) −2310.71 −0.352893
\(351\) 1061.11 0.161361
\(352\) 2076.72 0.314459
\(353\) 6315.48 0.952236 0.476118 0.879381i \(-0.342044\pi\)
0.476118 + 0.879381i \(0.342044\pi\)
\(354\) −1108.66 −0.166454
\(355\) −2004.14 −0.299631
\(356\) −1982.99 −0.295220
\(357\) 1349.17 0.200016
\(358\) 6456.06 0.953109
\(359\) 4366.78 0.641977 0.320988 0.947083i \(-0.395985\pi\)
0.320988 + 0.947083i \(0.395985\pi\)
\(360\) 604.108 0.0884425
\(361\) 16.0157 0.00233500
\(362\) 7974.90 1.15788
\(363\) −363.000 −0.0524864
\(364\) −1288.76 −0.185575
\(365\) −2785.55 −0.399459
\(366\) 4091.41 0.584321
\(367\) 455.244 0.0647508 0.0323754 0.999476i \(-0.489693\pi\)
0.0323754 + 0.999476i \(0.489693\pi\)
\(368\) 915.212 0.129643
\(369\) 1784.64 0.251774
\(370\) −3808.03 −0.535054
\(371\) 1417.99 0.198432
\(372\) 1425.07 0.198619
\(373\) −5345.01 −0.741968 −0.370984 0.928639i \(-0.620980\pi\)
−0.370984 + 0.928639i \(0.620980\pi\)
\(374\) 2516.98 0.347994
\(375\) −3712.39 −0.511218
\(376\) 3371.51 0.462426
\(377\) −5050.11 −0.689904
\(378\) −673.133 −0.0915933
\(379\) 9772.43 1.32448 0.662238 0.749294i \(-0.269607\pi\)
0.662238 + 0.749294i \(0.269607\pi\)
\(380\) 2208.10 0.298087
\(381\) 7196.76 0.967719
\(382\) −14104.9 −1.88918
\(383\) 821.560 0.109608 0.0548039 0.998497i \(-0.482547\pi\)
0.0548039 + 0.998497i \(0.482547\pi\)
\(384\) −4144.83 −0.550820
\(385\) 437.719 0.0579434
\(386\) −16882.6 −2.22617
\(387\) 2082.48 0.273536
\(388\) −5133.88 −0.671735
\(389\) −3632.64 −0.473476 −0.236738 0.971574i \(-0.576078\pi\)
−0.236738 + 0.971574i \(0.576078\pi\)
\(390\) −2387.04 −0.309929
\(391\) 739.318 0.0956239
\(392\) −578.580 −0.0745478
\(393\) −4682.87 −0.601068
\(394\) −18321.3 −2.34267
\(395\) −805.133 −0.102559
\(396\) −463.781 −0.0588532
\(397\) 4985.80 0.630302 0.315151 0.949041i \(-0.397945\pi\)
0.315151 + 0.949041i \(0.397945\pi\)
\(398\) −7949.45 −1.00118
\(399\) 1741.23 0.218473
\(400\) 7371.33 0.921416
\(401\) −5585.37 −0.695562 −0.347781 0.937576i \(-0.613065\pi\)
−0.347781 + 0.937576i \(0.613065\pi\)
\(402\) 2771.04 0.343798
\(403\) 3985.02 0.492576
\(404\) −8344.78 −1.02764
\(405\) −460.457 −0.0564946
\(406\) 3203.64 0.391611
\(407\) −2068.95 −0.251975
\(408\) −2275.81 −0.276151
\(409\) −5307.38 −0.641645 −0.320823 0.947139i \(-0.603959\pi\)
−0.320823 + 0.947139i \(0.603959\pi\)
\(410\) −4014.69 −0.483589
\(411\) −2464.78 −0.295812
\(412\) 48.3637 0.00578328
\(413\) 726.336 0.0865391
\(414\) −368.864 −0.0437890
\(415\) 1096.27 0.129671
\(416\) 7419.58 0.874459
\(417\) 3475.31 0.408121
\(418\) 3248.40 0.380106
\(419\) 12248.3 1.42808 0.714041 0.700104i \(-0.246863\pi\)
0.714041 + 0.700104i \(0.246863\pi\)
\(420\) 559.244 0.0649722
\(421\) −6958.41 −0.805539 −0.402770 0.915301i \(-0.631952\pi\)
−0.402770 + 0.915301i \(0.631952\pi\)
\(422\) −11108.7 −1.28142
\(423\) −2569.80 −0.295385
\(424\) −2391.90 −0.273964
\(425\) 5954.64 0.679629
\(426\) −3766.91 −0.428421
\(427\) −2680.47 −0.303787
\(428\) 7115.48 0.803597
\(429\) −1296.91 −0.145956
\(430\) −4684.70 −0.525386
\(431\) 6245.52 0.697996 0.348998 0.937123i \(-0.386522\pi\)
