Properties

Label 231.4.a.h.1.1
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.561553 q^{2} -3.00000 q^{3} -7.68466 q^{4} +6.68466 q^{5} +1.68466 q^{6} +7.00000 q^{7} +8.80776 q^{8} +9.00000 q^{9} -3.75379 q^{10} -11.0000 q^{11} +23.0540 q^{12} +14.3002 q^{13} -3.93087 q^{14} -20.0540 q^{15} +56.5312 q^{16} -47.7538 q^{17} -5.05398 q^{18} +11.9157 q^{19} -51.3693 q^{20} -21.0000 q^{21} +6.17708 q^{22} -44.4924 q^{23} -26.4233 q^{24} -80.3153 q^{25} -8.03031 q^{26} -27.0000 q^{27} -53.7926 q^{28} -139.501 q^{29} +11.2614 q^{30} -208.600 q^{31} -102.207 q^{32} +33.0000 q^{33} +26.8163 q^{34} +46.7926 q^{35} -69.1619 q^{36} -253.086 q^{37} -6.69130 q^{38} -42.9006 q^{39} +58.8769 q^{40} -156.294 q^{41} +11.7926 q^{42} -263.386 q^{43} +84.5312 q^{44} +60.1619 q^{45} +24.9848 q^{46} +386.533 q^{47} -169.594 q^{48} +49.0000 q^{49} +45.1013 q^{50} +143.261 q^{51} -109.892 q^{52} -36.5701 q^{53} +15.1619 q^{54} -73.5312 q^{55} +61.6543 q^{56} -35.7471 q^{57} +78.3371 q^{58} -114.762 q^{59} +154.108 q^{60} -53.0758 q^{61} +117.140 q^{62} +63.0000 q^{63} -394.855 q^{64} +95.5919 q^{65} -18.5312 q^{66} +132.348 q^{67} +366.972 q^{68} +133.477 q^{69} -26.2765 q^{70} +583.447 q^{71} +79.2699 q^{72} -817.012 q^{73} +142.121 q^{74} +240.946 q^{75} -91.5682 q^{76} -77.0000 q^{77} +24.0909 q^{78} -369.633 q^{79} +377.892 q^{80} +81.0000 q^{81} +87.7671 q^{82} -69.1534 q^{83} +161.378 q^{84} -319.218 q^{85} +147.905 q^{86} +418.503 q^{87} -96.8854 q^{88} +467.295 q^{89} -33.7841 q^{90} +100.101 q^{91} +341.909 q^{92} +625.801 q^{93} -217.059 q^{94} +79.6525 q^{95} +306.622 q^{96} -1170.11 q^{97} -27.5161 q^{98} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 6 q^{3} - 3 q^{4} + q^{5} - 9 q^{6} + 14 q^{7} - 3 q^{8} + 18 q^{9} - 24 q^{10} - 22 q^{11} + 9 q^{12} - 25 q^{13} + 21 q^{14} - 3 q^{15} - 23 q^{16} - 112 q^{17} + 27 q^{18} - 71 q^{19}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.561553 −0.198539 −0.0992695 0.995061i \(-0.531651\pi\)
−0.0992695 + 0.995061i \(0.531651\pi\)
\(3\) −3.00000 −0.577350
\(4\) −7.68466 −0.960582
\(5\) 6.68466 0.597894 0.298947 0.954270i \(-0.403365\pi\)
0.298947 + 0.954270i \(0.403365\pi\)
\(6\) 1.68466 0.114626
\(7\) 7.00000 0.377964
\(8\) 8.80776 0.389252
\(9\) 9.00000 0.333333
\(10\) −3.75379 −0.118705
\(11\) −11.0000 −0.301511
\(12\) 23.0540 0.554592
\(13\) 14.3002 0.305089 0.152545 0.988297i \(-0.451253\pi\)
0.152545 + 0.988297i \(0.451253\pi\)
\(14\) −3.93087 −0.0750407
\(15\) −20.0540 −0.345194
\(16\) 56.5312 0.883301
\(17\) −47.7538 −0.681294 −0.340647 0.940191i \(-0.610646\pi\)
−0.340647 + 0.940191i \(0.610646\pi\)
\(18\) −5.05398 −0.0661796
\(19\) 11.9157 0.143876 0.0719382 0.997409i \(-0.477082\pi\)
0.0719382 + 0.997409i \(0.477082\pi\)
\(20\) −51.3693 −0.574326
\(21\) −21.0000 −0.218218
\(22\) 6.17708 0.0598617
\(23\) −44.4924 −0.403361 −0.201681 0.979451i \(-0.564640\pi\)
−0.201681 + 0.979451i \(0.564640\pi\)
\(24\) −26.4233 −0.224735
\(25\) −80.3153 −0.642523
\(26\) −8.03031 −0.0605721
\(27\) −27.0000 −0.192450
\(28\) −53.7926 −0.363066
\(29\) −139.501 −0.893265 −0.446632 0.894718i \(-0.647377\pi\)
−0.446632 + 0.894718i \(0.647377\pi\)
\(30\) 11.2614 0.0685345
\(31\) −208.600 −1.20857 −0.604286 0.796767i \(-0.706542\pi\)
−0.604286 + 0.796767i \(0.706542\pi\)
\(32\) −102.207 −0.564621
\(33\) 33.0000 0.174078
\(34\) 26.8163 0.135263
\(35\) 46.7926 0.225983
\(36\) −69.1619 −0.320194
\(37\) −253.086 −1.12452 −0.562258 0.826962i \(-0.690067\pi\)
−0.562258 + 0.826962i \(0.690067\pi\)
\(38\) −6.69130 −0.0285651
\(39\) −42.9006 −0.176143
\(40\) 58.8769 0.232731
\(41\) −156.294 −0.595340 −0.297670 0.954669i \(-0.596210\pi\)
−0.297670 + 0.954669i \(0.596210\pi\)
\(42\) 11.7926 0.0433247
\(43\) −263.386 −0.934094 −0.467047 0.884233i \(-0.654682\pi\)
−0.467047 + 0.884233i \(0.654682\pi\)
\(44\) 84.5312 0.289626
\(45\) 60.1619 0.199298
\(46\) 24.9848 0.0800829
\(47\) 386.533 1.19961 0.599805 0.800146i \(-0.295245\pi\)
0.599805 + 0.800146i \(0.295245\pi\)
\(48\) −169.594 −0.509974
\(49\) 49.0000 0.142857
\(50\) 45.1013 0.127566
\(51\) 143.261 0.393345
\(52\) −109.892 −0.293063
\(53\) −36.5701 −0.0947790 −0.0473895 0.998876i \(-0.515090\pi\)
−0.0473895 + 0.998876i \(0.515090\pi\)
\(54\) 15.1619 0.0382088
\(55\) −73.5312 −0.180272
\(56\) 61.6543 0.147123
\(57\) −35.7471 −0.0830671
\(58\) 78.3371 0.177348
\(59\) −114.762 −0.253234 −0.126617 0.991952i \(-0.540412\pi\)
−0.126617 + 0.991952i \(0.540412\pi\)
\(60\) 154.108 0.331588
\(61\) −53.0758 −0.111404 −0.0557021 0.998447i \(-0.517740\pi\)
−0.0557021 + 0.998447i \(0.517740\pi\)
\(62\) 117.140 0.239949
\(63\) 63.0000 0.125988
\(64\) −394.855 −0.771201
\(65\) 95.5919 0.182411
\(66\) −18.5312 −0.0345612
\(67\) 132.348 0.241326 0.120663 0.992694i \(-0.461498\pi\)
0.120663 + 0.992694i \(0.461498\pi\)
\(68\) 366.972 0.654439
\(69\) 133.477 0.232881
\(70\) −26.2765 −0.0448664
\(71\) 583.447 0.975245 0.487623 0.873055i \(-0.337864\pi\)
0.487623 + 0.873055i \(0.337864\pi\)
\(72\) 79.2699 0.129751
\(73\) −817.012 −1.30992 −0.654959 0.755664i \(-0.727314\pi\)
−0.654959 + 0.755664i \(0.727314\pi\)
