Properties

Label 231.4.a.f.1.1
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.56155 q^{2} +3.00000 q^{3} +4.68466 q^{4} -15.6847 q^{5} -10.6847 q^{6} +7.00000 q^{7} +11.8078 q^{8} +9.00000 q^{9} +55.8617 q^{10} +11.0000 q^{11} +14.0540 q^{12} +52.9157 q^{13} -24.9309 q^{14} -47.0540 q^{15} -79.5312 q^{16} -77.1231 q^{17} -32.0540 q^{18} +13.4081 q^{19} -73.4773 q^{20} +21.0000 q^{21} -39.1771 q^{22} -59.0152 q^{23} +35.4233 q^{24} +121.009 q^{25} -188.462 q^{26} +27.0000 q^{27} +32.7926 q^{28} -69.3305 q^{29} +167.585 q^{30} +75.9697 q^{31} +188.793 q^{32} +33.0000 q^{33} +274.678 q^{34} -109.793 q^{35} +42.1619 q^{36} -335.948 q^{37} -47.7538 q^{38} +158.747 q^{39} -185.201 q^{40} -318.617 q^{41} -74.7926 q^{42} -57.2614 q^{43} +51.5312 q^{44} -141.162 q^{45} +210.186 q^{46} -577.779 q^{47} -238.594 q^{48} +49.0000 q^{49} -430.978 q^{50} -231.369 q^{51} +247.892 q^{52} +315.555 q^{53} -96.1619 q^{54} -172.531 q^{55} +82.6543 q^{56} +40.2244 q^{57} +246.924 q^{58} -598.717 q^{59} -220.432 q^{60} -337.879 q^{61} -270.570 q^{62} +63.0000 q^{63} -36.1449 q^{64} -829.965 q^{65} -117.531 q^{66} -107.779 q^{67} -361.295 q^{68} -177.045 q^{69} +391.032 q^{70} +405.390 q^{71} +106.270 q^{72} -133.300 q^{73} +1196.50 q^{74} +363.026 q^{75} +62.8125 q^{76} +77.0000 q^{77} -565.386 q^{78} -922.038 q^{79} +1247.42 q^{80} +81.0000 q^{81} +1134.77 q^{82} -1221.17 q^{83} +98.3778 q^{84} +1209.65 q^{85} +203.939 q^{86} -207.991 q^{87} +129.885 q^{88} +1580.19 q^{89} +502.756 q^{90} +370.410 q^{91} -276.466 q^{92} +227.909 q^{93} +2057.79 q^{94} -210.302 q^{95} +566.378 q^{96} -287.097 q^{97} -174.516 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 6 q^{3} - 3 q^{4} - 19 q^{5} - 9 q^{6} + 14 q^{7} + 3 q^{8} + 18 q^{9} + 54 q^{10} + 22 q^{11} - 9 q^{12} + 11 q^{13} - 21 q^{14} - 57 q^{15} - 23 q^{16} - 146 q^{17} - 27 q^{18} - 101 q^{19}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.56155 −1.25920 −0.629600 0.776920i \(-0.716781\pi\)
−0.629600 + 0.776920i \(0.716781\pi\)
\(3\) 3.00000 0.577350
\(4\) 4.68466 0.585582
\(5\) −15.6847 −1.40288 −0.701439 0.712729i \(-0.747459\pi\)
−0.701439 + 0.712729i \(0.747459\pi\)
\(6\) −10.6847 −0.726999
\(7\) 7.00000 0.377964
\(8\) 11.8078 0.521834
\(9\) 9.00000 0.333333
\(10\) 55.8617 1.76650
\(11\) 11.0000 0.301511
\(12\) 14.0540 0.338086
\(13\) 52.9157 1.12894 0.564468 0.825455i \(-0.309081\pi\)
0.564468 + 0.825455i \(0.309081\pi\)
\(14\) −24.9309 −0.475933
\(15\) −47.0540 −0.809952
\(16\) −79.5312 −1.24268
\(17\) −77.1231 −1.10030 −0.550150 0.835066i \(-0.685429\pi\)
−0.550150 + 0.835066i \(0.685429\pi\)
\(18\) −32.0540 −0.419733
\(19\) 13.4081 0.161897 0.0809484 0.996718i \(-0.474205\pi\)
0.0809484 + 0.996718i \(0.474205\pi\)
\(20\) −73.4773 −0.821501
\(21\) 21.0000 0.218218
\(22\) −39.1771 −0.379663
\(23\) −59.0152 −0.535022 −0.267511 0.963555i \(-0.586201\pi\)
−0.267511 + 0.963555i \(0.586201\pi\)
\(24\) 35.4233 0.301281
\(25\) 121.009 0.968068
\(26\) −188.462 −1.42156
\(27\) 27.0000 0.192450
\(28\) 32.7926 0.221329
\(29\) −69.3305 −0.443943 −0.221972 0.975053i \(-0.571249\pi\)
−0.221972 + 0.975053i \(0.571249\pi\)
\(30\) 167.585 1.01989
\(31\) 75.9697 0.440147 0.220074 0.975483i \(-0.429370\pi\)
0.220074 + 0.975483i \(0.429370\pi\)
\(32\) 188.793 1.04294
\(33\) 33.0000 0.174078
\(34\) 274.678 1.38550
\(35\) −109.793 −0.530238
\(36\) 42.1619 0.195194
\(37\) −335.948 −1.49269 −0.746344 0.665560i \(-0.768193\pi\)
−0.746344 + 0.665560i \(0.768193\pi\)
\(38\) −47.7538 −0.203860
\(39\) 158.747 0.651792
\(40\) −185.201 −0.732070
\(41\) −318.617 −1.21365 −0.606825 0.794835i \(-0.707557\pi\)
−0.606825 + 0.794835i \(0.707557\pi\)
\(42\) −74.7926 −0.274780
\(43\) −57.2614 −0.203076 −0.101538 0.994832i \(-0.532376\pi\)
−0.101538 + 0.994832i \(0.532376\pi\)
\(44\) 51.5312 0.176560
\(45\) −141.162 −0.467626
\(46\) 210.186 0.673699
\(47\) −577.779 −1.79314 −0.896572 0.442898i \(-0.853950\pi\)
−0.896572 + 0.442898i \(0.853950\pi\)
\(48\) −238.594 −0.717459
\(49\) 49.0000 0.142857
\(50\) −430.978 −1.21899
\(51\) −231.369 −0.635259
\(52\) 247.892 0.661085
\(53\) 315.555 0.817826 0.408913 0.912573i \(-0.365908\pi\)
0.408913 + 0.912573i \(0.365908\pi\)
\(54\) −96.1619 −0.242333
\(55\) −172.531 −0.422984
\(56\) 82.6543 0.197235
\(57\) 40.2244 0.0934711
\(58\) 246.924 0.559013
\(59\) −598.717 −1.32112 −0.660562 0.750772i \(-0.729682\pi\)
−0.660562 + 0.750772i \(0.729682\pi\)
\(60\) −220.432 −0.474294
\(61\) −337.879 −0.709196 −0.354598 0.935019i \(-0.615382\pi\)
−0.354598 + 0.935019i \(0.615382\pi\)
\(62\) −270.570 −0.554233
\(63\) 63.0000 0.125988
\(64\) −36.1449 −0.0705955
\(65\) −829.965 −1.58376
\(66\) −117.531 −0.219198
\(67\) −107.779 −0.196527 −0.0982637 0.995160i \(-0.531329\pi\)
−0.0982637 + 0.995160i \(0.531329\pi\)
\(68\) −361.295 −0.644316
\(69\) −177.045 −0.308895
\(70\) 391.032 0.667675
\(71\) 405.390 0.677619 0.338810 0.940855i \(-0.389976\pi\)
0.338810 + 0.940855i \(0.389976\pi\)
\(72\) 106.270 0.173945
\(73\) −133.300 −0.213721 −0.106860 0.994274i \(-0.534080\pi\)
−0.106860 + 0.994274i \(0.534080\pi\)
