Properties

Label 231.4.a.d.1.1
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{2} +3.00000 q^{3} +1.00000 q^{4} -14.0000 q^{5} +9.00000 q^{6} -7.00000 q^{7} -21.0000 q^{8} +9.00000 q^{9} -42.0000 q^{10} -11.0000 q^{11} +3.00000 q^{12} +2.00000 q^{13} -21.0000 q^{14} -42.0000 q^{15} -71.0000 q^{16} -74.0000 q^{17} +27.0000 q^{18} -14.0000 q^{20} -21.0000 q^{21} -33.0000 q^{22} -148.000 q^{23} -63.0000 q^{24} +71.0000 q^{25} +6.00000 q^{26} +27.0000 q^{27} -7.00000 q^{28} +26.0000 q^{29} -126.000 q^{30} +112.000 q^{31} -45.0000 q^{32} -33.0000 q^{33} -222.000 q^{34} +98.0000 q^{35} +9.00000 q^{36} -98.0000 q^{37} +6.00000 q^{39} +294.000 q^{40} -10.0000 q^{41} -63.0000 q^{42} +208.000 q^{43} -11.0000 q^{44} -126.000 q^{45} -444.000 q^{46} +460.000 q^{47} -213.000 q^{48} +49.0000 q^{49} +213.000 q^{50} -222.000 q^{51} +2.00000 q^{52} +258.000 q^{53} +81.0000 q^{54} +154.000 q^{55} +147.000 q^{56} +78.0000 q^{58} -204.000 q^{59} -42.0000 q^{60} +178.000 q^{61} +336.000 q^{62} -63.0000 q^{63} +433.000 q^{64} -28.0000 q^{65} -99.0000 q^{66} -924.000 q^{67} -74.0000 q^{68} -444.000 q^{69} +294.000 q^{70} -748.000 q^{71} -189.000 q^{72} -230.000 q^{73} -294.000 q^{74} +213.000 q^{75} +77.0000 q^{77} +18.0000 q^{78} -456.000 q^{79} +994.000 q^{80} +81.0000 q^{81} -30.0000 q^{82} -228.000 q^{83} -21.0000 q^{84} +1036.00 q^{85} +624.000 q^{86} +78.0000 q^{87} +231.000 q^{88} -198.000 q^{89} -378.000 q^{90} -14.0000 q^{91} -148.000 q^{92} +336.000 q^{93} +1380.00 q^{94} -135.000 q^{96} +562.000 q^{97} +147.000 q^{98} -99.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.00000 1.06066 0.530330 0.847791i \(-0.322068\pi\)
0.530330 + 0.847791i \(0.322068\pi\)
\(3\) 3.00000 0.577350
\(4\) 1.00000 0.125000
\(5\) −14.0000 −1.25220 −0.626099 0.779744i \(-0.715349\pi\)
−0.626099 + 0.779744i \(0.715349\pi\)
\(6\) 9.00000 0.612372
\(7\) −7.00000 −0.377964
\(8\) −21.0000 −0.928078
\(9\) 9.00000 0.333333
\(10\) −42.0000 −1.32816
\(11\) −11.0000 −0.301511
\(12\) 3.00000 0.0721688
\(13\) 2.00000 0.0426692 0.0213346 0.999772i \(-0.493208\pi\)
0.0213346 + 0.999772i \(0.493208\pi\)
\(14\) −21.0000 −0.400892
\(15\) −42.0000 −0.722957
\(16\) −71.0000 −1.10938
\(17\) −74.0000 −1.05574 −0.527872 0.849324i \(-0.677010\pi\)
−0.527872 + 0.849324i \(0.677010\pi\)
\(18\) 27.0000 0.353553
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) −14.0000 −0.156525
\(21\) −21.0000 −0.218218
\(22\) −33.0000 −0.319801
\(23\) −148.000 −1.34174 −0.670872 0.741573i \(-0.734080\pi\)