\(74\) 142.121 0.223260
\(75\) 240.946 0.370961
\(76\) −91.5682 −0.138205
\(77\) −77.0000 −0.113961
\(78\) 24.0909 0.0349713
\(79\) −369.633 −0.526417 −0.263208 0.964739i \(-0.584781\pi\)
−0.263208 + 0.964739i \(0.584781\pi\)
\(80\) 377.892 0.528120
\(81\) 81.0000 0.111111
\(82\) 87.7671 0.118198
\(83\) −69.1534 −0.0914527 −0.0457263 0.998954i \(-0.514560\pi\)
−0.0457263 + 0.998954i \(0.514560\pi\)
\(84\) 161.378 0.209616
\(85\) −319.218 −0.407342
\(86\) 147.905 0.185454
\(87\) 418.503 0.515727
\(88\) −96.8854 −0.117364
\(89\) 467.295 0.556553 0.278276 0.960501i \(-0.410237\pi\)
0.278276 + 0.960501i \(0.410237\pi\)
\(90\) −33.7841 −0.0395684
\(91\) 100.101 0.115313
\(92\) 341.909 0.387462
\(93\) 625.801 0.697769
\(94\) −217.059 −0.238169
\(95\) 79.6525 0.0860229
\(96\) 306.622 0.325984
\(97\) −1170.11 −1.22481 −0.612404 0.790545i \(-0.709798\pi\)
−0.612404 + 0.790545i \(0.709798\pi\)
\(98\) −27.5161 −0.0283627
\(99\) −99.0000 −0.100504
\(100\) 617.196 0.617196
\(101\) 181.299 0.178613 0.0893066 0.996004i \(-0.471535\pi\)
0.0893066 + 0.996004i \(0.471535\pi\)
\(102\) −80.4488 −0.0780943
\(103\) −212.324 −0.203115 −0.101558 0.994830i \(-0.532383\pi\)
−0.101558 + 0.994830i \(0.532383\pi\)
\(104\) 125.953 0.118756
\(105\) −140.378 −0.130471
\(106\) 20.5360 0.0188173
\(107\) 220.111 0.198868 0.0994342 0.995044i \(-0.468297\pi\)
0.0994342 + 0.995044i \(0.468297\pi\)
\(108\) 207.486 0.184864
\(109\) −247.072 −0.217112 −0.108556 0.994090i \(-0.534623\pi\)
−0.108556 + 0.994090i \(0.534623\pi\)
\(110\) 41.2917 0.0357910
\(111\) 759.258 0.649240
\(112\) 395.719 0.333856
\(113\) −139.261 −0.115935 −0.0579673 0.998318i \(-0.518462\pi\)
−0.0579673 + 0.998318i \(0.518462\pi\)
\(114\) 20.0739 0.0164921
\(115\) −297.417 −0.241167
\(116\) 1072.02 0.858054
\(117\) 128.702 0.101696
\(118\) 64.4451 0.0502767
\(119\) −334.277 −0.257505
\(120\) −176.631 −0.134368
\(121\) 121.000 0.0909091
\(122\) 29.8049 0.0221181
\(123\) 468.881 0.343720
\(124\) 1603.02 1.16093
\(125\) −1372.46 −0.982055
\(126\) −35.3778 −0.0250136
\(127\) 676.918 0.472967 0.236483 0.971636i \(-0.424005\pi\)
0.236483 + 0.971636i \(0.424005\pi\)
\(128\) 1039.39 0.717735
\(129\) 790.159 0.539299
\(130\) −53.6799 −0.0362157
\(131\) 291.042 0.194110 0.0970551 0.995279i \(-0.469058\pi\)
0.0970551 + 0.995279i \(0.469058\pi\)
\(132\) −253.594 −0.167216
\(133\) 83.4100 0.0543802
\(134\) −74.3201 −0.0479125
\(135\) −180.486 −0.115065
\(136\) −420.604 −0.265195
\(137\) 2322.41 1.44830 0.724148 0.689645i \(-0.242233\pi\)
0.724148 + 0.689645i \(0.242233\pi\)
\(138\) −74.9545 −0.0462359
\(139\) 210.436 0.128409 0.0642047 0.997937i \(-0.479549\pi\)
0.0642047 + 0.997937i \(0.479549\pi\)
\(140\) −359.585 −0.217075
\(141\) −1159.60 −0.692595
\(142\) −327.636 −0.193624
\(143\) −157.302 −0.0919878
\(144\) 508.781 0.294434
\(145\) −932.516 −0.534078
\(146\) 458.796 0.260070
\(147\) −147.000 −0.0824786
\(148\) 1944.88 1.08019
\(149\) −929.815 −0.511231 −0.255616 0.966779i \(-0.582278\pi\)
−0.255616 + 0.966779i \(0.582278\pi\)
\(150\) −135.304 −0.0736501
\(151\) 2300.58 1.23986 0.619929 0.784658i \(-0.287161\pi\)
0.619929 + 0.784658i \(0.287161\pi\)
\(152\) 104.951 0.0560042
\(153\) −429.784 −0.227098
\(154\) 43.2396 0.0226256
\(155\) −1394.42 −0.722598
\(156\) 329.676 0.169200
\(157\) −1947.83 −0.990150 −0.495075 0.868850i \(-0.664859\pi\)
−0.495075 + 0.868850i \(0.664859\pi\)
\(158\) 207.568 0.104514
\(159\) 109.710 0.0547207
\(160\) −683.221 −0.337584
\(161\) −311.447 −0.152456
\(162\) −45.4858 −0.0220599
\(163\) −2753.64 −1.32320 −0.661601 0.749856i \(-0.730123\pi\)
−0.661601 + 0.749856i \(0.730123\pi\)
\(164\) 1201.06 0.571873
\(165\) 220.594 0.104080
\(166\) 38.8333 0.0181569
\(167\) −3883.50 −1.79948 −0.899742 0.436422i \(-0.856246\pi\)
−0.899742 + 0.436422i \(0.856246\pi\)
\(168\) −184.963 −0.0849417
\(169\) −1992.50 −0.906921
\(170\) 179.258 0.0808731
\(171\) 107.241 0.0479588
\(172\) 2024.03 0.897274
\(173\) −3123.33 −1.37262 −0.686308 0.727311i \(-0.740770\pi\)
−0.686308 + 0.727311i \(0.740770\pi\)
\(174\) −235.011 −0.102392
\(175\) −562.207 −0.242851
\(176\) −621.844 −0.266325
\(177\) 344.287 0.146204
\(178\) −262.411 −0.110497
\(179\) 1631.29 0.681165 0.340582 0.940215i \(-0.389376\pi\)
0.340582 + 0.940215i \(0.389376\pi\)
\(180\) −462.324 −0.191442
\(181\) −853.165 −0.350360 −0.175180 0.984536i \(-0.556051\pi\)
−0.175180 + 0.984536i \(0.556051\pi\)
\(182\) −56.2122 −0.0228941
\(183\) 159.227 0.0643192
\(184\) −391.879 −0.157009
\(185\) −1691.79 −0.672342
\(186\) −351.420 −0.138534
\(187\) 525.292 0.205418
\(188\) −2970.37 −1.15232
\(189\) −189.000 −0.0727393
\(190\) −44.7291 −0.0170789
\(191\) 2826.32 1.07071 0.535354 0.844628i \(-0.320178\pi\)
0.535354 + 0.844628i \(0.320178\pi\)
\(192\) 1184.57 0.445253
\(193\) 2442.22 0.910856 0.455428 0.890273i \(-0.349486\pi\)
0.455428 + 0.890273i \(0.349486\pi\)
\(194\) 657.077 0.243172
\(195\) −286.776 −0.105315
\(196\) −376.548 −0.137226
\(197\) 2772.18 1.00259 0.501294 0.865277i \(-0.332858\pi\)
0.501294 + 0.865277i \(0.332858\pi\)
\(198\) 55.5937 0.0199539
\(199\) −5579.98 −1.98771 −0.993855 0.110688i \(-0.964694\pi\)