\(74\) 1196.50 1.87959
\(75\) 363.026 0.558914
\(76\) 62.8125 0.0948039
\(77\) 77.0000 0.113961
\(78\) −565.386 −0.820736
\(79\) −922.038 −1.31313 −0.656566 0.754269i \(-0.727991\pi\)
−0.656566 + 0.754269i \(0.727991\pi\)
\(80\) 1247.42 1.74332
\(81\) 81.0000 0.111111
\(82\) 1134.77 1.52823
\(83\) −1221.17 −1.61495 −0.807475 0.589902i \(-0.799167\pi\)
−0.807475 + 0.589902i \(0.799167\pi\)
\(84\) 98.3778 0.127785
\(85\) 1209.65 1.54359
\(86\) 203.939 0.255713
\(87\) −207.991 −0.256311
\(88\) 129.885 0.157339
\(89\) 1580.19 1.88202 0.941012 0.338373i \(-0.109877\pi\)
0.941012 + 0.338373i \(0.109877\pi\)
\(90\) 502.756 0.588834
\(91\) 370.410 0.426698
\(92\) −276.466 −0.313300
\(93\) 227.909 0.254119
\(94\) 2057.79 2.25793
\(95\) −210.302 −0.227121
\(96\) 566.378 0.602143
\(97\) −287.097 −0.300518 −0.150259 0.988647i \(-0.548011\pi\)
−0.150259 + 0.988647i \(0.548011\pi\)
\(98\) −174.516 −0.179886
\(99\) 99.0000 0.100504
\(100\) 566.884 0.566884
\(101\) 780.867 0.769299 0.384650 0.923063i \(-0.374322\pi\)
0.384650 + 0.923063i \(0.374322\pi\)
\(102\) 824.034 0.799917
\(103\) 1218.22 1.16538 0.582691 0.812694i \(-0.302000\pi\)
0.582691 + 0.812694i \(0.302000\pi\)
\(104\) 624.816 0.589118
\(105\) −329.378 −0.306133
\(106\) −1123.87 −1.02981
\(107\) −873.196 −0.788926 −0.394463 0.918912i \(-0.629069\pi\)
−0.394463 + 0.918912i \(0.629069\pi\)
\(108\) 126.486 0.112695
\(109\) 126.424 0.111094 0.0555470 0.998456i \(-0.482310\pi\)
0.0555470 + 0.998456i \(0.482310\pi\)
\(110\) 614.479 0.532621
\(111\) −1007.84 −0.861804
\(112\) −556.719 −0.469687
\(113\) 257.318 0.214217 0.107108 0.994247i \(-0.465841\pi\)
0.107108 + 0.994247i \(0.465841\pi\)
\(114\) −143.261 −0.117699
\(115\) 925.633 0.750571
\(116\) −324.790 −0.259965
\(117\) 476.241 0.376312
\(118\) 2132.36 1.66356
\(119\) −539.862 −0.415874
\(120\) −555.602 −0.422661
\(121\) 121.000 0.0909091
\(122\) 1203.37 0.893019
\(123\) −955.852 −0.700702
\(124\) 355.892 0.257742
\(125\) 62.6052 0.0447966
\(126\) −224.378 −0.158644
\(127\) 74.9450 0.0523645 0.0261822 0.999657i \(-0.491665\pi\)
0.0261822 + 0.999657i \(0.491665\pi\)
\(128\) −1381.61 −0.954048
\(129\) −171.784 −0.117246
\(130\) 2955.96 1.99427
\(131\) −2636.30 −1.75828 −0.879141 0.476561i \(-0.841883\pi\)
−0.879141 + 0.476561i \(0.841883\pi\)
\(132\) 154.594 0.101937
\(133\) 93.8570 0.0611912
\(134\) 383.862 0.247467
\(135\) −423.486 −0.269984
\(136\) −910.651 −0.574174
\(137\) 1146.87 0.715210 0.357605 0.933873i \(-0.383593\pi\)
0.357605 + 0.933873i \(0.383593\pi\)
\(138\) 630.557 0.388961
\(139\) −1013.00 −0.618139 −0.309070 0.951039i \(-0.600018\pi\)
−0.309070 + 0.951039i \(0.600018\pi\)
\(140\) −514.341 −0.310498
\(141\) −1733.34 −1.03527
\(142\) −1443.82 −0.853257
\(143\) 582.073 0.340387
\(144\) −715.781 −0.414225
\(145\) 1087.43 0.622798
\(146\) 474.756 0.269117
\(147\) 147.000 0.0824786
\(148\) −1573.80 −0.874092
\(149\) −2236.91 −1.22990 −0.614948 0.788568i \(-0.710823\pi\)
−0.614948 + 0.788568i \(0.710823\pi\)
\(150\) −1292.93 −0.703784
\(151\) 636.657 0.343115 0.171558 0.985174i \(-0.445120\pi\)
0.171558 + 0.985174i \(0.445120\pi\)
\(152\) 158.320 0.0844833
\(153\) −694.108 −0.366767
\(154\) −274.240 −0.143499
\(155\) −1191.56 −0.617473
\(156\) 743.676 0.381678
\(157\) −3561.59 −1.81048 −0.905241 0.424899i \(-0.860310\pi\)
−0.905241 + 0.424899i \(0.860310\pi\)
\(158\) 3283.89 1.65349
\(159\) 946.665 0.472172
\(160\) −2961.15 −1.46312
\(161\) −413.106 −0.202219
\(162\) −288.486 −0.139911
\(163\) 2540.60 1.22083 0.610414 0.792082i \(-0.291003\pi\)
0.610414 + 0.792082i \(0.291003\pi\)
\(164\) −1492.61 −0.710692
\(165\) −517.594 −0.244210
\(166\) 4349.26 2.03354
\(167\) 1737.09 0.804913 0.402456 0.915439i \(-0.368157\pi\)
0.402456 + 0.915439i \(0.368157\pi\)
\(168\) 247.963 0.113874
\(169\) 603.073 0.274498
\(170\) −4308.23 −1.94368
\(171\) 120.673 0.0539656
\(172\) −268.250 −0.118918
\(173\) 4194.96 1.84357 0.921784 0.387704i \(-0.126732\pi\)
0.921784 + 0.387704i \(0.126732\pi\)
\(174\) 740.773 0.322746
\(175\) 847.060 0.365895
\(176\) −874.844 −0.374681
\(177\) −1796.15 −0.762751
\(178\) −5627.94 −2.36984
\(179\) 1349.85 0.563645 0.281822 0.959467i \(-0.409061\pi\)
0.281822 + 0.959467i \(0.409061\pi\)
\(180\) −661.295 −0.273834
\(181\) −1198.06 −0.491994 −0.245997 0.969271i \(-0.579115\pi\)
−0.245997 + 0.969271i \(0.579115\pi\)
\(182\) −1319.23 −0.537298
\(183\) −1013.64 −0.409454
\(184\) −696.837 −0.279193
\(185\) 5269.23 2.09406
\(186\) −811.710 −0.319986
\(187\) −848.354 −0.331753
\(188\) −2706.70 −1.05003
\(189\) 189.000 0.0727393
\(190\) 749.002 0.285991
\(191\) 764.873 0.289761 0.144880 0.989449i \(-0.453720\pi\)
0.144880 + 0.989449i \(0.453720\pi\)
\(192\) −108.435 −0.0407583
\(193\) −2019.52 −0.753204 −0.376602 0.926375i \(-0.622907\pi\)
−0.376602 + 0.926375i \(0.622907\pi\)
\(194\) 1022.51 0.378412
\(195\) −2489.89 −0.914385
\(196\) 229.548 0.0836546
\(197\) 1499.94 0.542470 0.271235 0.962513i \(-0.412568\pi\)
0.271235 + 0.962513i \(0.412568\pi\)
\(198\) −352.594 −0.126554