0.348998 + 0.937123i \(0.386522\pi\)
\(432\) 2147.34 0.239153
\(433\) 8035.72 0.891853 0.445926 0.895070i \(-0.352874\pi\)
0.445926 + 0.895070i \(0.352874\pi\)
\(434\) −2527.98 −0.279601
\(435\) 2191.45 0.241545
\(436\) −7724.66 −0.848496
\(437\) 954.159 0.104448
\(438\) −5235.61 −0.571158
\(439\) 10775.4 1.17148 0.585742 0.810497i \(-0.300803\pi\)
0.585742 + 0.810497i \(0.300803\pi\)
\(440\) −738.354 −0.0799992
\(441\) 441.000 0.0476190
\(442\) 8992.52 0.967716
\(443\) 3395.81 0.364198 0.182099 0.983280i \(-0.441711\pi\)
0.182099 + 0.983280i \(0.441711\pi\)
\(444\) −2643.36 −0.282541
\(445\) 2406.29 0.256335
\(446\) −4056.41 −0.430665
\(447\) −3704.45 −0.391978
\(448\) −253.014 −0.0266826
\(449\) −10625.6 −1.11682 −0.558409 0.829566i \(-0.688588\pi\)
−0.558409 + 0.829566i \(0.688588\pi\)
\(450\) −2970.91 −0.311222
\(451\) −2181.23 −0.227738
\(452\) −884.176 −0.0920092
\(453\) 3463.74 0.359251
\(454\) −6250.41 −0.646137
\(455\) 1563.86 0.161131
\(456\) −2937.15 −0.301633
\(457\) 3189.95 0.326520 0.163260 0.986583i \(-0.447799\pi\)
0.163260 + 0.986583i \(0.447799\pi\)
\(458\) 1083.68 0.110561
\(459\) 1734.65 0.176397
\(460\) 306.455 0.0310620
\(461\) 11839.8 1.19617 0.598084 0.801433i \(-0.295929\pi\)
0.598084 + 0.801433i \(0.295929\pi\)
\(462\) 822.719 0.0828492
\(463\) −14847.0 −1.49027 −0.745137 0.666911i \(-0.767616\pi\)
−0.745137 + 0.666911i \(0.767616\pi\)
\(464\) −10219.8 −1.02251
\(465\) −1729.27 −0.172458
\(466\) −13921.2 −1.38388
\(467\) −5678.07 −0.562634 −0.281317 0.959615i \(-0.590771\pi\)
−0.281317 + 0.959615i \(0.590771\pi\)
\(468\) −1656.97 −0.163661
\(469\) −1815.43 −0.178740
\(470\) 5780.96 0.567353
\(471\) 8490.52 0.830621
\(472\) −1225.20 −0.119480
\(473\) −2545.25 −0.247422
\(474\) −1513.30 −0.146641
\(475\) 7685.01 0.742342
\(476\) −2106.80 −0.202868
\(477\) 1823.13 0.175001
\(478\) −609.009 −0.0582750
\(479\) 224.024 0.0213694 0.0106847 0.999943i \(-0.496599\pi\)
0.0106847 + 0.999943i \(0.496599\pi\)
\(480\) −3219.66 −0.306160
\(481\) −7391.82 −0.700703
\(482\) −23701.1 −2.23974
\(483\) 241.659 0.0227658
\(484\) 566.844 0.0532348
\(485\) 6229.77 0.583256
\(486\) −865.457 −0.0807777
\(487\) −6298.42 −0.586055 −0.293028 0.956104i \(-0.594663\pi\)
−0.293028 + 0.956104i \(0.594663\pi\)
\(488\) 4521.48 0.419422
\(489\) −10255.9 −0.948444
\(490\) −992.064 −0.0914631
\(491\) 7973.25 0.732847 0.366424 0.930448i \(-0.380582\pi\)
0.366424 + 0.930448i \(0.380582\pi\)
\(492\) −2786.81 −0.255364
\(493\) −8255.70 −0.754195
\(494\) 11605.7 1.05701
\(495\) 562.781 0.0511013
\(496\) 8064.44 0.730048
\(497\) 2467.87 0.222735
\(498\) 2060.50 0.185408
\(499\) −15518.7 −1.39221 −0.696104 0.717941i \(-0.745085\pi\)
−0.696104 + 0.717941i \(0.745085\pi\)
\(500\) 5797.09 0.518508
\(501\) −4726.49 −0.421485
\(502\) 3631.01 0.322829
\(503\) 8420.95 0.746465 0.373232 0.927738i \(-0.378249\pi\)
0.373232 + 0.927738i \(0.378249\pi\)
\(504\) −743.889 −0.0657450
\(505\) 10126.1 0.892286
\(506\) 450.833 0.0396087
\(507\) 1957.49 0.171469
\(508\) −11238.1 −0.981517
\(509\) −22582.1 −1.96647 −0.983234 0.182350i \(-0.941630\pi\)