−0.993855 + 0.110688i \(0.964694\pi\)
\(200\) −707.399 −0.250103
\(201\) −397.043 −0.139329
\(202\) −101.809 −0.0354617
\(203\) −976.507 −0.337622
\(204\) −1100.91 −0.377840
\(205\) −1044.77 −0.355950
\(206\) 119.231 0.0403263
\(207\) −400.432 −0.134454
\(208\) 808.407 0.269485
\(209\) −131.073 −0.0433804
\(210\) 78.8296 0.0259036
\(211\) 1573.05 0.513237 0.256619 0.966513i \(-0.417392\pi\)
0.256619 + 0.966513i \(0.417392\pi\)
\(212\) 281.028 0.0910430
\(213\) −1750.34 −0.563058
\(214\) −123.604 −0.0394831
\(215\) −1760.65 −0.558489
\(216\) −237.810 −0.0749116
\(217\) −1460.20 −0.456797
\(218\) 138.744 0.0431052
\(219\) 2451.04 0.756282
\(220\) 565.062 0.173166
\(221\) −682.888 −0.207855
\(222\) −426.364 −0.128899
\(223\) 732.945 0.220097 0.110048 0.993926i \(-0.464899\pi\)
0.110048 + 0.993926i \(0.464899\pi\)
\(224\) −715.452 −0.213407
\(225\) −722.838 −0.214174
\(226\) 78.2026 0.0230175
\(227\) 6548.97 1.91485 0.957423 0.288687i \(-0.0932188\pi\)
0.957423 + 0.288687i \(0.0932188\pi\)
\(228\) 274.705 0.0797928
\(229\) −2326.27 −0.671285 −0.335643 0.941989i \(-0.608953\pi\)
−0.335643 + 0.941989i \(0.608953\pi\)
\(230\) 167.015 0.0478811
\(231\) 231.000 0.0657952
\(232\) −1228.69 −0.347705
\(233\) −3859.26 −1.08510 −0.542551 0.840023i \(-0.682541\pi\)
−0.542551 + 0.840023i \(0.682541\pi\)
\(234\) −72.2728 −0.0201907
\(235\) 2583.84 0.717239
\(236\) 881.909 0.243252
\(237\) 1108.90 0.303927
\(238\) 187.714 0.0511247
\(239\) −3688.00 −0.998147 −0.499074 0.866560i \(-0.666326\pi\)
−0.499074 + 0.866560i \(0.666326\pi\)
\(240\) −1133.68 −0.304910
\(241\) −1818.30 −0.486004 −0.243002 0.970026i \(-0.578132\pi\)
−0.243002 + 0.970026i \(0.578132\pi\)
\(242\) −67.9479 −0.0180490
\(243\) −243.000 −0.0641500
\(244\) 407.869 0.107013
\(245\) 327.548 0.0854134
\(246\) −263.301 −0.0682418
\(247\) 170.397 0.0438951
\(248\) −1837.30 −0.470439
\(249\) 207.460 0.0528002
\(250\) 770.710 0.194976
\(251\) 215.497 0.0541915 0.0270957 0.999633i \(-0.491374\pi\)
0.0270957 + 0.999633i \(0.491374\pi\)
\(252\) −484.133 −0.121022
\(253\) 489.417 0.121618
\(254\) −380.125 −0.0939023
\(255\) 957.653 0.235179
\(256\) 2575.17 0.628703
\(257\) 4699.31 1.14060 0.570301 0.821436i \(-0.306826\pi\)
0.570301 + 0.821436i \(0.306826\pi\)
\(258\) −443.716 −0.107072
\(259\) −1771.60 −0.425027
\(260\) −734.591 −0.175221
\(261\) −1255.51 −0.297755
\(262\) −163.435 −0.0385384
\(263\) 7504.38 1.75947 0.879734 0.475466i \(-0.157721\pi\)
0.879734 + 0.475466i \(0.157721\pi\)
\(264\) 290.656 0.0677601
\(265\) −244.458 −0.0566678
\(266\) −46.8391 −0.0107966
\(267\) −1401.89 −0.321326
\(268\) −1017.05 −0.231813
\(269\) −2513.64 −0.569736 −0.284868 0.958567i \(-0.591950\pi\)
−0.284868 + 0.958567i \(0.591950\pi\)
\(270\) 101.352 0.0228448
\(271\) 6385.39 1.43131 0.715654 0.698455i \(-0.246129\pi\)
0.715654 + 0.698455i \(0.246129\pi\)
\(272\) −2699.58 −0.601787
\(273\) −300.304 −0.0665759
\(274\) −1304.15 −0.287543
\(275\) 883.469 0.193728
\(276\) −1025.73 −0.223701
\(277\) 120.650 0.0261702 0.0130851 0.999914i \(-0.495835\pi\)
0.0130851 + 0.999914i \(0.495835\pi\)
\(278\) −118.171 −0.0254943
\(279\) −1877.40 −0.402857
\(280\) 412.138 0.0879642
\(281\) −2387.75 −0.506908 −0.253454 0.967347i \(-0.581567\pi\)
−0.253454 + 0.967347i \(0.581567\pi\)
\(282\) 651.176 0.137507
\(283\) 781.711 0.164198 0.0820988 0.996624i \(-0.473838\pi\)
0.0820988 + 0.996624i \(0.473838\pi\)
\(284\) −4483.59 −0.936803
\(285\) −238.957 −0.0496653
\(286\) 88.3334 0.0182632
\(287\) −1094.05 −0.225017
\(288\) −919.867 −0.188207
\(289\) −2632.58 −0.535839
\(290\) 523.657 0.106035
\(291\) 3510.32 0.707144
\(292\) 6278.46 1.25828
\(293\) 2168.03 0.432278 0.216139 0.976363i \(-0.430653\pi\)
0.216139 + 0.976363i \(0.430653\pi\)
\(294\) 82.5483 0.0163752
\(295\) −767.147 −0.151407
\(296\) −2229.12 −0.437720
\(297\) 297.000 0.0580259
\(298\) 522.140 0.101499
\(299\) −636.250 −0.123061
\(300\) −1851.59 −0.356338
\(301\) −1843.70 −0.353054
\(302\) −1291.90 −0.246160
\(303\) −543.897 −0.103122
\(304\) 673.610 0.127086
\(305\) −354.793 −0.0666079
\(306\) 241.346 0.0450878
\(307\) 10309.9 1.91668 0.958338 0.285636i \(-0.0922047\pi\)
0.958338 + 0.285636i \(0.0922047\pi\)
\(308\) 591.719 0.109469
\(309\) 636.972 0.117269
\(310\) 783.042 0.143464
\(311\) −6686.61 −1.21917 −0.609587 0.792719i \(-0.708665\pi\)
−0.609587 + 0.792719i \(0.708665\pi\)
\(312\) −377.858 −0.0685641
\(313\) 6457.33 1.16610 0.583051 0.812436i \(-0.301859\pi\)
0.583051 + 0.812436i \(0.301859\pi\)
\(314\) 1093.81 0.196583
\(315\) 421.133 0.0753276
\(316\) 2840.50 0.505666
\(317\) 7170.30 1.27042 0.635212 0.772338i \(-0.280913\pi\)
0.635212 + 0.772338i \(0.280913\pi\)
\(318\) −61.6081 −0.0108642
\(319\) 1534.51 0.269329
\(320\) −2639.47 −0.461097
\(321\) −660.333 −0.114817
\(322\) 174.894 0.0302685
\(323\) −569.021 −0.0980221
\(324\) −622.457 −0.106731
\(325\) −1148.52 −0.196027
\(326\) 1546.32 0.262707
\(327\) 741.216 0.125350
\(328\) −1376.60 −0.231737
\(329\) 2705.73 0.453410
\(330\) −123.875 −0.0206639
\(331\) 5849.52 0.971355 0.485678 0.874138i \(-0.338573\pi\)