\(199\) −4574.41 −1.62950 −0.814752 0.579809i \(-0.803127\pi\)
−0.814752 + 0.579809i \(0.803127\pi\)
\(200\) 1428.84 0.505171
\(201\) −323.338 −0.113465
\(202\) −2781.10 −0.968701
\(203\) −485.313 −0.167795
\(204\) −1083.89 −0.371996
\(205\) 4997.40 1.70260
\(206\) −4338.74 −1.46745
\(207\) −531.136 −0.178341
\(208\) −4208.45 −1.40290
\(209\) 147.490 0.0488137
\(210\) 1173.10 0.385483
\(211\) −4456.96 −1.45417 −0.727084 0.686548i \(-0.759125\pi\)
−0.727084 + 0.686548i \(0.759125\pi\)
\(212\) 1478.27 0.478905
\(213\) 1216.17 0.391224
\(214\) 3109.93 0.993414
\(215\) 898.125 0.284891
\(216\) 318.810 0.100427
\(217\) 531.788 0.166360
\(218\) −450.267 −0.139890
\(219\) −399.901 −0.123392
\(220\) −808.250 −0.247692
\(221\) −4081.02 −1.24217
\(222\) 3589.49 1.08518
\(223\) −3003.50 −0.901924 −0.450962 0.892543i \(-0.648919\pi\)
−0.450962 + 0.892543i \(0.648919\pi\)
\(224\) 1321.55 0.394195
\(225\) 1089.08 0.322689
\(226\) −916.453 −0.269741
\(227\) 1252.20 0.366130 0.183065 0.983101i \(-0.441398\pi\)
0.183065 + 0.983101i \(0.441398\pi\)
\(228\) 188.438 0.0547350
\(229\) 2862.80 0.826110 0.413055 0.910706i \(-0.364462\pi\)
0.413055 + 0.910706i \(0.364462\pi\)
\(230\) −3296.69 −0.945118
\(231\) 231.000 0.0657952
\(232\) −818.638 −0.231665
\(233\) 4969.92 1.39738 0.698692 0.715423i \(-0.253766\pi\)
0.698692 + 0.715423i \(0.253766\pi\)
\(234\) −1696.16 −0.473852
\(235\) 9062.27 2.51556
\(236\) −2804.78 −0.773627
\(237\) −2766.11 −0.758137
\(238\) 1922.75 0.523669
\(239\) 4602.18 1.24557 0.622783 0.782395i \(-0.286002\pi\)
0.622783 + 0.782395i \(0.286002\pi\)
\(240\) 3742.26 1.00651
\(241\) −4147.29 −1.10851 −0.554254 0.832348i \(-0.686996\pi\)
−0.554254 + 0.832348i \(0.686996\pi\)
\(242\) −430.948 −0.114473
\(243\) 243.000 0.0641500
\(244\) −1582.85 −0.415292
\(245\) −768.548 −0.200411
\(246\) 3404.32 0.882323
\(247\) 709.501 0.182771
\(248\) 897.032 0.229684
\(249\) −3663.51 −0.932392
\(250\) −222.972 −0.0564078
\(251\) 988.383 0.248551 0.124275 0.992248i \(-0.460339\pi\)
0.124275 + 0.992248i \(0.460339\pi\)
\(252\) 295.133 0.0737764
\(253\) −649.167 −0.161315
\(254\) −266.920 −0.0659373
\(255\) 3628.95 0.891191
\(256\) 5209.83 1.27193
\(257\) −2856.10 −0.693224 −0.346612 0.938009i \(-0.612668\pi\)
−0.346612 + 0.938009i \(0.612668\pi\)
\(258\) 611.818 0.147636
\(259\) −2351.64 −0.564183
\(260\) −3888.10 −0.927423
\(261\) −623.974 −0.147981
\(262\) 9389.34 2.21403
\(263\) 5772.45 1.35340 0.676701 0.736258i \(-0.263409\pi\)
0.676701 + 0.736258i \(0.263409\pi\)
\(264\) 389.656 0.0908397
\(265\) −4949.37 −1.14731
\(266\) −334.277 −0.0770519
\(267\) 4740.58 1.08659
\(268\) −504.909 −0.115083
\(269\) −1626.04 −0.368555 −0.184278 0.982874i \(-0.558995\pi\)
−0.184278 + 0.982874i \(0.558995\pi\)
\(270\) 1508.27 0.339964
\(271\) −1816.20 −0.407109 −0.203554 0.979064i \(-0.565249\pi\)
−0.203554 + 0.979064i \(0.565249\pi\)
\(272\) 6133.70 1.36732
\(273\) 1111.23 0.246354
\(274\) −4084.64 −0.900592
\(275\) 1331.09 0.291884
\(276\) −829.398 −0.180884
\(277\) −8091.98 −1.75523 −0.877617 0.479362i \(-0.840868\pi\)
−0.877617 + 0.479362i \(0.840868\pi\)
\(278\) 3607.85 0.778361
\(279\) 683.727 0.146716
\(280\) −1296.41 −0.276697
\(281\) −8041.32 −1.70713 −0.853567 0.520982i \(-0.825566\pi\)
−0.853567 + 0.520982i \(0.825566\pi\)
\(282\) 6173.37 1.30361
\(283\) 644.465 0.135369 0.0676846 0.997707i \(-0.478439\pi\)
0.0676846 + 0.997707i \(0.478439\pi\)
\(284\) 1899.11 0.396802
\(285\) −630.906 −0.131129
\(286\) −2073.08 −0.428615
\(287\) −2230.32 −0.458717
\(288\) 1699.13 0.347647
\(289\) 1034.97 0.210660
\(290\) −3872.92 −0.784227
\(291\) −861.290 −0.173504
\(292\) −624.466 −0.125151
\(293\) −6451.96 −1.28644 −0.643221 0.765681i \(-0.722402\pi\)
−0.643221 + 0.765681i \(0.722402\pi\)
\(294\) −523.548 −0.103857
\(295\) 9390.67 1.85338
\(296\) −3966.79 −0.778936
\(297\) 297.000 0.0580259
\(298\) 7966.86 1.54868
\(299\) −3122.83 −0.604006
\(300\) 1700.65 0.327290
\(301\) −400.830 −0.0767556
\(302\) −2267.49 −0.432051
\(303\) 2342.60 0.444155
\(304\) −1066.37 −0.201185
\(305\) 5299.51 0.994916
\(306\) 2472.10 0.461832
\(307\) 4175.92 0.776327 0.388164 0.921590i \(-0.373110\pi\)
0.388164 + 0.921590i \(0.373110\pi\)
\(308\) 360.719 0.0667333
\(309\) 3654.65 0.672834
\(310\) 4243.80 0.777521
\(311\) −8619.22 −1.57155 −0.785774 0.618514i \(-0.787735\pi\)
−0.785774 + 0.618514i \(0.787735\pi\)
\(312\) 1874.45 0.340127
\(313\) −10300.8 −1.86019 −0.930093 0.367324i \(-0.880274\pi\)
−0.930093 + 0.367324i \(0.880274\pi\)
\(314\) 12684.8 2.27976
\(315\) −988.133 −0.176746
\(316\) −4319.43 −0.768946
\(317\) 7696.26 1.36361 0.681806 0.731533i \(-0.261195\pi\)
0.681806 + 0.731533i \(0.261195\pi\)
\(318\) −3371.60 −0.594559
\(319\) −762.635 −0.133854
\(320\) 566.920 0.0990369
\(321\) −2619.59 −0.455486
\(322\) 1471.30 0.254634
\(323\) −1034.08 −0.178135
\(324\) 379.457 0.0650647
\(325\) 6403.25 1.09289
\(326\) −9048.48 −1.53727
\(327\) 379.273 0.0641402
\(328\) −3762.16 −0.633325
\(329\) −4044.46 −0.677745
\(330\) 1843.44 0.307509
\(331\) 6322.41 1.04988 0.524941 0.851138i \(-0.324087\pi\)