−0.983234 + 0.182350i \(0.941630\pi\)
\(510\) −3902.23 −0.338811
\(511\) 3430.09 0.296943
\(512\) 7502.22 0.647567
\(513\) 2238.72 0.192675
\(514\) −24013.1 −2.06065
\(515\) −58.6876 −0.00502152
\(516\) −3251.90 −0.277436
\(517\) 3140.86 0.267186
\(518\) 4689.15 0.397740
\(519\) −10792.0 −0.912747
\(520\) −2637.95 −0.222465
\(521\) 2072.11 0.174243 0.0871215 0.996198i \(-0.472233\pi\)
0.0871215 + 0.996198i \(0.472233\pi\)
\(522\) 4118.97 0.345368
\(523\) −10531.2 −0.880491 −0.440245 0.897877i \(-0.645109\pi\)
−0.440245 + 0.897877i \(0.645109\pi\)
\(524\) 7312.56 0.609638
\(525\) 1946.38 0.161804
\(526\) 4568.11 0.378667
\(527\) 6514.54 0.538478
\(528\) −2624.53 −0.216322
\(529\) −12034.6 −0.989116
\(530\) −4101.28 −0.336128
\(531\) 933.861 0.0763203
\(532\) −2719.02 −0.221588
\(533\) −7792.97 −0.633304
\(534\) 4522.77 0.366515
\(535\) −8634.37 −0.697750
\(536\) 3062.31 0.246776
\(537\) −5438.12 −0.437006
\(538\) −3313.54 −0.265533
\(539\) −539.000 −0.0430730
\(540\) 719.028 0.0573001
\(541\) 17730.0 1.40900 0.704502 0.709702i \(-0.251170\pi\)
0.704502 + 0.709702i \(0.251170\pi\)
\(542\) 29687.7 2.35276
\(543\) −6717.49 −0.530894
\(544\) 12129.2 0.955948
\(545\) 9373.59 0.736735
\(546\) 2939.36 0.230390
\(547\) −18082.8 −1.41346 −0.706730 0.707483i \(-0.749831\pi\)
−0.706730 + 0.707483i \(0.749831\pi\)
\(548\) 3848.89 0.300030
\(549\) −3446.32 −0.267915
\(550\) 3631.11 0.281511
\(551\) −10654.7 −0.823789
\(552\) −407.636 −0.0314314
\(553\) 991.428 0.0762383
\(554\) 12441.8 0.954150
\(555\) 3207.62 0.245326
\(556\) −5426.87 −0.413940
\(557\) 18748.2 1.42619 0.713095 0.701068i \(-0.247293\pi\)
0.713095 + 0.701068i \(0.247293\pi\)
\(558\) −3250.26 −0.246585
\(559\) −9093.53 −0.688041
\(560\) 3164.76 0.238813
\(561\) −2120.12 −0.159557
\(562\) −3672.85 −0.275676
\(563\) −9033.83 −0.676253 −0.338127 0.941101i \(-0.609793\pi\)
−0.338127 + 0.941101i \(0.609793\pi\)
\(564\) 4012.88 0.299597
\(565\) 1072.91 0.0798900
\(566\) −8479.03 −0.629682
\(567\) 567.000 0.0419961
\(568\) −4162.86 −0.307517
\(569\) 5852.87 0.431222 0.215611 0.976479i \(-0.430826\pi\)
0.215611 + 0.976479i \(0.430826\pi\)
\(570\) −5036.19 −0.370075
\(571\) 6521.25 0.477944 0.238972 0.971026i \(-0.423190\pi\)
0.238972 + 0.971026i \(0.423190\pi\)
\(572\) 2025.19 0.148037
\(573\) 11880.9 0.866202
\(574\) 4943.63 0.359483
\(575\) 1066.58 0.0773553
\(576\) −325.304 −0.0235318
\(577\) 10542.3 0.760627 0.380314 0.924858i \(-0.375816\pi\)
0.380314 + 0.924858i \(0.375816\pi\)
\(578\) −2797.33 −0.201304
\(579\) 14220.7 1.02071
\(580\) −3422.07 −0.244989
\(581\) −1349.93 −0.0963931
\(582\) 11709.2 0.833958
\(583\) −2228.27 −0.158294
\(584\) −5785.95 −0.409973
\(585\) 2010.67 0.142104
\(586\) 25607.5 1.80518
\(587\) 20713.3 1.45644 0.728218 0.685346i \(-0.240349\pi\)
0.728218 + 0.685346i \(0.240349\pi\)
\(588\) −688.645 −0.0482980
\(589\) 8407.62 0.588166
\(590\) −2100.79 −0.146590
\(591\) 15432.5 1.07413
\(592\) −14958.7 −1.03851
\(593\) 7202.25 0.498754 0.249377 0.968406i \(-0.419774\pi\)
0.249377 + 0.968406i \(0.419774\pi\)