0.485678 + 0.874138i \(0.338573\pi\)
\(332\) 531.420 0.0878478
\(333\) −2277.78 −0.374839
\(334\) 2180.79 0.357268
\(335\) 884.698 0.144287
\(336\) −1187.16 −0.192752
\(337\) 9784.35 1.58157 0.790783 0.612097i \(-0.209674\pi\)
0.790783 + 0.612097i \(0.209674\pi\)
\(338\) 1118.90 0.180059
\(339\) 417.784 0.0669349
\(340\) 2453.08 0.391285
\(341\) 2294.60 0.364398
\(342\) −60.2217 −0.00952169
\(343\) 343.000 0.0539949
\(344\) −2319.84 −0.363598
\(345\) 892.250 0.139238
\(346\) 1753.92 0.272518
\(347\) 9431.05 1.45904 0.729518 0.683962i \(-0.239745\pi\)
0.729518 + 0.683962i \(0.239745\pi\)
\(348\) −3216.05 −0.495398
\(349\) 3933.02 0.603238 0.301619 0.953429i \(-0.402473\pi\)
0.301619 + 0.953429i \(0.402473\pi\)
\(350\) 315.709 0.0482153
\(351\) −386.105 −0.0587144
\(352\) 1124.28 0.170240
\(353\) −6544.48 −0.986764 −0.493382 0.869813i \(-0.664240\pi\)
−0.493382 + 0.869813i \(0.664240\pi\)
\(354\) −193.335 −0.0290273
\(355\) 3900.14 0.583093
\(356\) −3591.01 −0.534615
\(357\) 1002.83 0.148671
\(358\) −916.056 −0.135238
\(359\) 11013.2 1.61910 0.809548 0.587053i \(-0.199712\pi\)
0.809548 + 0.587053i \(0.199712\pi\)
\(360\) 529.892 0.0775771
\(361\) −6717.02 −0.979300
\(362\) 479.097 0.0695602
\(363\) −363.000 −0.0524864
\(364\) −769.244 −0.110767
\(365\) −5461.45 −0.783192
\(366\) −89.4146 −0.0127699
\(367\) −7733.24 −1.09992 −0.549962 0.835190i \(-0.685358\pi\)
−0.549962 + 0.835190i \(0.685358\pi\)
\(368\) −2515.21 −0.356289
\(369\) −1406.64 −0.198447
\(370\) 950.032 0.133486
\(371\) −255.990 −0.0358231
\(372\) −4809.07 −0.670265
\(373\) 2225.01 0.308865 0.154433 0.988003i \(-0.450645\pi\)
0.154433 + 0.988003i \(0.450645\pi\)
\(374\) −294.979 −0.0407834
\(375\) 4117.39 0.566989
\(376\) 3404.49 0.466950
\(377\) −1994.89 −0.272525
\(378\) 106.133 0.0144416
\(379\) −1141.43 −0.154700 −0.0773500 0.997004i \(-0.524646\pi\)
−0.0773500 + 0.997004i \(0.524646\pi\)
\(380\) −612.102 −0.0826320
\(381\) −2030.76 −0.273068
\(382\) −1587.13 −0.212577
\(383\) −5445.56 −0.726515 −0.363257 0.931689i \(-0.618335\pi\)
−0.363257 + 0.931689i \(0.618335\pi\)
\(384\) −3118.17 −0.414384
\(385\) −514.719 −0.0681363
\(386\) −1371.44 −0.180840
\(387\) −2370.48 −0.311365
\(388\) 8991.88 1.17653
\(389\) 7194.64 0.937745 0.468872 0.883266i \(-0.344660\pi\)
0.468872 + 0.883266i \(0.344660\pi\)
\(390\) 161.040 0.0209091
\(391\) 2124.68 0.274808
\(392\) 431.580 0.0556074
\(393\) −873.125 −0.112070
\(394\) −1556.73 −0.199053
\(395\) −2470.87 −0.314741
\(396\) 760.781 0.0965422
\(397\) 846.201 0.106976 0.0534882 0.998568i \(-0.482966\pi\)
0.0534882 + 0.998568i \(0.482966\pi\)
\(398\) 3133.45 0.394638
\(399\) −250.230 −0.0313964
\(400\) −4540.33 −0.567541
\(401\) 4219.37 0.525450 0.262725 0.964871i \(-0.415379\pi\)
0.262725 + 0.964871i \(0.415379\pi\)
\(402\) 222.960 0.0276623
\(403\) −2983.02 −0.368722
\(404\) −1393.22 −0.171573
\(405\) 541.457 0.0664327
\(406\) 548.360 0.0670312
\(407\) 2783.95 0.339054
\(408\) 1261.81 0.153110
\(409\) −8028.62 −0.970636 −0.485318 0.874338i \(-0.661296\pi\)
−0.485318 + 0.874338i \(0.661296\pi\)
\(410\) 586.693 0.0706700
\(411\) −6967.22 −0.836174
\(412\) 1631.64 0.195109
\(413\) −803.336 −0.0957133
\(414\) 224.864 0.0266943
\(415\) −462.267 −0.0546790
\(416\) −1461.58 −0.172260
\(417\) −631.307 −0.0741372
\(418\) 73.6043 0.00861269
\(419\) −11381.3 −1.32699 −0.663497 0.748179i \(-0.730929\pi\)
−0.663497 + 0.748179i \(0.730929\pi\)
\(420\) 1078.76 0.125328
\(421\) −2476.59 −0.286702 −0.143351 0.989672i \(-0.545788\pi\)
−0.143351 + 0.989672i \(0.545788\pi\)
\(422\) −883.349 −0.101898
\(423\) 3478.80 0.399870
\(424\) −322.100 −0.0368929
\(425\) 3835.36 0.437747
\(426\) 982.909 0.111789
\(427\) −371.530 −0.0421068
\(428\) −1691.48 −0.191029
\(429\) 471.906 0.0531092
\(430\) 988.697 0.110882
\(431\) −9698.52 −1.08390 −0.541951 0.840410i \(-0.682314\pi\)
−0.541951 + 0.840410i \(0.682314\pi\)
\(432\) −1526.34 −0.169991
\(433\) −14385.7 −1.59661 −0.798307 0.602251i \(-0.794271\pi\)
−0.798307 + 0.602251i \(0.794271\pi\)
\(434\) 819.981 0.0906920
\(435\) 2797.55 0.308350
\(436\) 1898.66 0.208554
\(437\) −530.159 −0.0580342
\(438\) −1376.39 −0.150151
\(439\) −806.402 −0.0876708 −0.0438354 0.999039i \(-0.513958\pi\)
−0.0438354 + 0.999039i \(0.513958\pi\)
\(440\) −647.646 −0.0701711
\(441\) 441.000 0.0476190
\(442\) 383.478 0.0412674
\(443\) 4748.19 0.509240 0.254620 0.967041i \(-0.418050\pi\)
0.254620 + 0.967041i \(0.418050\pi\)
\(444\) −5834.64 −0.623648
\(445\) 3123.71 0.332760
\(446\) −411.587 −0.0436978
\(447\) 2789.45 0.295159
\(448\) −2763.99 −0.291487
\(449\) −7104.43 −0.746724 −0.373362 0.927686i \(-0.621795\pi\)
−0.373362 + 0.927686i \(0.621795\pi\)
\(450\) 405.912 0.0425219
\(451\) 1719.23 0.179502
\(452\) 1070.18 0.111365
\(453\) −6901.74 −0.715833
\(454\) −3677.59 −0.380172
\(455\) 669.143 0.0689449
\(456\) −314.852 −0.0323340
\(457\) 4600.05 0.470856 0.235428 0.971892i \(-0.424351\pi\)
0.235428 + 0.971892i \(0.424351\pi\)
\(458\) 1306.32 0.133276
\(459\) 1289.35 0.131115
\(460\) 2285.55 0.231661
\(461\) 7098.21 0.717130 0.358565 0.933505i \(-0.383266\pi\)
0.358565 + 0.933505i \(0.383266\pi\)