−0.670872 + 0.741573i \(0.734080\pi\)
\(24\) −63.0000 −0.535826
\(25\) 71.0000 0.568000
\(26\) 6.00000 0.0452576
\(27\) 27.0000 0.192450
\(28\) −7.00000 −0.0472456
\(29\) 26.0000 0.166485 0.0832427 0.996529i \(-0.473472\pi\)
0.0832427 + 0.996529i \(0.473472\pi\)
\(30\) −126.000 −0.766812
\(31\) 112.000 0.648897 0.324448 0.945903i \(-0.394821\pi\)
0.324448 + 0.945903i \(0.394821\pi\)
\(32\) −45.0000 −0.248592
\(33\) −33.0000 −0.174078
\(34\) −222.000 −1.11978
\(35\) 98.0000 0.473286
\(36\) 9.00000 0.0416667
\(37\) −98.0000 −0.435435 −0.217718 0.976012i \(-0.569861\pi\)
−0.217718 + 0.976012i \(0.569861\pi\)
\(38\) 0 0
\(39\) 6.00000 0.0246351
\(40\) 294.000 1.16214
\(41\) −10.0000 −0.0380912 −0.0190456 0.999819i \(-0.506063\pi\)
−0.0190456 + 0.999819i \(0.506063\pi\)
\(42\) −63.0000 −0.231455
\(43\) 208.000 0.737668 0.368834 0.929495i \(-0.379757\pi\)
0.368834 + 0.929495i \(0.379757\pi\)
\(44\) −11.0000 −0.0376889
\(45\) −126.000 −0.417399
\(46\) −444.000 −1.42314
\(47\) 460.000 1.42761 0.713807 0.700342i \(-0.246969\pi\)
0.713807 + 0.700342i \(0.246969\pi\)
\(48\) −213.000 −0.640498
\(49\) 49.0000 0.142857
\(50\) 213.000 0.602455
\(51\) −222.000 −0.609534
\(52\) 2.00000 0.00533366
\(53\) 258.000 0.668661 0.334330 0.942456i \(-0.391490\pi\)
0.334330 + 0.942456i \(0.391490\pi\)
\(54\) 81.0000 0.204124
\(55\) 154.000 0.377552
\(56\) 147.000 0.350780
\(57\) 0 0
\(58\) 78.0000 0.176585
\(59\) −204.000 −0.450145 −0.225072 0.974342i \(-0.572262\pi\)
−0.225072 + 0.974342i \(0.572262\pi\)
\(60\) −42.0000 −0.0903696
\(61\) 178.000 0.373616 0.186808 0.982396i \(-0.440186\pi\)
0.186808 + 0.982396i \(0.440186\pi\)
\(62\) 336.000 0.688259
\(63\) −63.0000 −0.125988
\(64\) 433.000 0.845703
\(65\) −28.0000 −0.0534303
\(66\) −99.0000 −0.184637
\(67\) −924.000 −1.68484 −0.842422 0.538818i \(-0.818871\pi\)
−0.842422 + 0.538818i \(0.818871\pi\)
\(68\) −74.0000 −0.131968
\(69\) −444.000 −0.774657
\(70\) 294.000 0.501996
\(71\) −748.000 −1.25030 −0.625150 0.780505i \(-0.714962\pi\)
−0.625150 + 0.780505i \(0.714962\pi\)
\(72\) −189.000 −0.309359
\(73\) −230.000 −0.368760 −0.184380 0.982855i \(-0.559028\pi\)
−0.184380 + 0.982855i \(0.559028\pi\)
\(74\) −294.000 −0.461849
\(75\) 213.000 0.327935
\(76\) 0 0
\(77\) 77.0000 0.113961
\(78\) 18.0000 0.0261295
\(79\) −456.000 −0.649418 −0.324709 0.945814i \(-0.605266\pi\)
−0.324709 + 0.945814i \(0.605266\pi\)
\(80\) 994.000 1.38916
\(81\) 81.0000 0.111111
\(82\) −30.0000 −0.0404018