\(594\) 1057.78 0.0730661
\(595\) 2556.52 0.176147
\(596\) 5784.69 0.397567
\(597\) 6696.06 0.459048
\(598\) 1610.71 0.110145
\(599\) −19894.2 −1.35702 −0.678510 0.734591i \(-0.737374\pi\)
−0.678510 + 0.734591i \(0.737374\pi\)
\(600\) −3283.20 −0.223393
\(601\) 10378.4 0.704397 0.352199 0.935925i \(-0.385434\pi\)
0.352199 + 0.935925i \(0.385434\pi\)
\(602\) 5768.66 0.390553
\(603\) −2334.13 −0.157634
\(604\) −5408.82 −0.364374
\(605\) −687.844 −0.0462228
\(606\) 19032.6 1.27582
\(607\) 15224.0 1.01800 0.508998 0.860768i \(-0.330016\pi\)
0.508998 + 0.860768i \(0.330016\pi\)
\(608\) 15653.9 1.04416
\(609\) −2698.52 −0.179556
\(610\) 7752.76 0.514591
\(611\) 11221.5 0.743001
\(612\) −2708.74 −0.178913
\(613\) −25967.7 −1.71097 −0.855485 0.517828i \(-0.826741\pi\)
−0.855485 + 0.517828i \(0.826741\pi\)
\(614\) −2870.42 −0.188666
\(615\) 3381.69 0.221729
\(616\) 909.198 0.0594685
\(617\) −25500.4 −1.66387 −0.831935 0.554873i \(-0.812767\pi\)
−0.831935 + 0.554873i \(0.812767\pi\)
\(618\) −110.307 −0.00717992
\(619\) −19794.4 −1.28531 −0.642654 0.766157i \(-0.722167\pi\)
−0.642654 + 0.766157i \(0.722167\pi\)
\(620\) 2700.34 0.174917
\(621\) 310.705 0.0200775
\(622\) 5437.11 0.350496
\(623\) −2963.07 −0.190550
\(624\) −9376.78 −0.601557
\(625\) 4551.03 0.291266
\(626\) 20296.1 1.29584
\(627\) −2736.22 −0.174281
\(628\) −13258.4 −0.842464
\(629\) −12083.8 −0.765999
\(630\) −1275.51 −0.0806628
\(631\) 19940.5 1.25803 0.629017 0.777392i \(-0.283458\pi\)
0.629017 + 0.777392i \(0.283458\pi\)
\(632\) −1672.36 −0.105258
\(633\) 9357.14 0.587540
\(634\) −14375.5 −0.900511
\(635\) 13637.0 0.852235
\(636\) −2846.91 −0.177496
\(637\) −1925.71 −0.119779
\(638\) −5034.29 −0.312397
\(639\) 3172.98 0.196434
\(640\) −7853.97 −0.485087
\(641\) −22527.9 −1.38814 −0.694070 0.719907i \(-0.744184\pi\)
−0.694070 + 0.719907i \(0.744184\pi\)
\(642\) −16228.8 −0.997664
\(643\) −11676.3 −0.716125 −0.358062 0.933698i \(-0.616562\pi\)
−0.358062 + 0.933698i \(0.616562\pi\)
\(644\) −377.363 −0.0230904
\(645\) 3946.06 0.240893
\(646\) 18972.5 1.15551
\(647\) −9749.45 −0.592412 −0.296206 0.955124i \(-0.595721\pi\)
−0.296206 + 0.955124i \(0.595721\pi\)
\(648\) −956.429 −0.0579816
\(649\) −1141.39 −0.0690343
\(650\) 12973.0 0.782838
\(651\) 2129.39 0.128199
\(652\) 16015.2 0.961968
\(653\) 3439.33 0.206112 0.103056 0.994676i \(-0.467138\pi\)
0.103056 + 0.994676i \(0.467138\pi\)
\(654\) 17618.2 1.05341
\(655\) −8873.51 −0.529339
\(656\) −15770.5 −0.938622
\(657\) 4410.11 0.261879
\(658\) −7118.59 −0.421750
\(659\) 16400.6 0.969463 0.484732 0.874663i \(-0.338917\pi\)
0.484732 + 0.874663i \(0.338917\pi\)
\(660\) −878.813 −0.0518299
\(661\) −7571.56 −0.445537 −0.222768 0.974871i \(-0.571509\pi\)
−0.222768 + 0.974871i \(0.571509\pi\)
\(662\) 9496.81 0.557559
\(663\) −7574.66 −0.443704
\(664\) 2277.09 0.133085
\(665\) 3299.43 0.192401
\(666\) 6028.91 0.350774
\(667\) −1478.73 −0.0858423
\(668\) 7380.66 0.427494
\(669\) 3416.83 0.197463
\(670\) 5250.80 0.302771
\(671\) 4212.17 0.242338
\(672\) 3964.64 0.227589
\(673\) −5876.65 −0.336595 −0.168297 0.985736i \(-0.553827\pi\)