\(462\) −129.719 −0.0130629
\(463\) 10036.0 1.00737 0.503684 0.863888i \(-0.331978\pi\)
0.503684 + 0.863888i \(0.331978\pi\)
\(464\) −7886.16 −0.789021
\(465\) 4183.27 0.417192
\(466\) 2167.18 0.215435
\(467\) 255.074 0.0252750 0.0126375 0.999920i \(-0.495977\pi\)
0.0126375 + 0.999920i \(0.495977\pi\)
\(468\) −989.028 −0.0976877
\(469\) 926.433 0.0912125
\(470\) −1450.96 −0.142400
\(471\) 5843.48 0.571663
\(472\) −1010.80 −0.0985716
\(473\) 2897.25 0.281640
\(474\) −622.705 −0.0603413
\(475\) −957.015 −0.0924439
\(476\) 2568.80 0.247355
\(477\) −329.131 −0.0315930
\(478\) 2071.01 0.198171
\(479\) −2390.02 −0.227981 −0.113991 0.993482i \(-0.536363\pi\)
−0.113991 + 0.993482i \(0.536363\pi\)
\(480\) 2049.66 0.194904
\(481\) −3619.18 −0.343078
\(482\) 1021.07 0.0964907
\(483\) 934.341 0.0880207
\(484\) −929.844 −0.0873257
\(485\) −7821.77 −0.732306
\(486\) 136.457 0.0127363
\(487\) −16853.6 −1.56819 −0.784095 0.620641i \(-0.786872\pi\)
−0.784095 + 0.620641i \(0.786872\pi\)
\(488\) −467.479 −0.0433643
\(489\) 8260.93 0.763952
\(490\) −183.936 −0.0169579
\(491\) 16965.7 1.55938 0.779688 0.626168i \(-0.215378\pi\)
0.779688 + 0.626168i \(0.215378\pi\)
\(492\) −3603.19 −0.330171
\(493\) 6661.70 0.608576
\(494\) −95.6869 −0.00871489
\(495\) −661.781 −0.0600906
\(496\) −11792.4 −1.06753
\(497\) 4084.13 0.368608
\(498\) −116.500 −0.0104829
\(499\) −18186.3 −1.63153 −0.815763 0.578386i \(-0.803683\pi\)
−0.815763 + 0.578386i \(0.803683\pi\)
\(500\) 10546.9 0.943344
\(501\) 11650.5 1.03893
\(502\) −121.013 −0.0107591
\(503\) −484.954 −0.0429881 −0.0214941 0.999769i \(-0.506842\pi\)
−0.0214941 + 0.999769i \(0.506842\pi\)
\(504\) 554.889 0.0490411
\(505\) 1211.92 0.106792
\(506\) −274.833 −0.0241459
\(507\) 5977.51 0.523611
\(508\) −5201.89 −0.454324
\(509\) −7573.95 −0.659547 −0.329773 0.944060i \(-0.606972\pi\)
−0.329773 + 0.944060i \(0.606972\pi\)
\(510\) −537.773 −0.0466921
\(511\) −5719.09 −0.495103
\(512\) −9761.22 −0.842557
\(513\) −321.724 −0.0276890
\(514\) −2638.91 −0.226454
\(515\) −1419.31 −0.121442
\(516\) −6072.10 −0.518041
\(517\) −4251.86 −0.361696
\(518\) 994.849 0.0843844
\(519\) 9369.99 0.792480
\(520\) 841.951 0.0710038
\(521\) −8619.11 −0.724779 −0.362390 0.932027i \(-0.618039\pi\)
−0.362390 + 0.932027i \(0.618039\pi\)
\(522\) 705.034 0.0591159
\(523\) 10682.2 0.893116 0.446558 0.894755i \(-0.352650\pi\)
0.446558 + 0.894755i \(0.352650\pi\)
\(524\) −2236.56 −0.186459
\(525\) 1686.62 0.140210
\(526\) −4214.11 −0.349323
\(527\) 9961.46 0.823393
\(528\) 1865.53 0.153763
\(529\) −10187.4 −0.837300
\(530\) 137.276 0.0112508
\(531\) −1032.86 −0.0844112
\(532\) −640.977 −0.0522366
\(533\) −2235.03 −0.181632
\(534\) 787.233 0.0637957
\(535\) 1471.37 0.118902
\(536\) 1165.69 0.0939365
\(537\) −4893.88 −0.393271
\(538\) 1411.54 0.113115
\(539\) −539.000 −0.0430730
\(540\) 1386.97 0.110529
\(541\) −16632.0 −1.32175 −0.660873 0.750498i \(-0.729814\pi\)
−0.660873 + 0.750498i \(0.729814\pi\)
\(542\) −3585.73 −0.284170
\(543\) 2559.49 0.202281
\(544\) 4880.79 0.384673
\(545\) −1651.59 −0.129810
\(546\) 168.637 0.0132179
\(547\) 5814.76 0.454518 0.227259 0.973834i \(-0.427024\pi\)
0.227259 + 0.973834i \(0.427024\pi\)
\(548\) −17846.9 −1.39121
\(549\) −477.682 −0.0371347
\(550\) −496.114 −0.0384625
\(551\) −1662.25 −0.128520
\(552\) 1175.64 0.0906493
\(553\) −2587.43 −0.198967
\(554\) −67.7512 −0.00519580
\(555\) 5075.38 0.388177
\(556\) −1617.13 −0.123348
\(557\) −14323.2 −1.08958 −0.544788 0.838574i \(-0.683390\pi\)
−0.544788 + 0.838574i \(0.683390\pi\)
\(558\) 1054.26 0.0799829
\(559\) −3766.47 −0.284982
\(560\) 2645.24 0.199611
\(561\) −1575.88 −0.118598
\(562\) 1340.85 0.100641
\(563\) 12389.8 0.927476 0.463738 0.885972i \(-0.346508\pi\)
0.463738 + 0.885972i \(0.346508\pi\)
\(564\) 8911.12 0.665294
\(565\) −930.915 −0.0693166
\(566\) −438.972 −0.0325996
\(567\) 567.000 0.0419961
\(568\) 5138.86 0.379616
\(569\) 11823.1 0.871092 0.435546 0.900166i \(-0.356555\pi\)
0.435546 + 0.900166i \(0.356555\pi\)
\(570\) 134.187 0.00986050
\(571\) −26117.3 −1.91414 −0.957069 0.289860i \(-0.906391\pi\)
−0.957069 + 0.289860i \(0.906391\pi\)
\(572\) 1208.81 0.0883619
\(573\) −8478.95 −0.618173
\(574\) 614.370 0.0446747
\(575\) 3573.42 0.259169
\(576\) −3553.70 −0.257067
\(577\) 11861.7 0.855821 0.427911 0.903821i \(-0.359250\pi\)
0.427911 + 0.903821i \(0.359250\pi\)
\(578\) 1478.33 0.106385
\(579\) −7326.67 −0.525883
\(580\) 7166.07 0.513025
\(581\) −484.074 −0.0345659
\(582\) −1971.23 −0.140396
\(583\) 402.271 0.0285769
\(584\) −7196.05 −0.509888
\(585\) 860.327 0.0608036
\(586\) −1217.46 −0.0858241
\(587\) 365.737 0.0257165 0.0128582 0.999917i \(-0.495907\pi\)
0.0128582 + 0.999917i \(0.495907\pi\)
\(588\) 1129.64 0.0792275
\(589\) −2485.62 −0.173885
\(590\) 430.793 0.0300601
\(591\) −8316.54 −0.578844
\(592\) −14307.3 −0.993286
\(593\) −17264.3 −1.19554 −0.597772 0.801666i \(-0.703947\pi\)
−0.597772 + 0.801666i \(0.703947\pi\)
\(594\) −166.781 −0.0115204
\(595\) −2234.52 −0.153961
\(596\) 7145.31 0.491080
\(597\) 16739.9 1.14761
\(598\) 357.288 0.0244324
\(599\) −53.8079 −0.00367033 −0.00183517 0.999998i \(-0.500584\pi\)