\(83\) −228.000 −0.301521 −0.150761 0.988570i \(-0.548172\pi\)
−0.150761 + 0.988570i \(0.548172\pi\)
\(84\) −21.0000 −0.0272772
\(85\) 1036.00 1.32200
\(86\) 624.000 0.782415
\(87\) 78.0000 0.0961204
\(88\) 231.000 0.279826
\(89\) −198.000 −0.235820 −0.117910 0.993024i \(-0.537619\pi\)
−0.117910 + 0.993024i \(0.537619\pi\)
\(90\) −378.000 −0.442719
\(91\) −14.0000 −0.0161275
\(92\) −148.000 −0.167718
\(93\) 336.000 0.374641
\(94\) 1380.00 1.51421
\(95\) 0 0
\(96\) −135.000 −0.143525
\(97\) 562.000 0.588273 0.294136 0.955763i \(-0.404968\pi\)
0.294136 + 0.955763i \(0.404968\pi\)
\(98\) 147.000 0.151523
\(99\) −99.0000 −0.100504
\(100\) 71.0000 0.0710000
\(101\) −414.000 −0.407867 −0.203933 0.978985i \(-0.565373\pi\)
−0.203933 + 0.978985i \(0.565373\pi\)
\(102\) −666.000 −0.646508
\(103\) 984.000 0.941324 0.470662 0.882314i \(-0.344015\pi\)
0.470662 + 0.882314i \(0.344015\pi\)
\(104\) −42.0000 −0.0396004
\(105\) 294.000 0.273252
\(106\) 774.000 0.709222
\(107\) −1916.00 −1.73109 −0.865545 0.500831i \(-0.833028\pi\)
−0.865545 + 0.500831i \(0.833028\pi\)
\(108\) 27.0000 0.0240563
\(109\) −494.000 −0.434097 −0.217049 0.976161i \(-0.569643\pi\)
−0.217049 + 0.976161i \(0.569643\pi\)
\(110\) 462.000 0.400454
\(111\) −294.000 −0.251399
\(112\) 497.000 0.419304
\(113\) −1238.00 −1.03063 −0.515315 0.857001i \(-0.672325\pi\)
−0.515315 + 0.857001i \(0.672325\pi\)
\(114\) 0 0
\(115\) 2072.00 1.68013
\(116\) 26.0000 0.0208107
\(117\) 18.0000 0.0142231
\(118\) −612.000 −0.477451
\(119\) 518.000 0.399033
\(120\) 882.000 0.670960
\(121\) 121.000 0.0909091
\(122\) 534.000 0.396279
\(123\) −30.0000 −0.0219919
\(124\) 112.000 0.0811121
\(125\) 756.000 0.540950
\(126\) −189.000 −0.133631
\(127\) 1016.00 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1659.00 1.14560
\(129\) 624.000 0.425893
\(130\) −84.0000 −0.0566714
\(131\) −2556.00 −1.70472 −0.852362 0.522953i \(-0.824830\pi\)
−0.852362 + 0.522953i \(0.824830\pi\)
\(132\) −33.0000 −0.0217597
\(133\) 0 0
\(134\) −2772.00 −1.78705
\(135\) −378.000 −0.240986
\(136\) 1554.00 0.979812
\(137\) 1626.00 1.01400 0.507002 0.861945i \(-0.330754\pi\)
0.507002 + 0.861945i \(0.330754\pi\)
\(138\) −1332.00 −0.821648
\(139\) 536.000 0.327071 0.163536 0.986537i \(-0.447710\pi\)
0.163536 + 0.986537i \(0.447710\pi\)
\(140\) 98.0000 0.0591608
\(141\) 1380.00 0.824234
\(142\) −2244.00 −1.32614
\(143\) −22.0000 −0.0128653
\(144\) −639.000 −0.369792
\(145\) −364.000 −0.208473
\(146\) −690.000 −0.391129
\(147\) 147.000 0.0824786