−0.168297 + 0.985736i \(0.553827\pi\)
\(674\) 7328.43 0.418814
\(675\) 2502.49 0.142697
\(676\) −3056.72 −0.173914
\(677\) −9870.55 −0.560348 −0.280174 0.959949i \(-0.590392\pi\)
−0.280174 + 0.959949i \(0.590392\pi\)
\(678\) 2016.61 0.114229
\(679\) −7671.24 −0.433572
\(680\) −4312.41 −0.243196
\(681\) 5264.90 0.296258
\(682\) 3972.54 0.223045
\(683\) −9551.67 −0.535116 −0.267558 0.963542i \(-0.586217\pi\)
−0.267558 + 0.963542i \(0.586217\pi\)
\(684\) −3495.89 −0.195422
\(685\) −4670.49 −0.260511
\(686\) 1221.61 0.0679904
\(687\) −912.812 −0.0506928
\(688\) −18402.4 −1.01975
\(689\) −7961.04 −0.440191
\(690\) −698.955 −0.0385634
\(691\) −10329.4 −0.568665 −0.284333 0.958726i \(-0.591772\pi\)
−0.284333 + 0.958726i \(0.591772\pi\)
\(692\) 16852.3 0.925762
\(693\) −693.000 −0.0379869
\(694\) 30476.0 1.66694
\(695\) 6585.31 0.359417
\(696\) 4551.93 0.247903
\(697\) −12739.6 −0.692320
\(698\) −33115.4 −1.79575
\(699\) 11726.2 0.634515
\(700\) −3039.37 −0.164111
\(701\) −33570.9 −1.80878 −0.904390 0.426708i \(-0.859673\pi\)
−0.904390 + 0.426708i \(0.859673\pi\)
\(702\) 3779.18 0.203185
\(703\) −15595.3 −0.836682
\(704\) 397.594 0.0212853
\(705\) −4869.47 −0.260135
\(706\) 22492.9 1.19905
\(707\) −12469.1 −0.663294
\(708\) −1458.27 −0.0774085
\(709\) 22424.4 1.18782 0.593911 0.804531i \(-0.297583\pi\)
0.593911 + 0.804531i \(0.297583\pi\)
\(710\) −7137.86 −0.377295
\(711\) 1274.69 0.0672359
\(712\) 4998.17 0.263082
\(713\) 1166.86 0.0612895
\(714\) 4805.14 0.251860
\(715\) −2457.49 −0.128538
\(716\) 8491.92 0.443237
\(717\) 512.986 0.0267194
\(718\) 15552.5 0.808377
\(719\) −12475.8 −0.647107 −0.323553 0.946210i \(-0.604878\pi\)
−0.323553 + 0.946210i \(0.604878\pi\)
\(720\) 4068.97 0.210613
\(721\) 72.2670 0.00373282
\(722\) 57.0409 0.00294023
\(723\) 19964.1 1.02693
\(724\) 10489.7 0.538463
\(725\) −11910.1 −0.610109
\(726\) −1292.84 −0.0660908
\(727\) 35619.7 1.81714 0.908569 0.417734i \(-0.137176\pi\)
0.908569 + 0.417734i \(0.137176\pi\)
\(728\) 3248.33 0.165372
\(729\) 729.000 0.0370370
\(730\) −9920.89 −0.502998
\(731\) −14865.7 −0.752158
\(732\) 5381.61 0.271735
\(733\) −23587.0 −1.18855 −0.594274 0.804263i \(-0.702560\pi\)
−0.594274 + 0.804263i \(0.702560\pi\)
\(734\) 1621.38 0.0815341
\(735\) 835.645 0.0419364
\(736\) 2172.55 0.108806
\(737\) 2852.82 0.142585
\(738\) 6356.10 0.317034
\(739\) 21418.0 1.06613 0.533067 0.846073i \(-0.321039\pi\)
0.533067 + 0.846073i \(0.321039\pi\)
\(740\) −5008.86 −0.248824
\(741\) −9775.81 −0.484647
\(742\) 5050.25 0.249866
\(743\) 25868.0 1.27726 0.638630 0.769514i \(-0.279501\pi\)
0.638630 + 0.769514i \(0.279501\pi\)
\(744\) −3591.91 −0.176997
\(745\) −7019.50 −0.345201
\(746\) −19036.5 −0.934286
\(747\) −1735.62 −0.0850107
\(748\) 3310.69 0.161832
\(749\) 10632.2 0.518682
\(750\) −13221.9 −0.643726
\(751\) −28345.7 −1.37730 −0.688648 0.725096i \(-0.741796\pi\)
−0.688648 + 0.725096i \(0.741796\pi\)
\(752\) 22708.8 1.10120
\(753\) −3058.51 −0.148019
\(754\) −17986.2 −0.868727
\(755\) 6563.40 0.316380
\(756\) −885.400 −0.0425948