0.524941 + 0.851138i \(0.324087\pi\)
\(332\) −5720.77 −0.945686
\(333\) −3023.53 −0.497563
\(334\) −6186.75 −1.01355
\(335\) 1690.48 0.275704
\(336\) −1670.16 −0.271174
\(337\) 1576.06 0.254758 0.127379 0.991854i \(-0.459344\pi\)
0.127379 + 0.991854i \(0.459344\pi\)
\(338\) −2147.88 −0.345648
\(339\) 771.955 0.123678
\(340\) 5666.80 0.903897
\(341\) 835.667 0.132709
\(342\) −429.784 −0.0679534
\(343\) 343.000 0.0539949
\(344\) −676.129 −0.105972
\(345\) 2776.90 0.433342
\(346\) −14940.6 −2.32142
\(347\) 4989.29 0.771870 0.385935 0.922526i \(-0.373879\pi\)
0.385935 + 0.922526i \(0.373879\pi\)
\(348\) −974.369 −0.150091
\(349\) 4348.98 0.667035 0.333518 0.942744i \(-0.391764\pi\)
0.333518 + 0.942744i \(0.391764\pi\)
\(350\) −3016.85 −0.460735
\(351\) 1428.72 0.217264
\(352\) 2076.72 0.314459
\(353\) −3724.71 −0.561604 −0.280802 0.959766i \(-0.590601\pi\)
−0.280802 + 0.959766i \(0.590601\pi\)
\(354\) 6397.08 0.960455
\(355\) −6358.40 −0.950617
\(356\) 7402.66 1.10208
\(357\) −1619.59 −0.240105
\(358\) −4807.56 −0.709741
\(359\) −5815.53 −0.854963 −0.427481 0.904024i \(-0.640599\pi\)
−0.427481 + 0.904024i \(0.640599\pi\)
\(360\) −1666.81 −0.244023
\(361\) −6679.22 −0.973789
\(362\) 4266.94 0.619518
\(363\) 363.000 0.0524864
\(364\) 1735.24 0.249867
\(365\) 2090.77 0.299824
\(366\) 3610.12 0.515585
\(367\) 9298.43 1.32255 0.661273 0.750146i \(-0.270017\pi\)
0.661273 + 0.750146i \(0.270017\pi\)
\(368\) 4693.55 0.664859
\(369\) −2867.56 −0.404550
\(370\) −18766.6 −2.63684
\(371\) 2208.88 0.309109
\(372\) 1067.68 0.148808
\(373\) 3697.85 0.513318 0.256659 0.966502i \(-0.417378\pi\)
0.256659 + 0.966502i \(0.417378\pi\)
\(374\) 3021.46 0.417743
\(375\) 187.815 0.0258633
\(376\) −6822.28 −0.935724
\(377\) −3668.67 −0.501184
\(378\) −673.133 −0.0915933
\(379\) 2040.70 0.276580 0.138290 0.990392i \(-0.455839\pi\)
0.138290 + 0.990392i \(0.455839\pi\)
\(380\) −985.193 −0.132998
\(381\) 224.835 0.0302327
\(382\) −2724.14 −0.364866
\(383\) −3311.92 −0.441857 −0.220928 0.975290i \(-0.570909\pi\)
−0.220928 + 0.975290i \(0.570909\pi\)
\(384\) −4144.83 −0.550820
\(385\) −1207.72 −0.159873
\(386\) 7192.63 0.948433
\(387\) −515.352 −0.0676921
\(388\) −1344.95 −0.175978
\(389\) 13095.1 1.70680 0.853401 0.521255i \(-0.174536\pi\)
0.853401 + 0.521255i \(0.174536\pi\)
\(390\) 8867.89 1.15139
\(391\) 4551.43 0.588685
\(392\) 578.580 0.0745478
\(393\) −7908.91 −1.01514
\(394\) −5342.13 −0.683077
\(395\) 14461.8 1.84216
\(396\) 463.781 0.0588532
\(397\) 15359.1 1.94169 0.970843 0.239716i \(-0.0770543\pi\)
0.970843 + 0.239716i \(0.0770543\pi\)
\(398\) 16292.0 2.05187
\(399\) 281.571 0.0353288
\(400\) −9623.96 −1.20299
\(401\) −11767.6 −1.46545 −0.732726 0.680524i \(-0.761752\pi\)
−0.732726 + 0.680524i \(0.761752\pi\)
\(402\) 1151.59 0.142875
\(403\) 4019.99 0.496898
\(404\) 3658.10 0.450488
\(405\) −1270.46 −0.155875
\(406\) 1728.47 0.211287
\(407\) −3695.43 −0.450063
\(408\) −2731.95 −0.331500
\(409\) 5071.33 0.613108 0.306554 0.951853i \(-0.400824\pi\)
0.306554 + 0.951853i \(0.400824\pi\)
\(410\) −17798.5 −2.14392
\(411\) 3440.61 0.412927
\(412\) 5706.93 0.682427
\(413\) −4191.02 −0.499338
\(414\) 1891.67 0.224566
\(415\) 19153.6 2.26558
\(416\) 9990.10 1.17742
\(417\) −3038.99 −0.356883
\(418\) −525.292 −0.0614662
\(419\) 5085.27 0.592916 0.296458 0.955046i \(-0.404194\pi\)
0.296458 + 0.955046i \(0.404194\pi\)
\(420\) −1543.02 −0.179266
\(421\) 15655.8 1.81239 0.906196 0.422859i \(-0.138973\pi\)
0.906196 + 0.422859i \(0.138973\pi\)
\(422\) 15873.7 1.83109
\(423\) −5200.01 −0.597715
\(424\) 3726.00 0.426770
\(425\) −9332.55 −1.06517
\(426\) −4331.45 −0.492628
\(427\) −2365.15 −0.268051
\(428\) −4090.62 −0.461981
\(429\) 1746.22 0.196523
\(430\) −3198.72 −0.358735
\(431\) 5775.20 0.645433 0.322717 0.946496i \(-0.395404\pi\)
0.322717 + 0.946496i \(0.395404\pi\)
\(432\) −2147.34 −0.239153
\(433\) −6756.97 −0.749929 −0.374964 0.927039i \(-0.622345\pi\)
−0.374964 + 0.927039i \(0.622345\pi\)
\(434\) −1893.99 −0.209480
\(435\) 3262.28 0.359573
\(436\) 592.255 0.0650547
\(437\) −791.283 −0.0866183
\(438\) 1424.27 0.155375
\(439\) −9068.21 −0.985882 −0.492941 0.870063i \(-0.664078\pi\)
−0.492941 + 0.870063i \(0.664078\pi\)
\(440\) −2037.21 −0.220727
\(441\) 441.000 0.0476190
\(442\) 14534.8 1.56414
\(443\) −7095.86 −0.761026 −0.380513 0.924776i \(-0.624252\pi\)
−0.380513 + 0.924776i \(0.624252\pi\)
\(444\) −4721.40 −0.504657
\(445\) −24784.8 −2.64025
\(446\) 10697.1 1.13570
\(447\) −6710.72 −0.710081
\(448\) −253.014 −0.0266826
\(449\) 630.680 0.0662887 0.0331443 0.999451i \(-0.489448\pi\)
0.0331443 + 0.999451i \(0.489448\pi\)
\(450\) −3878.80 −0.406330
\(451\) −3504.79 −0.365929
\(452\) 1205.45 0.125441
\(453\) 1909.97 0.198098
\(454\) −4459.78 −0.461030
\(455\) −5809.75 −0.598605
\(456\) 474.960 0.0487764
\(457\) 12432.5 1.27258 0.636290 0.771450i \(-0.280468\pi\)
0.636290 + 0.771450i \(0.280468\pi\)
\(458\) −10196.0 −1.04024
\(459\) −2082.32 −0.211753
\(460\) 4336.27 0.439521
\(461\) 13057.3 1.31918 0.659588 0.751627i \(-0.270731\pi\)
0.659588 + 0.751627i \(0.270731\pi\)