\(148\) −98.0000 −0.0544294
\(149\) −3470.00 −1.90788 −0.953938 0.300004i \(-0.903012\pi\)
−0.953938 + 0.300004i \(0.903012\pi\)
\(150\) 639.000 0.347828
\(151\) 1392.00 0.750194 0.375097 0.926985i \(-0.377609\pi\)
0.375097 + 0.926985i \(0.377609\pi\)
\(152\) 0 0
\(153\) −666.000 −0.351914
\(154\) 231.000 0.120873
\(155\) −1568.00 −0.812547
\(156\) 6.00000 0.00307939
\(157\) 2758.00 1.40199 0.700995 0.713166i \(-0.252740\pi\)
0.700995 + 0.713166i \(0.252740\pi\)
\(158\) −1368.00 −0.688812
\(159\) 774.000 0.386052
\(160\) 630.000 0.311287
\(161\) 1036.00 0.507132
\(162\) 243.000 0.117851
\(163\) −1388.00 −0.666973 −0.333486 0.942755i \(-0.608225\pi\)
−0.333486 + 0.942755i \(0.608225\pi\)
\(164\) −10.0000 −0.00476140
\(165\) 462.000 0.217980
\(166\) −684.000 −0.319811
\(167\) 1688.00 0.782164 0.391082 0.920356i \(-0.372101\pi\)
0.391082 + 0.920356i \(0.372101\pi\)
\(168\) 441.000 0.202523
\(169\) −2193.00 −0.998179
\(170\) 3108.00 1.40219
\(171\) 0 0
\(172\) 208.000 0.0922084
\(173\) −118.000 −0.0518577 −0.0259288 0.999664i \(-0.508254\pi\)
−0.0259288 + 0.999664i \(0.508254\pi\)
\(174\) 234.000 0.101951
\(175\) −497.000 −0.214684
\(176\) 781.000 0.334489
\(177\) −612.000 −0.259891
\(178\) −594.000 −0.250125
\(179\) −3004.00 −1.25435 −0.627177 0.778876i \(-0.715790\pi\)
−0.627177 + 0.778876i \(0.715790\pi\)
\(180\) −126.000 −0.0521749
\(181\) 782.000 0.321136 0.160568 0.987025i \(-0.448667\pi\)
0.160568 + 0.987025i \(0.448667\pi\)
\(182\) −42.0000 −0.0171058
\(183\) 534.000 0.215707
\(184\) 3108.00 1.24524
\(185\) 1372.00 0.545251
\(186\) 1008.00 0.397366
\(187\) 814.000 0.318319
\(188\) 460.000 0.178452
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) −4940.00 −1.87144 −0.935722 0.352738i \(-0.885251\pi\)
−0.935722 + 0.352738i \(0.885251\pi\)
\(192\) 1299.00 0.488267
\(193\) 3290.00 1.22704 0.613522 0.789678i \(-0.289752\pi\)
0.613522 + 0.789678i \(0.289752\pi\)
\(194\) 1686.00 0.623957
\(195\) −84.0000 −0.0308480
\(196\) 49.0000 0.0178571
\(197\) 66.0000 0.0238696 0.0119348 0.999929i \(-0.496201\pi\)
0.0119348 + 0.999929i \(0.496201\pi\)
\(198\) −297.000 −0.106600
\(199\) −2672.00 −0.951824 −0.475912 0.879493i \(-0.657882\pi\)
−0.475912 + 0.879493i \(0.657882\pi\)
\(200\) −1491.00 −0.527148
\(201\) −2772.00 −0.972745
\(202\) −1242.00 −0.432608
\(203\) −182.000 −0.0629256
\(204\) −222.000 −0.0761917
\(205\) 140.000 0.0476977
\(206\) 2952.00 0.998425
\(207\) −1332.00 −0.447248
\(208\) −142.000 −0.0473362
\(209\) 0 0
\(210\) 882.000 0.289828