\(757\) 5065.33 0.243200 0.121600 0.992579i \(-0.461197\pi\)
0.121600 + 0.992579i \(0.461197\pi\)
\(758\) 34805.0 1.66778
\(759\) −379.750 −0.0181608
\(760\) −5565.56 −0.265637
\(761\) −24301.0 −1.15757 −0.578784 0.815481i \(-0.696473\pi\)
−0.578784 + 0.815481i \(0.696473\pi\)
\(762\) 25631.6 1.21855
\(763\) −11542.5 −0.547662
\(764\) −18552.7 −0.878553
\(765\) 3286.96 0.155347
\(766\) 2926.03 0.138018
\(767\) −4077.88 −0.191973
\(768\) −15629.5 −0.734350
\(769\) −1579.45 −0.0740656 −0.0370328 0.999314i \(-0.511791\pi\)
−0.0370328 + 0.999314i \(0.511791\pi\)
\(770\) 1558.96 0.0729623
\(771\) 20226.9 0.944818
\(772\) −22206.3 −1.03526
\(773\) 7349.54 0.341973 0.170986 0.985273i \(-0.445305\pi\)
0.170986 + 0.985273i \(0.445305\pi\)
\(774\) 7416.85 0.344436
\(775\) 9398.19 0.435604
\(776\) 12940.0 0.598608
\(777\) −3949.81 −0.182366
\(778\) −12937.8 −0.596200
\(779\) −16441.7 −0.756204
\(780\) −3139.77 −0.144131
\(781\) −3878.08 −0.177681
\(782\) 2633.12 0.120409
\(783\) −3469.53 −0.158353
\(784\) −3897.03 −0.177525
\(785\) 16088.6 0.731497
\(786\) −16678.3 −0.756864
\(787\) 6878.56 0.311555 0.155778 0.987792i \(-0.450212\pi\)
0.155778 + 0.987792i \(0.450212\pi\)
\(788\) −24098.7 −1.08944
\(789\) −3847.85 −0.173621
\(790\) −2867.52 −0.129142
\(791\) −1321.17 −0.0593874
\(792\) 1168.97 0.0524463
\(793\) 15049.0 0.673903
\(794\) 17757.2 0.793676
\(795\) 3454.62 0.154117
\(796\) −10456.2 −0.465593
\(797\) 4830.47 0.214685 0.107343 0.994222i \(-0.465766\pi\)
0.107343 + 0.994222i \(0.465766\pi\)
\(798\) 6201.48 0.275100
\(799\) 18344.4 0.812239
\(800\) 17498.2 0.773318
\(801\) −3809.66 −0.168050
\(802\) −19892.6 −0.875851
\(803\) −5390.13 −0.236879
\(804\) 3644.86 0.159881
\(805\) 457.917 0.0200490
\(806\) 14192.9 0.620251
\(807\) 2791.09 0.121749
\(808\) 21033.2 0.915772
\(809\) −44538.0 −1.93557 −0.967783 0.251786i \(-0.918982\pi\)
−0.967783 + 0.251786i \(0.918982\pi\)
\(810\) −1639.94 −0.0711379
\(811\) 40738.9 1.76391 0.881957 0.471329i \(-0.156226\pi\)
0.881957 + 0.471329i \(0.156226\pi\)
\(812\) 4213.88 0.182116
\(813\) −25006.8 −1.07876
\(814\) −7368.67 −0.317287
\(815\) −19433.8 −0.835260
\(816\) −15328.7 −0.657614
\(817\) −19185.6 −0.821564
\(818\) −18902.5 −0.807959
\(819\) −2475.91 −0.105635
\(820\) −5280.69 −0.224890
\(821\) 29805.1 1.26700 0.633498 0.773744i \(-0.281618\pi\)
0.633498 + 0.773744i \(0.281618\pi\)
\(822\) −8778.46 −0.372487
\(823\) 3453.87 0.146287 0.0731435 0.997321i \(-0.476697\pi\)
0.0731435 + 0.997321i \(0.476697\pi\)
\(824\) −121.902 −0.00515369
\(825\) −3058.59 −0.129075
\(826\) 2586.88 0.108970
\(827\) −10258.1 −0.431328 −0.215664 0.976468i \(-0.569192\pi\)
−0.215664 + 0.976468i \(0.569192\pi\)
\(828\) −485.182 −0.0203638
\(829\) 33599.2 1.40766 0.703830 0.710369i \(-0.251472\pi\)
0.703830 + 0.710369i \(0.251472\pi\)
\(830\) 3904.41 0.163282
\(831\) −10480.1 −0.437484
\(832\) 1420.50 0.0591911
\(833\) −3148.06 −0.130941
\(834\) 12377.5 0.513906
\(835\) −8956.16 −0.371186
\(836\) 4272.75 0.176766
\(837\) 2737.79 0.113061
\(838\) 43622.8 1.79824
\(839\) −24363.0 −1.00251 −0.501254 0.865300i \(-0.667128\pi\)