\(462\) −822.719 −0.0828492
\(463\) 8608.12 0.864046 0.432023 0.901863i \(-0.357800\pi\)
0.432023 + 0.901863i \(0.357800\pi\)
\(464\) 5513.94 0.551677
\(465\) −3574.68 −0.356498
\(466\) −17700.6 −1.75958
\(467\) 14997.6 1.48610 0.743049 0.669237i \(-0.233379\pi\)
0.743049 + 0.669237i \(0.233379\pi\)
\(468\) 2231.03 0.220362
\(469\) −754.455 −0.0742804
\(470\) −32275.8 −3.16760
\(471\) −10684.8 −1.04528
\(472\) −7069.51 −0.689408
\(473\) −629.875 −0.0612298
\(474\) 9851.66 0.954645
\(475\) 1622.50 0.156727
\(476\) −2529.07 −0.243529
\(477\) 2839.99 0.272609
\(478\) −16390.9 −1.56841
\(479\) −20698.8 −1.97443 −0.987216 0.159386i \(-0.949048\pi\)
−0.987216 + 0.159386i \(0.949048\pi\)
\(480\) −8883.44 −0.844733
\(481\) −17776.9 −1.68515
\(482\) 14770.8 1.39583
\(483\) −1239.32 −0.116751
\(484\) 566.844 0.0532348
\(485\) 4503.01 0.421590
\(486\) −865.457 −0.0807777
\(487\) 15390.1 1.43202 0.716008 0.698092i \(-0.245968\pi\)
0.716008 + 0.698092i \(0.245968\pi\)
\(488\) −3989.59 −0.370083
\(489\) 7621.80 0.704846
\(490\) 2737.23 0.252358
\(491\) 10771.4 0.990030 0.495015 0.868884i \(-0.335163\pi\)
0.495015 + 0.868884i \(0.335163\pi\)
\(492\) −4477.84 −0.410318
\(493\) 5346.98 0.488471
\(494\) −2526.93 −0.230145
\(495\) −1552.78 −0.140995
\(496\) −6041.96 −0.546960
\(497\) 2837.73 0.256116
\(498\) 13047.8 1.17407
\(499\) −5999.79 −0.538251 −0.269126 0.963105i \(-0.586735\pi\)
−0.269126 + 0.963105i \(0.586735\pi\)
\(500\) 293.284 0.0262321
\(501\) 5211.28 0.464717
\(502\) −3520.18 −0.312975
\(503\) 17610.5 1.56106 0.780528 0.625121i \(-0.214950\pi\)
0.780528 + 0.625121i \(0.214950\pi\)
\(504\) 743.889 0.0657450
\(505\) −12247.6 −1.07923
\(506\) 2312.04 0.203128
\(507\) 1809.22 0.158482
\(508\) 351.092 0.0306637
\(509\) −5920.42 −0.515556 −0.257778 0.966204i \(-0.582990\pi\)
−0.257778 + 0.966204i \(0.582990\pi\)
\(510\) −12924.7 −1.12219
\(511\) −933.101 −0.0807788
\(512\) −7502.22 −0.647567
\(513\) 362.020 0.0311570
\(514\) 10172.1 0.872907
\(515\) −19107.3 −1.63489
\(516\) −804.750 −0.0686572
\(517\) −6355.57 −0.540653
\(518\) 8375.47 0.710419
\(519\) 12584.9 1.06438
\(520\) −9800.03 −0.826461
\(521\) −15886.2 −1.33587 −0.667935 0.744220i \(-0.732821\pi\)
−0.667935 + 0.744220i \(0.732821\pi\)
\(522\) 2222.32 0.186338
\(523\) 1728.58 0.144523 0.0722613 0.997386i \(-0.476978\pi\)
0.0722613 + 0.997386i \(0.476978\pi\)
\(524\) −12350.2 −1.02962
\(525\) 2541.18 0.211250
\(526\) −20558.9 −1.70420
\(527\) −5859.02 −0.484294
\(528\) −2624.53 −0.216322
\(529\) −8684.21 −0.713751
\(530\) 17627.4 1.44469
\(531\) −5388.45 −0.440375
\(532\) 439.688 0.0358325
\(533\) −16859.9 −1.37013
\(534\) −16883.8 −1.36823
\(535\) 13695.8 1.10677
\(536\) −1272.63 −0.102555
\(537\) 4049.55 0.325420
\(538\) 5791.23 0.464085
\(539\) 539.000 0.0430730
\(540\) −1983.89 −0.158098
\(541\) 1941.99 0.154331 0.0771653 0.997018i \(-0.475413\pi\)
0.0771653 + 0.997018i \(0.475413\pi\)
\(542\) 6468.51 0.512631
\(543\) −3594.17 −0.284053
\(544\) −14560.3 −1.14755
\(545\) −1982.92 −0.155852
\(546\) −3957.70 −0.310209
\(547\) −1450.56 −0.113384 −0.0566922 0.998392i \(-0.518055\pi\)
−0.0566922 + 0.998392i \(0.518055\pi\)
\(548\) 5372.70 0.418814
\(549\) −3040.91 −0.236399
\(550\) −4740.76 −0.367539
\(551\) −929.593 −0.0718729
\(552\) −2090.51 −0.161192
\(553\) −6454.26 −0.496317
\(554\) 28820.0 2.21019
\(555\) 15807.7 1.20901
\(556\) −4745.55 −0.361972
\(557\) 20821.8 1.58393 0.791965 0.610567i \(-0.209058\pi\)
0.791965 + 0.610567i \(0.209058\pi\)
\(558\) −2435.13 −0.184744
\(559\) −3030.03 −0.229260
\(560\) 8731.94 0.658914
\(561\) −2545.06 −0.191538
\(562\) 28639.6 2.14962
\(563\) −3694.11 −0.276533 −0.138267 0.990395i \(-0.544153\pi\)
−0.138267 + 0.990395i \(0.544153\pi\)
\(564\) −8120.10 −0.606237
\(565\) −4035.95 −0.300520
\(566\) −2295.30 −0.170457
\(567\) 567.000 0.0419961
\(568\) 4786.75 0.353605
\(569\) −16649.2 −1.22666 −0.613332 0.789825i \(-0.710171\pi\)
−0.613332 + 0.789825i \(0.710171\pi\)
\(570\) 2247.01 0.165117
\(571\) 546.005 0.0400168 0.0200084 0.999800i \(-0.493631\pi\)
0.0200084 + 0.999800i \(0.493631\pi\)
\(572\) 2726.81 0.199325
\(573\) 2294.62 0.167293
\(574\) 7943.41 0.577616
\(575\) −7141.34 −0.517938
\(576\) −325.304 −0.0235318
\(577\) 7910.36 0.570732 0.285366 0.958419i \(-0.407885\pi\)
0.285366 + 0.958419i \(0.407885\pi\)
\(578\) −3686.11 −0.265263
\(579\) −6058.56 −0.434862
\(580\) 5094.22 0.364700
\(581\) −8548.19 −0.610394
\(582\) 3067.53 0.218476
\(583\) 3471.10 0.246584
\(584\) −1573.98 −0.111527
\(585\) −7469.68 −0.527920
\(586\) 22979.0 1.61989
\(587\) −744.718 −0.0523642 −0.0261821 0.999657i \(-0.508335\pi\)
−0.0261821 + 0.999657i \(0.508335\pi\)
\(588\) 688.645 0.0482980
\(589\) 1018.61 0.0712584
\(590\) −33445.4 −2.33377
\(591\) 4499.83 0.313195
\(592\) 26718.4 1.85493
\(593\) −8167.66 −0.565608 −0.282804 0.959178i \(-0.591265\pi\)
−0.282804 + 0.959178i \(0.591265\pi\)
\(594\) −1057.78 −0.0730661
\(595\) 8467.55 0.583421
\(596\) −10479.1 −0.720205
\(597\) −13723.2 −0.940795
\(598\) 11122.1 0.760564
\(599\) 12115.4 0.826413 0.413206 0.910637i \(-0.364409\pi\)