−0.00183517 + 0.999998i \(0.500584\pi\)
\(600\) 2122.20 0.144397
\(601\) 3018.63 0.204879 0.102440 0.994739i \(-0.467335\pi\)
0.102440 + 0.994739i \(0.467335\pi\)
\(602\) 1035.34 0.0700950
\(603\) 1191.13 0.0804419
\(604\) −17679.2 −1.19099
\(605\) 808.844 0.0543540
\(606\) 305.427 0.0204738
\(607\) −8991.00 −0.601208 −0.300604 0.953749i \(-0.597188\pi\)
−0.300604 + 0.953749i \(0.597188\pi\)
\(608\) −1217.87 −0.0812357
\(609\) 2929.52 0.194926
\(610\) 199.235 0.0132243
\(611\) 5527.50 0.365988
\(612\) 3302.74 0.218146
\(613\) −16880.3 −1.11222 −0.556110 0.831109i \(-0.687707\pi\)
−0.556110 + 0.831109i \(0.687707\pi\)
\(614\) −5789.58 −0.380535
\(615\) 3134.31 0.205508
\(616\) −678.198 −0.0443594
\(617\) 23828.4 1.55477 0.777387 0.629022i \(-0.216545\pi\)
0.777387 + 0.629022i \(0.216545\pi\)
\(618\) −357.693 −0.0232824
\(619\) 12588.4 0.817402 0.408701 0.912668i \(-0.365982\pi\)
0.408701 + 0.912668i \(0.365982\pi\)
\(620\) 10715.7 0.694115
\(621\) 1201.30 0.0776269
\(622\) 3754.89 0.242053
\(623\) 3271.07 0.210357
\(624\) −2425.22 −0.155587
\(625\) 864.972 0.0553582
\(626\) −3626.13 −0.231516
\(627\) 393.219 0.0250457
\(628\) 14968.4 0.951121
\(629\) 12085.8 0.766126
\(630\) −236.489 −0.0149555
\(631\) −11576.5 −0.730354 −0.365177 0.930938i \(-0.618992\pi\)
−0.365177 + 0.930938i \(0.618992\pi\)
\(632\) −3255.64 −0.204909
\(633\) −4719.14 −0.296318
\(634\) −4026.50 −0.252228
\(635\) 4524.97 0.282784
\(636\) −843.085 −0.0525637
\(637\) 700.709 0.0435842
\(638\) −861.709 −0.0534724
\(639\) 5251.02 0.325082
\(640\) 6947.97 0.429129
\(641\) −9004.11 −0.554822 −0.277411 0.960751i \(-0.589476\pi\)
−0.277411 + 0.960751i \(0.589476\pi\)
\(642\) 370.812 0.0227956
\(643\) 19692.3 1.20776 0.603879 0.797076i \(-0.293621\pi\)
0.603879 + 0.797076i \(0.293621\pi\)
\(644\) 2393.36 0.146447
\(645\) 5281.94 0.322444
\(646\) 319.535 0.0194612
\(647\) 25548.5 1.55242 0.776208 0.630477i \(-0.217141\pi\)
0.776208 + 0.630477i \(0.217141\pi\)
\(648\) 713.429 0.0432502
\(649\) 1262.39 0.0763528
\(650\) 644.957 0.0389189
\(651\) 4380.61 0.263732
\(652\) 21160.8 1.27105
\(653\) 15206.7 0.911306 0.455653 0.890157i \(-0.349406\pi\)
0.455653 + 0.890157i \(0.349406\pi\)
\(654\) −416.232 −0.0248868
\(655\) 1945.51 0.116057
\(656\) −8835.47 −0.525864
\(657\) −7353.11 −0.436639
\(658\) −1519.41 −0.0900195
\(659\) 30126.4 1.78082 0.890408 0.455162i \(-0.150419\pi\)
0.890408 + 0.455162i \(0.150419\pi\)
\(660\) −1695.19 −0.0999774
\(661\) −5122.44 −0.301422 −0.150711 0.988578i \(-0.548156\pi\)
−0.150711 + 0.988578i \(0.548156\pi\)
\(662\) −3284.81 −0.192852
\(663\) 2048.66 0.120005
\(664\) −609.087 −0.0355981
\(665\) 557.567 0.0325136
\(666\) 1279.09 0.0744201
\(667\) 6206.73 0.360308
\(668\) 29843.3 1.72855
\(669\) −2198.83 −0.127073
\(670\) −496.805 −0.0286466
\(671\) 583.834 0.0335896
\(672\) 2146.36 0.123210
\(673\) 9238.65 0.529159 0.264579 0.964364i \(-0.414767\pi\)
0.264579 + 0.964364i \(0.414767\pi\)
\(674\) −5494.43 −0.314002
\(675\) 2168.51 0.123654
\(676\) 15311.7 0.871172
\(677\) −12245.5 −0.695171 −0.347586 0.937648i \(-0.612998\pi\)
−0.347586 + 0.937648i \(0.612998\pi\)
\(678\) −234.608 −0.0132892
\(679\) −8190.76 −0.462934
\(680\) −2811.59 −0.158558
\(681\) −19646.9 −1.10554
\(682\) −1288.54 −0.0723472
\(683\) −3210.33 −0.179853 −0.0899267 0.995948i \(-0.528663\pi\)
−0.0899267 + 0.995948i \(0.528663\pi\)
\(684\) −824.114 −0.0460684
\(685\) 15524.5 0.865927
\(686\) −192.613 −0.0107201
\(687\) 6978.81 0.387567
\(688\) −14889.6 −0.825086
\(689\) −522.959 −0.0289160
\(690\) −501.045 −0.0276442
\(691\) 15819.4 0.870908 0.435454 0.900211i \(-0.356588\pi\)
0.435454 + 0.900211i \(0.356588\pi\)
\(692\) 24001.7 1.31851
\(693\) −693.000 −0.0379869
\(694\) −5296.03 −0.289675
\(695\) 1406.69 0.0767752
\(696\) 3686.07 0.200748
\(697\) 7463.61 0.405602
\(698\) −2208.60 −0.119766
\(699\) 11577.8 0.626484
\(700\) 4320.37 0.233278
\(701\) −13417.1 −0.722907 −0.361454 0.932390i \(-0.617719\pi\)
−0.361454 + 0.932390i \(0.617719\pi\)
\(702\) 216.818 0.0116571
\(703\) −3015.70 −0.161791
\(704\) 4343.41 0.232526
\(705\) −7751.53 −0.414098
\(706\) 3675.07 0.195911
\(707\) 1269.09 0.0675095
\(708\) −2645.73 −0.140441
\(709\) −25127.4 −1.33100 −0.665500 0.746398i \(-0.731782\pi\)
−0.665500 + 0.746398i \(0.731782\pi\)
\(710\) −2190.14 −0.115767
\(711\) −3326.69 −0.175472
\(712\) 4115.83 0.216639
\(713\) 9281.14 0.487491
\(714\) −563.142 −0.0295169
\(715\) −1051.51 −0.0549990
\(716\) −12535.9 −0.654315
\(717\) 11064.0 0.576281
\(718\) −6184.51 −0.321454
\(719\) 4894.82 0.253889 0.126944 0.991910i \(-0.459483\pi\)
0.126944 + 0.991910i \(0.459483\pi\)
\(720\) 3401.03 0.176040
\(721\) −1486.27 −0.0767704
\(722\) 3771.96 0.194429
\(723\) 5454.90 0.280594
\(724\) 6556.28 0.336550
\(725\) 11204.1 0.573943
\(726\) 203.844 0.0104206
\(727\) 19968.3 1.01869 0.509343 0.860564i \(-0.329888\pi\)
0.509343 + 0.860564i \(0.329888\pi\)
\(728\) 881.669 0.0448857
\(729\) 729.000 0.0370370
\(730\) 3066.89 0.155494
\(731\) 12577.7 0.636392
\(732\) −1223.61 −0.0617839
\(733\) −3961.01 −0.199595 −0.0997975 0.995008i \(-0.531820\pi\)