−0.501254 + 0.865300i \(0.667128\pi\)
\(840\) −1409.59 −0.0578992
\(841\) −7876.51 −0.322953
\(842\) −24782.7 −1.01433
\(843\) 3093.75 0.126399
\(844\) −14611.7 −0.595918
\(845\) 3709.21 0.151007
\(846\) −9152.47 −0.371949
\(847\) 847.000 0.0343604
\(848\) −16110.6 −0.652408
\(849\) 7142.13 0.288713
\(850\) 21207.8 0.855788
\(851\) −2164.42 −0.0871859
\(852\) −4954.77 −0.199234
\(853\) 12928.0 0.518928 0.259464 0.965753i \(-0.416454\pi\)
0.259464 + 0.965753i \(0.416454\pi\)
\(854\) −9546.63 −0.382528
\(855\) 4242.13 0.169682
\(856\) −17934.7 −0.716116
\(857\) −40734.2 −1.62363 −0.811817 0.583911i \(-0.801522\pi\)
−0.811817 + 0.583911i \(0.801522\pi\)
\(858\) −4619.00 −0.183788
\(859\) 32796.6 1.30269 0.651343 0.758784i \(-0.274206\pi\)
0.651343 + 0.758784i \(0.274206\pi\)
\(860\) −6161.98 −0.244327
\(861\) −4164.16 −0.164825
\(862\) 22243.8 0.878916
\(863\) −879.506 −0.0346915 −0.0173457 0.999850i \(-0.505522\pi\)
−0.0173457 + 0.999850i \(0.505522\pi\)
\(864\) 5097.40 0.200714
\(865\) −20449.6 −0.803823
\(866\) 28619.7 1.12302
\(867\) 2356.27 0.0922990
\(868\) −3325.16 −0.130027
\(869\) −1557.96 −0.0608172
\(870\) 7804.97 0.304153
\(871\) 10192.4 0.396506
\(872\) 19470.2 0.756127
\(873\) −9863.03 −0.382374
\(874\) 3398.29 0.131520
\(875\) 8662.24 0.334671
\(876\) −6886.62 −0.265613
\(877\) 17607.7 0.677957 0.338978 0.940794i \(-0.389919\pi\)
0.338978 + 0.940794i \(0.389919\pi\)
\(878\) 38377.2 1.47513
\(879\) −21569.9 −0.827685
\(880\) −4973.19 −0.190507
\(881\) −24818.3 −0.949093 −0.474546 0.880230i \(-0.657388\pi\)
−0.474546 + 0.880230i \(0.657388\pi\)
\(882\) 1570.64 0.0599619
\(883\) 18274.6 0.696477 0.348238 0.937406i \(-0.386780\pi\)
0.348238 + 0.937406i \(0.386780\pi\)
\(884\) 11828.2 0.450030
\(885\) 1769.56 0.0672125
\(886\) 12094.4 0.458598
\(887\) −21922.4 −0.829856 −0.414928 0.909854i \(-0.636193\pi\)
−0.414928 + 0.909854i \(0.636193\pi\)
\(888\) 6662.63 0.251783
\(889\) −16792.4 −0.633521
\(890\) 8570.13 0.322777
\(891\) −891.000 −0.0335013
\(892\) −5335.57 −0.200278
\(893\) 23675.2 0.887189
\(894\) −13193.6 −0.493579
\(895\) −10304.6 −0.384856
\(896\) 9671.26 0.360596
\(897\) −1356.75 −0.0505023
\(898\) −37843.5 −1.40630
\(899\) −13029.9 −0.483396
\(900\) −3907.76 −0.144732
\(901\) −13014.4 −0.481211
\(902\) −7768.56 −0.286768
\(903\) −4859.11 −0.179071
\(904\) 2228.58 0.0819928
\(905\) −12728.9 −0.467539
\(906\) 12336.3 0.452369
\(907\) −9704.52 −0.355274 −0.177637 0.984096i \(-0.556845\pi\)
−0.177637 + 0.984096i \(0.556845\pi\)
\(908\) −8221.42 −0.300482
\(909\) −16031.7 −0.584970
\(910\) 5569.76 0.202896
\(911\) 40557.0 1.47499 0.737494 0.675354i \(-0.236009\pi\)
0.737494 + 0.675354i \(0.236009\pi\)
\(912\) −19783.2 −0.718296
\(913\) 2121.31 0.0768951
\(914\) 11361.2 0.411153
\(915\) −6530.38 −0.235943
\(916\) 1425.40 0.0514156
\(917\) 10926.7 0.393491
\(918\) 6178.04 0.222119
\(919\) −10182.1 −0.365482 −0.182741 0.983161i \(-0.558497\pi\)
−0.182741 + 0.983161i \(0.558497\pi\)
\(920\) −772.424 −0.0276805
\(921\) 2417.84 0.0865044
\(922\) 42168.0 1.50621