0.413206 + 0.910637i \(0.364409\pi\)
\(600\) 4286.52 0.291661
\(601\) 13606.0 0.923458 0.461729 0.887021i \(-0.347229\pi\)
0.461729 + 0.887021i \(0.347229\pi\)
\(602\) 1427.58 0.0966506
\(603\) −970.014 −0.0655092
\(604\) 2982.52 0.200922
\(605\) −1897.84 −0.127534
\(606\) −8343.30 −0.559280
\(607\) −11404.4 −0.762585 −0.381293 0.924454i \(-0.624521\pi\)
−0.381293 + 0.924454i \(0.624521\pi\)
\(608\) 2531.36 0.168849
\(609\) −1455.94 −0.0968763
\(610\) −18874.5 −1.25280
\(611\) −30573.6 −2.02435
\(612\) −3251.66 −0.214772
\(613\) 15266.2 1.00587 0.502934 0.864325i \(-0.332254\pi\)
0.502934 + 0.864325i \(0.332254\pi\)
\(614\) −14872.8 −0.977550
\(615\) 14992.2 0.982999
\(616\) 909.198 0.0594685
\(617\) 23638.9 1.54241 0.771205 0.636586i \(-0.219654\pi\)
0.771205 + 0.636586i \(0.219654\pi\)
\(618\) −13016.2 −0.847232
\(619\) 27681.1 1.79741 0.898706 0.438551i \(-0.144508\pi\)
0.898706 + 0.438551i \(0.144508\pi\)
\(620\) −5582.05 −0.361581
\(621\) −1593.41 −0.102965
\(622\) 30697.8 1.97889
\(623\) 11061.4 0.711338
\(624\) −12625.4 −0.809966
\(625\) −16108.0 −1.03091
\(626\) 36687.0 2.34235
\(627\) 442.469 0.0281826
\(628\) −16684.8 −1.06019
\(629\) 25909.3 1.64241
\(630\) 3519.29 0.222558
\(631\) 18208.7 1.14877 0.574386 0.818585i \(-0.305241\pi\)
0.574386 + 0.818585i \(0.305241\pi\)
\(632\) −10887.2 −0.685237
\(633\) −13370.9 −0.839564
\(634\) −27410.6 −1.71706
\(635\) −1175.49 −0.0734610
\(636\) 4434.80 0.276496
\(637\) 2592.87 0.161277
\(638\) 2716.17 0.168549
\(639\) 3648.51 0.225873
\(640\) 21670.1 1.33841
\(641\) −23373.8 −1.44026 −0.720131 0.693838i \(-0.755918\pi\)
−0.720131 + 0.693838i \(0.755918\pi\)
\(642\) 9329.80 0.573548
\(643\) 6742.72 0.413541 0.206770 0.978389i \(-0.433705\pi\)
0.206770 + 0.978389i \(0.433705\pi\)
\(644\) −1935.26 −0.118416
\(645\) 2694.37 0.164482
\(646\) 3682.92 0.224307
\(647\) −17592.4 −1.06898 −0.534490 0.845175i \(-0.679496\pi\)
−0.534490 + 0.845175i \(0.679496\pi\)
\(648\) 956.429 0.0579816
\(649\) −6585.89 −0.398334
\(650\) −22805.5 −1.37616
\(651\) 1595.36 0.0960480
\(652\) 11901.8 0.714896
\(653\) 20074.0 1.20300 0.601498 0.798875i \(-0.294571\pi\)
0.601498 + 0.798875i \(0.294571\pi\)
\(654\) −1350.80 −0.0807653
\(655\) 41349.5 2.46666
\(656\) 25340.0 1.50817
\(657\) −1199.70 −0.0712402
\(658\) 14404.5 0.853416
\(659\) −13778.4 −0.814460 −0.407230 0.913326i \(-0.633505\pi\)
−0.407230 + 0.913326i \(0.633505\pi\)
\(660\) −2424.75 −0.143005
\(661\) −7724.16 −0.454516 −0.227258 0.973835i \(-0.572976\pi\)
−0.227258 + 0.973835i \(0.572976\pi\)
\(662\) −22517.6 −1.32201
\(663\) −12243.1 −0.717167
\(664\) −14419.3 −0.842737
\(665\) −1472.11 −0.0858438
\(666\) 10768.5 0.626531
\(667\) 4091.55 0.237519
\(668\) 8137.69 0.471343
\(669\) −9010.49 −0.520726
\(670\) −6020.74 −0.347166
\(671\) −3716.67 −0.213831
\(672\) 3964.64 0.227589
\(673\) −18081.2 −1.03563 −0.517816 0.855492i \(-0.673255\pi\)
−0.517816 + 0.855492i \(0.673255\pi\)
\(674\) −5613.21 −0.320791
\(675\) 3267.23 0.186305
\(676\) 2825.19 0.160741
\(677\) −23199.8 −1.31705 −0.658523 0.752561i \(-0.728818\pi\)
−0.658523 + 0.752561i \(0.728818\pi\)
\(678\) −2749.36 −0.155735
\(679\) −2009.68 −0.113585
\(680\) 14283.3 0.805497
\(681\) 3756.60 0.211385
\(682\) −2976.27 −0.167107
\(683\) 13339.6 0.747329 0.373665 0.927564i \(-0.378101\pi\)
0.373665 + 0.927564i \(0.378101\pi\)
\(684\) 565.313 0.0316013
\(685\) −17988.3 −1.00335
\(686\) −1221.61 −0.0679904
\(687\) 8588.40 0.476955
\(688\) 4554.07 0.252358
\(689\) 16697.8 0.923274
\(690\) −9890.07 −0.545664
\(691\) −17221.4 −0.948097 −0.474048 0.880499i \(-0.657208\pi\)
−0.474048 + 0.880499i \(0.657208\pi\)
\(692\) 19652.0 1.07956
\(693\) 693.000 0.0379869
\(694\) −17769.6 −0.971938
\(695\) 15888.5 0.867175
\(696\) −2455.91 −0.133752
\(697\) 24572.8 1.33538
\(698\) −15489.1 −0.839930
\(699\) 14909.8 0.806780
\(700\) 3968.18 0.214262
\(701\) −27196.5 −1.46533 −0.732665 0.680589i \(-0.761724\pi\)
−0.732665 + 0.680589i \(0.761724\pi\)
\(702\) −5088.48 −0.273579
\(703\) −4504.44 −0.241661
\(704\) −397.594 −0.0212853
\(705\) 27186.8 1.45236
\(706\) 13265.8 0.707172
\(707\) 5466.07 0.290768
\(708\) −8414.35 −0.446654
\(709\) 22682.8 1.20151 0.600755 0.799434i \(-0.294867\pi\)
0.600755 + 0.799434i \(0.294867\pi\)
\(710\) 22645.8 1.19702
\(711\) −8298.34 −0.437710
\(712\) 18658.5 0.982105
\(713\) −4483.36 −0.235488
\(714\) 5768.24 0.302340
\(715\) −9129.61 −0.477522
\(716\) 6323.58 0.330060
\(717\) 13806.5 0.719127
\(718\) 20712.3 1.07657
\(719\) 10878.2 0.564241 0.282121 0.959379i \(-0.408962\pi\)
0.282121 + 0.959379i \(0.408962\pi\)
\(720\) 11226.8 0.581108
\(721\) 8527.51 0.440473
\(722\) 23788.4 1.22619
\(723\) −12441.9 −0.639997
\(724\) −5612.49 −0.288103
\(725\) −8389.58 −0.429767
\(726\) −1292.84 −0.0660908
\(727\) −2793.35 −0.142503 −0.0712514 0.997458i \(-0.522699\pi\)
−0.0712514 + 0.997458i \(0.522699\pi\)
\(728\) 4373.71 0.222666
\(729\) 729.000 0.0370370
\(730\) −7446.38 −0.377538
\(731\) 4416.17 0.223445
\(732\) −4748.54 −0.239769
\(733\) −7597.31 −0.382828 −0.191414 0.981509i \(-0.561307\pi\)