−0.0997975 + 0.995008i \(0.531820\pi\)
\(734\) 4342.62 0.218378
\(735\) −982.645 −0.0493135
\(736\) 4547.45 0.227746
\(737\) −1455.82 −0.0727624
\(738\) 789.904 0.0393994
\(739\) −30962.0 −1.54121 −0.770605 0.637313i \(-0.780046\pi\)
−0.770605 + 0.637313i \(0.780046\pi\)
\(740\) 13000.9 0.645839
\(741\) −511.191 −0.0253429
\(742\) 143.752 0.00711227
\(743\) −9800.99 −0.483935 −0.241967 0.970284i \(-0.577793\pi\)
−0.241967 + 0.970284i \(0.577793\pi\)
\(744\) 5511.91 0.271608
\(745\) −6215.50 −0.305662
\(746\) −1249.46 −0.0613217
\(747\) −622.381 −0.0304842
\(748\) −4036.69 −0.197321
\(749\) 1540.78 0.0751652
\(750\) −2312.13 −0.112569
\(751\) 6366.71 0.309354 0.154677 0.987965i \(-0.450566\pi\)
0.154677 + 0.987965i \(0.450566\pi\)
\(752\) 21851.2 1.05962
\(753\) −646.492 −0.0312875
\(754\) 1120.24 0.0541069
\(755\) 15378.6 0.741304
\(756\) 1452.40 0.0698721
\(757\) 18741.7 0.899838 0.449919 0.893069i \(-0.351453\pi\)
0.449919 + 0.893069i \(0.351453\pi\)
\(758\) 640.973 0.0307140
\(759\) −1468.25 −0.0702162
\(760\) 701.560 0.0334846
\(761\) −31269.0 −1.48949 −0.744745 0.667350i \(-0.767429\pi\)
−0.744745 + 0.667350i \(0.767429\pi\)
\(762\) 1140.38 0.0542145
\(763\) −1729.50 −0.0820606
\(764\) −21719.3 −1.02850
\(765\) −2872.96 −0.135781
\(766\) 3057.97 0.144241
\(767\) −1641.12 −0.0772588
\(768\) −7725.50 −0.362982
\(769\) 6522.45 0.305859 0.152930 0.988237i \(-0.451129\pi\)
0.152930 + 0.988237i \(0.451129\pi\)
\(770\) 289.042 0.0135277
\(771\) −14097.9 −0.658527
\(772\) −18767.7 −0.874952
\(773\) −27552.5 −1.28201 −0.641007 0.767535i \(-0.721483\pi\)
−0.641007 + 0.767535i \(0.721483\pi\)
\(774\) 1331.15 0.0618180
\(775\) 16753.8 0.776535
\(776\) −10306.0 −0.476759
\(777\) 5314.81 0.245390
\(778\) −4040.17 −0.186179
\(779\) −1862.35 −0.0856554
\(780\) 2203.77 0.101164
\(781\) −6417.92 −0.294048
\(782\) −1193.12 −0.0545600
\(783\) 3766.53 0.171909
\(784\) 2770.03 0.126186
\(785\) −13020.6 −0.592005
\(786\) 490.306 0.0222502
\(787\) −31775.6 −1.43923 −0.719616 0.694372i \(-0.755682\pi\)
−0.719616 + 0.694372i \(0.755682\pi\)
\(788\) −21303.3 −0.963068
\(789\) −22513.1 −1.01583
\(790\) 1387.52 0.0624884
\(791\) −974.830 −0.0438192
\(792\) −871.969 −0.0391213
\(793\) −758.993 −0.0339882
\(794\) −475.187 −0.0212390
\(795\) 733.375 0.0327172
\(796\) 42880.2 1.90936
\(797\) −26583.5 −1.18147 −0.590737 0.806864i \(-0.701163\pi\)
−0.590737 + 0.806864i \(0.701163\pi\)
\(798\) 140.517 0.00623341
\(799\) −18458.4 −0.817287
\(800\) 8208.82 0.362782
\(801\) 4205.66 0.185518
\(802\) −2369.40 −0.104322
\(803\) 8987.13 0.394955
\(804\) 3051.14 0.133837
\(805\) −2081.92 −0.0911527
\(806\) 1675.13 0.0732057
\(807\) 7540.91 0.328938
\(808\) 1596.84 0.0695255
\(809\) −4580.99 −0.199084 −0.0995421 0.995033i \(-0.531738\pi\)
−0.0995421 + 0.995033i \(0.531738\pi\)
\(810\) −304.057 −0.0131895
\(811\) −11867.9 −0.513855 −0.256928 0.966431i \(-0.582710\pi\)
−0.256928 + 0.966431i \(0.582710\pi\)
\(812\) 7504.12 0.324314
\(813\) −19156.2 −0.826366
\(814\) −1563.33 −0.0673155
\(815\) −18407.2 −0.791135
\(816\) 8098.74 0.347442
\(817\) −3138.44 −0.134394
\(818\) 4508.50 0.192709
\(819\) 900.912 0.0384376
\(820\) 8028.69 0.341920
\(821\) 6389.94 0.271633 0.135816 0.990734i \(-0.456634\pi\)
0.135816 + 0.990734i \(0.456634\pi\)
\(822\) 3912.46 0.166013
\(823\) −35488.9 −1.50312 −0.751558 0.659667i \(-0.770697\pi\)
−0.751558 + 0.659667i \(0.770697\pi\)
\(824\) −1870.10 −0.0790631
\(825\) −2650.41 −0.111849
\(826\) 451.116 0.0190028
\(827\) −506.928 −0.0213151 −0.0106576 0.999943i \(-0.503392\pi\)
−0.0106576 + 0.999943i \(0.503392\pi\)
\(828\) 3077.18 0.129154
\(829\) −18129.2 −0.759535 −0.379768 0.925082i \(-0.623996\pi\)
−0.379768 + 0.925082i \(0.623996\pi\)
\(830\) 259.587 0.0108559
\(831\) −361.949 −0.0151094
\(832\) −5646.50 −0.235285
\(833\) −2339.94 −0.0973277
\(834\) 354.512 0.0147191
\(835\) −25959.8 −1.07590
\(836\) 1007.25 0.0416704
\(837\) 5632.21 0.232590
\(838\) 6391.18 0.263460
\(839\) −4031.98 −0.165911 −0.0829556 0.996553i \(-0.526436\pi\)
−0.0829556 + 0.996553i \(0.526436\pi\)
\(840\) −1236.41 −0.0507861
\(841\) −4928.49 −0.202078
\(842\) 1390.74 0.0569216
\(843\) 7163.25 0.292664
\(844\) −12088.3 −0.493006
\(845\) −13319.2 −0.542242
\(846\) −1953.53 −0.0793897
\(847\) 847.000 0.0343604
\(848\) −2067.35 −0.0837183
\(849\) −2345.13 −0.0947995
\(850\) −2153.76 −0.0869098
\(851\) 11260.4 0.453586
\(852\) 13450.8 0.540864
\(853\) 20432.0 0.820140 0.410070 0.912054i \(-0.365504\pi\)
0.410070 + 0.912054i \(0.365504\pi\)
\(854\) 208.634 0.00835984
\(855\) 716.872 0.0286743
\(856\) 1938.68 0.0774099
\(857\) 27874.2 1.11105 0.555523 0.831501i \(-0.312518\pi\)
0.555523 + 0.831501i \(0.312518\pi\)
\(858\) −265.000 −0.0105442
\(859\) −7972.63 −0.316674 −0.158337 0.987385i \(-0.550613\pi\)
−0.158337 + 0.987385i \(0.550613\pi\)
\(860\) 13530.0 0.536475
\(861\) 3282.16 0.129914
\(862\) 5446.23 0.215197
\(863\) −45524.5 −1.79568 −0.897840 0.440322i \(-0.854864\pi\)
−0.897840 + 0.440322i \(0.854864\pi\)
\(864\) 2759.60 0.108661
\(865\) −20878.4 −0.820679
\(866\) 8078.34 0.316990
\(867\) 7897.73 0.309367