\(923\) −13855.4 −0.494102
\(924\) 1082.16 0.0385285
\(925\) −17432.7 −0.619658
\(926\) −52878.3 −1.87655
\(927\) 92.9147 0.00329204
\(928\) −24260.0 −0.858162
\(929\) 35454.0 1.25211 0.626053 0.779780i \(-0.284669\pi\)
0.626053 + 0.779780i \(0.284669\pi\)
\(930\) −6158.87 −0.217159
\(931\) −4062.87 −0.143024
\(932\) −18311.1 −0.643562
\(933\) −4579.84 −0.160704
\(934\) −20222.8 −0.708468
\(935\) −4017.40 −0.140516
\(936\) 4176.43 0.145845
\(937\) 35786.9 1.24771 0.623856 0.781539i \(-0.285565\pi\)
0.623856 + 0.781539i \(0.285565\pi\)
\(938\) −6465.76 −0.225069
\(939\) −17096.0 −0.594151
\(940\) 7603.94 0.263844
\(941\) −53299.3 −1.84645 −0.923223 0.384264i \(-0.874455\pi\)
−0.923223 + 0.384264i \(0.874455\pi\)
\(942\) 30239.4 1.04592
\(943\) −2281.88 −0.0787998
\(944\) −8252.34 −0.284524
\(945\) 1074.40 0.0369844
\(946\) −9065.04 −0.311554
\(947\) −2396.55 −0.0822359 −0.0411180 0.999154i \(-0.513092\pi\)
−0.0411180 + 0.999154i \(0.513092\pi\)
\(948\) −1990.50 −0.0681946
\(949\) −19257.6 −0.658722
\(950\) 27370.6 0.934757
\(951\) 12108.9 0.412890
\(952\) 5310.23 0.180783
\(953\) 49723.2 1.69013 0.845064 0.534665i \(-0.179562\pi\)
0.845064 + 0.534665i \(0.179562\pi\)
\(954\) 6493.18 0.220361
\(955\) 22513.0 0.762832
\(956\) −801.055 −0.0271004
\(957\) 4240.53 0.143236
\(958\) 797.875 0.0269083
\(959\) 5751.16 0.193655
\(960\) −616.414 −0.0207236
\(961\) −19509.1 −0.654866
\(962\) −26326.4 −0.882324
\(963\) 13670.0 0.457435
\(964\) −31175.0 −1.04158
\(965\) 26946.6 0.898902
\(966\) 860.682 0.0286666
\(967\) −34465.6 −1.14616 −0.573081 0.819499i \(-0.694252\pi\)
−0.573081 + 0.819499i \(0.694252\pi\)
\(968\) −1428.74 −0.0474395
\(969\) −15981.1 −0.529810
\(970\) 22187.7 0.734436
\(971\) −29569.6 −0.977276 −0.488638 0.872487i \(-0.662506\pi\)
−0.488638 + 0.872487i \(0.662506\pi\)
\(972\) −1138.37 −0.0375651
\(973\) −8109.05 −0.267178
\(974\) −22432.2 −0.737960
\(975\) −10927.6 −0.358936
\(976\) 30454.4 0.998794
\(977\) 49863.2 1.63282 0.816411 0.577472i \(-0.195961\pi\)
0.816411 + 0.577472i \(0.195961\pi\)
\(978\) −36527.0 −1.19428
\(979\) 4656.25 0.152007
\(980\) −1304.90 −0.0425343
\(981\) −14840.4 −0.482993
\(982\) 28397.2 0.922800
\(983\) 45383.3 1.47254 0.736268 0.676690i \(-0.236586\pi\)
0.736268 + 0.676690i \(0.236586\pi\)
\(984\) 7024.21 0.227565
\(985\) 29242.9 0.945946
\(986\) −29403.1 −0.949681
\(987\) 5996.20 0.193375
\(988\) 15265.4 0.491557
\(989\) −2662.70 −0.0856105
\(990\) 2004.37 0.0643467
\(991\) −54822.7 −1.75732 −0.878658 0.477451i \(-0.841561\pi\)
−0.878658 + 0.477451i \(0.841561\pi\)
\(992\) 19143.5 0.612708
\(993\) −7999.44 −0.255644
\(994\) 8789.45 0.280467
\(995\) 12688.3 0.404266
\(996\) 2710.26 0.0862228
\(997\) 29649.9 0.941849 0.470924 0.882174i \(-0.343920\pi\)
0.470924 + 0.882174i \(0.343920\pi\)
\(998\) −55270.6 −1.75307
\(999\) −5078.33 −0.160832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.h.1.2 2
3.2 odd 2 693.4.a.g.1.1 2
7.6 odd 2 1617.4.a.m.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.h.1.2 2 1.1 even 1 trivial
693.4.a.g.1.1 2 3.2 odd 2
1617.4.a.m.1.2 2 7.6 odd 2