−0.191414 + 0.981509i \(0.561307\pi\)
\(734\) −33116.9 −1.66535
\(735\) −2305.64 −0.115707
\(736\) −11141.6 −0.557997
\(737\) −1185.57 −0.0592553
\(738\) 10213.0 0.509409
\(739\) −14304.7 −0.712052 −0.356026 0.934476i \(-0.615868\pi\)
−0.356026 + 0.934476i \(0.615868\pi\)
\(740\) 24684.5 1.22625
\(741\) 2128.50 0.105523
\(742\) −7867.06 −0.389230
\(743\) 31212.2 1.54114 0.770569 0.637357i \(-0.219972\pi\)
0.770569 + 0.637357i \(0.219972\pi\)
\(744\) 2691.10 0.132608
\(745\) 35085.1 1.72539
\(746\) −13170.1 −0.646369
\(747\) −10990.5 −0.538317
\(748\) −3974.25 −0.194269
\(749\) −6112.37 −0.298186
\(750\) −668.915 −0.0325671
\(751\) 30743.1 1.49378 0.746891 0.664946i \(-0.231546\pi\)
0.746891 + 0.664946i \(0.231546\pi\)
\(752\) 45951.5 2.22830
\(753\) 2965.15 0.143501
\(754\) 13066.2 0.631090
\(755\) −9985.75 −0.481349
\(756\) 885.400 0.0425948
\(757\) 13176.9 0.632657 0.316328 0.948650i \(-0.397550\pi\)
0.316328 + 0.948650i \(0.397550\pi\)
\(758\) −7268.07 −0.348270
\(759\) −1947.50 −0.0931354
\(760\) −2483.20 −0.118520
\(761\) −10696.4 −0.509520 −0.254760 0.967004i \(-0.581996\pi\)
−0.254760 + 0.967004i \(0.581996\pi\)
\(762\) −800.761 −0.0380689
\(763\) 884.970 0.0419896
\(764\) 3583.17 0.169679
\(765\) 10886.8 0.514529
\(766\) 11795.6 0.556385
\(767\) −31681.5 −1.49147
\(768\) 15629.5 0.734350
\(769\) −7724.46 −0.362225 −0.181113 0.983462i \(-0.557970\pi\)
−0.181113 + 0.983462i \(0.557970\pi\)
\(770\) 4301.35 0.201312
\(771\) −8568.30 −0.400233
\(772\) −9460.77 −0.441063
\(773\) 28801.0 1.34010 0.670051 0.742315i \(-0.266272\pi\)
0.670051 + 0.742315i \(0.266272\pi\)
\(774\) 1835.45 0.0852378
\(775\) 9192.98 0.426092
\(776\) −3389.97 −0.156821
\(777\) −7054.91 −0.325731
\(778\) −46638.7 −2.14920
\(779\) −4272.07 −0.196486
\(780\) −11664.3 −0.535448
\(781\) 4459.29 0.204310
\(782\) −16210.2 −0.741272
\(783\) −1871.92 −0.0854369
\(784\) −3897.03 −0.177525
\(785\) 55862.3 2.53989
\(786\) 28168.0 1.27827
\(787\) −11812.0 −0.535007 −0.267504 0.963557i \(-0.586199\pi\)
−0.267504 + 0.963557i \(0.586199\pi\)
\(788\) 7026.72 0.317661
\(789\) 17317.4 0.781387
\(790\) −51506.6 −2.31965
\(791\) 1801.23 0.0809662
\(792\) 1168.97 0.0524463
\(793\) −17879.1 −0.800637
\(794\) −54702.1 −2.44497
\(795\) −14848.1 −0.662400
\(796\) −21429.6 −0.954209
\(797\) −26884.2 −1.19484 −0.597420 0.801928i \(-0.703808\pi\)
−0.597420 + 0.801928i \(0.703808\pi\)
\(798\) −1002.83 −0.0444859
\(799\) 44560.1 1.97300
\(800\) 22845.5 1.00964
\(801\) 14221.7 0.627341
\(802\) 41910.9 1.84530
\(803\) −1466.30 −0.0644392
\(804\) −1514.73 −0.0664432
\(805\) 6479.43 0.283689
\(806\) −14317.4 −0.625694
\(807\) −4878.12 −0.212786
\(808\) 9220.30 0.401447
\(809\) −18360.8 −0.797936 −0.398968 0.916965i \(-0.630632\pi\)
−0.398968 + 0.916965i \(0.630632\pi\)
\(810\) 4524.80 0.196278
\(811\) 17033.7 0.737528 0.368764 0.929523i \(-0.379781\pi\)
0.368764 + 0.929523i \(0.379781\pi\)
\(812\) −2273.53 −0.0982576
\(813\) −5448.61 −0.235044
\(814\) 13161.5 0.566718
\(815\) −39848.4 −1.71267
\(816\) 18401.1 0.789420
\(817\) −767.768 −0.0328774
\(818\) −18061.8 −0.772026
\(819\) 3333.69 0.142233
\(820\) 23411.1 0.997015
\(821\) −29675.1 −1.26147 −0.630735 0.775998i \(-0.717246\pi\)
−0.630735 + 0.775998i \(0.717246\pi\)
\(822\) −12253.9 −0.519957
\(823\) −24677.2 −1.04519 −0.522596 0.852581i \(-0.675036\pi\)
−0.522596 + 0.852581i \(0.675036\pi\)
\(824\) 14384.4 0.608137
\(825\) 3993.28 0.168519
\(826\) 14926.5 0.628766
\(827\) −9168.43 −0.385511 −0.192755 0.981247i \(-0.561742\pi\)
−0.192755 + 0.981247i \(0.561742\pi\)
\(828\) −2488.19 −0.104433
\(829\) 8065.03 0.337889 0.168945 0.985626i \(-0.445964\pi\)
0.168945 + 0.985626i \(0.445964\pi\)
\(830\) −68216.7 −2.85281
\(831\) −24275.9 −1.01338
\(832\) −1912.63 −0.0796979
\(833\) −3779.03 −0.157186
\(834\) 10823.5 0.449387
\(835\) −27245.7 −1.12919
\(836\) 690.938 0.0285844
\(837\) 2051.18 0.0847063
\(838\) −18111.5 −0.746599
\(839\) −29665.7 −1.22071 −0.610354 0.792129i \(-0.708973\pi\)
−0.610354 + 0.792129i \(0.708973\pi\)
\(840\) −3889.22 −0.159751
\(841\) −19582.3 −0.802915
\(842\) −55758.9 −2.28216
\(843\) −24124.0 −0.985615
\(844\) −20879.3 −0.851535
\(845\) −9458.99 −0.385088
\(846\) 18520.1 0.752642
\(847\) 847.000 0.0343604
\(848\) −25096.5 −1.01629
\(849\) 1933.39 0.0781554
\(850\) 33238.4 1.34126
\(851\) 19826.0 0.798622
\(852\) 5697.34 0.229094
\(853\) −33087.0 −1.32811 −0.664056 0.747683i \(-0.731166\pi\)
−0.664056 + 0.747683i \(0.731166\pi\)
\(854\) 8423.61 0.337529
\(855\) −1892.72 −0.0757071
\(856\) −10310.5 −0.411689
\(857\) −8204.78 −0.327036 −0.163518 0.986540i \(-0.552284\pi\)
−0.163518 + 0.986540i \(0.552284\pi\)
\(858\) −6219.25 −0.247461
\(859\) 19406.0 0.770808 0.385404 0.922748i \(-0.374062\pi\)
0.385404 + 0.922748i \(0.374062\pi\)
\(860\) 4207.41 0.166827
\(861\) −6690.97 −0.264840
\(862\) −20568.7 −0.812729
\(863\) −3352.45 −0.132235 −0.0661174 0.997812i \(-0.521061\pi\)
−0.0661174 + 0.997812i \(0.521061\pi\)
\(864\) 5097.40 0.200714
\(865\) −65796.6 −2.58630
\(866\) 24065.3 0.944310