\(868\) 11221.2 0.438791
\(869\) 4065.96 0.158721
\(870\) −1570.97 −0.0612194
\(871\) 1892.59 0.0736258
\(872\) −2176.15 −0.0845113
\(873\) −10531.0 −0.408270
\(874\) 297.712 0.0115220
\(875\) −9607.24 −0.371182
\(876\) −18835.4 −0.726471
\(877\) 24262.3 0.934186 0.467093 0.884208i \(-0.345301\pi\)
0.467093 + 0.884208i \(0.345301\pi\)
\(878\) 452.837 0.0174061
\(879\) −6504.09 −0.249576
\(880\) −4156.81 −0.159234
\(881\) −6944.67 −0.265575 −0.132788 0.991145i \(-0.542393\pi\)
−0.132788 + 0.991145i \(0.542393\pi\)
\(882\) −247.645 −0.00945423
\(883\) −11539.6 −0.439794 −0.219897 0.975523i \(-0.570572\pi\)
−0.219897 + 0.975523i \(0.570572\pi\)
\(884\) 5247.76 0.199662
\(885\) 2301.44 0.0874148
\(886\) −2666.36 −0.101104
\(887\) −259.602 −0.00982702 −0.00491351 0.999988i \(-0.501564\pi\)
−0.00491351 + 0.999988i \(0.501564\pi\)
\(888\) 6687.37 0.252718
\(889\) 4738.43 0.178765
\(890\) −1754.13 −0.0660657
\(891\) −891.000 −0.0335013
\(892\) −5632.43 −0.211421
\(893\) 4605.82 0.172596
\(894\) −1566.42 −0.0586006
\(895\) 10904.6 0.407264
\(896\) 7275.74 0.271278
\(897\) 1908.75 0.0710494
\(898\) 3989.51 0.148254
\(899\) 29099.9 1.07957
\(900\) 5554.76 0.205732
\(901\) 1746.36 0.0645723
\(902\) −965.438 −0.0356381
\(903\) 5531.11 0.203836
\(904\) −1226.58 −0.0451277
\(905\) −5703.11 −0.209478
\(906\) 3875.69 0.142121
\(907\) −20655.5 −0.756179 −0.378089 0.925769i \(-0.623419\pi\)
−0.378089 + 0.925769i \(0.623419\pi\)
\(908\) −50326.6 −1.83937
\(909\) 1631.69 0.0595378
\(910\) −375.759 −0.0136882
\(911\) −14371.0 −0.522648 −0.261324 0.965251i \(-0.584159\pi\)
−0.261324 + 0.965251i \(0.584159\pi\)
\(912\) −2020.83 −0.0733732
\(913\) 760.688 0.0275740
\(914\) −2583.17 −0.0934833
\(915\) 1064.38 0.0384561
\(916\) 17876.6 0.644825
\(917\) 2037.29 0.0733668
\(918\) −724.039 −0.0260314
\(919\) 12066.1 0.433107 0.216553 0.976271i \(-0.430518\pi\)
0.216553 + 0.976271i \(0.430518\pi\)
\(920\) −2619.58 −0.0938748
\(921\) −30929.8 −1.10659
\(922\) −3986.02 −0.142378
\(923\) 8343.40 0.297537
\(924\) −1775.16 −0.0632017
\(925\) 20326.7 0.722527
\(926\) −5635.73 −0.200002
\(927\) −1910.91 −0.0677051
\(928\) 14258.0 0.504356
\(929\) −53667.0 −1.89532 −0.947662 0.319275i \(-0.896561\pi\)
−0.947662 + 0.319275i \(0.896561\pi\)
\(930\) −2349.13 −0.0828289
\(931\) 583.870 0.0205538
\(932\) 29657.1 1.04233
\(933\) 20059.8 0.703890
\(934\) −143.238 −0.00501808
\(935\) 3511.40 0.122818
\(936\) 1133.57 0.0395855
\(937\) 26617.1 0.928007 0.464004 0.885833i \(-0.346412\pi\)
0.464004 + 0.885833i \(0.346412\pi\)
\(938\) −520.241 −0.0181092
\(939\) −19372.0 −0.673249
\(940\) −19855.9 −0.688967
\(941\) −39750.7 −1.37709 −0.688543 0.725196i \(-0.741749\pi\)
−0.688543 + 0.725196i \(0.741749\pi\)
\(942\) −3281.42 −0.113497
\(943\) 6953.88 0.240137
\(944\) −6487.66 −0.223681
\(945\) −1263.40 −0.0434904
\(946\) −1626.96 −0.0559165
\(947\) 18606.6 0.638471 0.319235 0.947675i \(-0.396574\pi\)
0.319235 + 0.947675i \(0.396574\pi\)
\(948\) −8521.50 −0.291947
\(949\) −11683.4 −0.399642
\(950\) 537.414 0.0183537
\(951\) −21510.9 −0.733479
\(952\) −2944.23 −0.100234
\(953\) −46514.2 −1.58105 −0.790526 0.612428i \(-0.790193\pi\)
−0.790526 + 0.612428i \(0.790193\pi\)
\(954\) 184.824 0.00627244
\(955\) 18893.0 0.640169
\(956\) 28341.1 0.958803
\(957\) −4603.53 −0.155497
\(958\) 1342.12 0.0452631
\(959\) 16256.8 0.547404
\(960\) 7918.41 0.266214
\(961\) 13723.1 0.460646
\(962\) 2032.36 0.0681143
\(963\) 1981.00 0.0662895
\(964\) 13973.0 0.466847
\(965\) 16325.4 0.544595
\(966\) −524.682 −0.0174755
\(967\) 34299.6 1.14064 0.570321 0.821422i \(-0.306819\pi\)
0.570321 + 0.821422i \(0.306819\pi\)
\(968\) 1065.74 0.0353865
\(969\) 1707.06 0.0565931
\(970\) 4392.34 0.145391
\(971\) −27751.4 −0.917182 −0.458591 0.888648i \(-0.651646\pi\)
−0.458591 + 0.888648i \(0.651646\pi\)
\(972\) 1867.37 0.0616214
\(973\) 1473.05 0.0485342
\(974\) 9464.17 0.311347
\(975\) 3445.57 0.113176
\(976\) −3000.44 −0.0984034
\(977\) −4009.25 −0.131287 −0.0656434 0.997843i \(-0.520910\pi\)
−0.0656434 + 0.997843i \(0.520910\pi\)
\(978\) −4638.95 −0.151674
\(979\) −5140.25 −0.167807
\(980\) −2517.10 −0.0820466
\(981\) −2223.65 −0.0723707
\(982\) −9527.16 −0.309597
\(983\) 9792.68 0.317739 0.158870 0.987300i \(-0.449215\pi\)
0.158870 + 0.987300i \(0.449215\pi\)
\(984\) 4129.79 0.133794
\(985\) 18531.1 0.599441
\(986\) −3740.90 −0.120826
\(987\) −8117.20 −0.261776
\(988\) −1309.44 −0.0421649
\(989\) 11718.7 0.376777
\(990\) 371.625 0.0119303
\(991\) 51763.7 1.65926 0.829631 0.558312i \(-0.188551\pi\)
0.829631 + 0.558312i \(0.188551\pi\)
\(992\) 21320.5 0.682386
\(993\) −17548.6 −0.560812
\(994\) −2293.45 −0.0731830
\(995\) −37300.3 −1.18844
\(996\) −1594.26 −0.0507190
\(997\) −17369.9 −0.551767 −0.275884 0.961191i \(-0.588970\pi\)
−0.275884 + 0.961191i \(0.588970\pi\)
\(998\) 10212.6 0.323921
\(999\) 6833.33 0.216413
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.h.1.1 2
3.2 odd 2 693.4.a.g.1.2 2
7.6 odd 2 1617.4.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.h.1.1 2 1.1 even 1 trivial
693.4.a.g.1.2 2 3.2 odd 2
1617.4.a.m.1.1 2 7.6 odd 2