\(867\) 3104.92 0.121625
\(868\) 2491.24 0.0974174
\(869\) −10142.4 −0.395924
\(870\) −11618.8 −0.452774
\(871\) −5703.22 −0.221867
\(872\) 1492.79 0.0579727
\(873\) −2583.87 −0.100173
\(874\) 2818.20 0.109070
\(875\) 438.236 0.0169315
\(876\) −1873.40 −0.0722560
\(877\) −20076.9 −0.773033 −0.386516 0.922283i \(-0.626322\pi\)
−0.386516 + 0.922283i \(0.626322\pi\)
\(878\) 32296.9 1.24142
\(879\) −19355.9 −0.742728
\(880\) 13721.6 0.525632
\(881\) −14800.2 −0.565982 −0.282991 0.959123i \(-0.591327\pi\)
−0.282991 + 0.959123i \(0.591327\pi\)
\(882\) −1570.64 −0.0599619
\(883\) −19955.4 −0.760534 −0.380267 0.924877i \(-0.624168\pi\)
−0.380267 + 0.924877i \(0.624168\pi\)
\(884\) −19118.2 −0.727392
\(885\) 28172.0 1.07005
\(886\) 25272.3 0.958283
\(887\) −9205.47 −0.348466 −0.174233 0.984704i \(-0.555745\pi\)
−0.174233 + 0.984704i \(0.555745\pi\)
\(888\) −11900.4 −0.449719
\(889\) 524.615 0.0197919
\(890\) 88272.3 3.32460
\(891\) 891.000 0.0335013
\(892\) −14070.4 −0.528151
\(893\) −7746.94 −0.290304
\(894\) 23900.6 0.894133
\(895\) −21171.9 −0.790725
\(896\) −9671.26 −0.360596
\(897\) −9368.49 −0.348723
\(898\) −2246.20 −0.0834706
\(899\) −5267.02 −0.195400
\(900\) 5101.95 0.188961
\(901\) −24336.6 −0.899854
\(902\) 12482.5 0.460778
\(903\) −1202.49 −0.0443149
\(904\) 3038.35 0.111786
\(905\) 18791.1 0.690207
\(906\) −6802.47 −0.249445
\(907\) 6722.78 0.246115 0.123057 0.992400i \(-0.460730\pi\)
0.123057 + 0.992400i \(0.460730\pi\)
\(908\) 5866.13 0.214399
\(909\) 7027.81 0.256433
\(910\) 20691.7 0.753763
\(911\) 51855.3 1.88589 0.942944 0.332952i \(-0.108045\pi\)
0.942944 + 0.332952i \(0.108045\pi\)
\(912\) −3199.10 −0.116154
\(913\) −13432.9 −0.486926
\(914\) −44279.1 −1.60243
\(915\) 15898.5 0.574415
\(916\) 13411.2 0.483755
\(917\) −18454.1 −0.664568
\(918\) 7416.31 0.266639
\(919\) −55119.5 −1.97848 −0.989240 0.146302i \(-0.953263\pi\)
−0.989240 + 0.146302i \(0.953263\pi\)
\(920\) 10929.7 0.391674
\(921\) 12527.8 0.448213
\(922\) −46504.4 −1.66111
\(923\) 21451.5 0.764989
\(924\) 1082.16 0.0385285
\(925\) −40652.6 −1.44502
\(926\) −30658.3 −1.08801
\(927\) 10963.9 0.388461
\(928\) −13089.1 −0.463007
\(929\) 31459.7 1.11104 0.555522 0.831502i \(-0.312518\pi\)
0.555522 + 0.831502i \(0.312518\pi\)
\(930\) 12731.4 0.448902
\(931\) 656.999 0.0231281
\(932\) 23282.4 0.818283
\(933\) −25857.7 −0.907333
\(934\) −53414.9 −1.87129
\(935\) 13306.1 0.465409
\(936\) 5623.35 0.196373
\(937\) −13745.6 −0.479242 −0.239621 0.970867i \(-0.577023\pi\)
−0.239621 + 0.970867i \(0.577023\pi\)
\(938\) 2687.03 0.0935338
\(939\) −30902.5 −1.07398
\(940\) 42453.6 1.47307
\(941\) −29814.2 −1.03285 −0.516427 0.856331i \(-0.672738\pi\)
−0.516427 + 0.856331i \(0.672738\pi\)
\(942\) 38054.3 1.31622
\(943\) 18803.3 0.649330
\(944\) 47616.7 1.64173
\(945\) −2964.40 −0.102044
\(946\) 2243.33 0.0771005
\(947\) 32410.4 1.11214 0.556070 0.831135i \(-0.312309\pi\)
0.556070 + 0.831135i \(0.312309\pi\)
\(948\) −12958.3 −0.443951
\(949\) −7053.67 −0.241277
\(950\) −5778.61 −0.197351
\(951\) 23088.8 0.787281
\(952\) −6374.56 −0.217018
\(953\) 8931.28 0.303581 0.151790 0.988413i \(-0.451496\pi\)
0.151790 + 0.988413i \(0.451496\pi\)
\(954\) −10114.8 −0.343269
\(955\) −11996.8 −0.406499
\(956\) 21559.6 0.729381
\(957\) −2287.91 −0.0772806
\(958\) 73719.9 2.48620
\(959\) 8028.10 0.270324
\(960\) 1700.76 0.0571790
\(961\) −24019.6 −0.806271
\(962\) 63313.4 2.12194
\(963\) −7858.76 −0.262975
\(964\) −19428.6 −0.649122
\(965\) 31675.5 1.05665
\(966\) 4413.90 0.147013
\(967\) 28665.0 0.953262 0.476631 0.879104i \(-0.341858\pi\)
0.476631 + 0.879104i \(0.341858\pi\)
\(968\) 1428.74 0.0474395
\(969\) −3102.23 −0.102846
\(970\) −16037.7 −0.530866
\(971\) −40925.2 −1.35258 −0.676288 0.736637i \(-0.736413\pi\)
−0.676288 + 0.736637i \(0.736413\pi\)
\(972\) 1138.37 0.0375651
\(973\) −7090.99 −0.233635
\(974\) −54812.6 −1.80319
\(975\) 19209.8 0.630979
\(976\) 26871.9 0.881300
\(977\) −21288.8 −0.697124 −0.348562 0.937286i \(-0.613330\pi\)
−0.348562 + 0.937286i \(0.613330\pi\)
\(978\) −27145.4 −0.887541
\(979\) 17382.1 0.567452
\(980\) −3600.39 −0.117357
\(981\) 1137.82 0.0370314
\(982\) −38362.8 −1.24664
\(983\) −53128.8 −1.72385 −0.861925 0.507035i \(-0.830741\pi\)
−0.861925 + 0.507035i \(0.830741\pi\)
\(984\) −11286.5 −0.365650
\(985\) −23526.1 −0.761019
\(986\) −19043.6 −0.615082
\(987\) −12133.4 −0.391296
\(988\) 3323.77 0.107028
\(989\) 3379.29 0.108650
\(990\) 5530.31 0.177540
\(991\) −17978.4 −0.576290 −0.288145 0.957587i \(-0.593039\pi\)
−0.288145 + 0.957587i \(0.593039\pi\)
\(992\) 14342.5 0.459048
\(993\) 18967.2 0.606150
\(994\) −10106.7 −0.322501
\(995\) 71748.1 2.28600
\(996\) −17162.3 −0.545992
\(997\) 10063.9 0.319687 0.159844 0.987142i \(-0.448901\pi\)
0.159844 + 0.987142i \(0.448901\pi\)
\(998\) 21368.6 0.677766
\(999\) −9070.59 −0.287268
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.f.1.1 2
3.2 odd 2 693.4.a.k.1.2 2
7.6 odd 2 1617.4.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.f.1.1 2 1.1 even 1 trivial
693.4.a.k.1.2 2 3.2 odd 2
1617.4.a.i.1.1 2 7.6 odd 2