\(211\) 2992.00 0.976198 0.488099 0.872788i \(-0.337690\pi\)
0.488099 + 0.872788i \(0.337690\pi\)
\(212\) 258.000 0.0835826
\(213\) −2244.00 −0.721861
\(214\) −5748.00 −1.83610
\(215\) −2912.00 −0.923706
\(216\) −567.000 −0.178609
\(217\) −784.000 −0.245260
\(218\) −1482.00 −0.460430
\(219\) −690.000 −0.212904
\(220\) 154.000 0.0471940
\(221\) −148.000 −0.0450478
\(222\) −882.000 −0.266648
\(223\) −2408.00 −0.723101 −0.361551 0.932352i \(-0.617753\pi\)
−0.361551 + 0.932352i \(0.617753\pi\)
\(224\) 315.000 0.0939590
\(225\) 639.000 0.189333
\(226\) −3714.00 −1.09315
\(227\) −2380.00 −0.695886 −0.347943 0.937516i \(-0.613120\pi\)
−0.347943 + 0.937516i \(0.613120\pi\)
\(228\) 0 0
\(229\) −4498.00 −1.29797 −0.648987 0.760799i \(-0.724807\pi\)
−0.648987 + 0.760799i \(0.724807\pi\)
\(230\) 6216.00 1.78205
\(231\) 231.000 0.0657952
\(232\) −546.000 −0.154511
\(233\) −5010.00 −1.40865 −0.704326 0.709876i \(-0.748751\pi\)
−0.704326 + 0.709876i \(0.748751\pi\)
\(234\) 54.0000 0.0150859
\(235\) −6440.00 −1.78766
\(236\) −204.000 −0.0562681
\(237\) −1368.00 −0.374942
\(238\) 1554.00 0.423239
\(239\) 704.000 0.190535 0.0952677 0.995452i \(-0.469629\pi\)
0.0952677 + 0.995452i \(0.469629\pi\)
\(240\) 2982.00 0.802030
\(241\) −6102.00 −1.63097 −0.815486 0.578776i \(-0.803530\pi\)
−0.815486 + 0.578776i \(0.803530\pi\)
\(242\) 363.000 0.0964237
\(243\) 243.000 0.0641500
\(244\) 178.000 0.0467020
\(245\) −686.000 −0.178885
\(246\) −90.0000 −0.0233260
\(247\) 0 0
\(248\) −2352.00 −0.602226
\(249\) −684.000 −0.174083
\(250\) 2268.00 0.573764
\(251\) 6156.00 1.54806 0.774030 0.633148i \(-0.218238\pi\)
0.774030 + 0.633148i \(0.218238\pi\)
\(252\) −63.0000 −0.0157485
\(253\) 1628.00 0.404551
\(254\) 3048.00 0.752947
\(255\) 3108.00 0.763257
\(256\) 1513.00 0.369385
\(257\) −3054.00 −0.741258 −0.370629 0.928781i \(-0.620858\pi\)
−0.370629 + 0.928781i \(0.620858\pi\)
\(258\) 1872.00 0.451727
\(259\) 686.000 0.164579
\(260\) −28.0000 −0.00667879
\(261\) 234.000 0.0554952
\(262\) −7668.00 −1.80813
\(263\) −4944.00 −1.15916 −0.579582 0.814914i \(-0.696784\pi\)
−0.579582 + 0.814914i \(0.696784\pi\)
\(264\) 693.000 0.161558
\(265\) −3612.00 −0.837296
\(266\) 0 0
\(267\) −594.000 −0.136151
\(268\) −924.000 −0.210606
\(269\) 7602.00 1.72306 0.861528 0.507710i \(-0.169508\pi\)
0.861528 + 0.507710i \(0.169508\pi\)
\(270\) −1134.00 −0.255604
\(271\) 4552.00 1.02035 0.510174 0.860071i \(-0.329581\pi\)
0.510174 + 0.860071i \(0.329581\pi\)
\(272\) 5254.00 1.17122
\(273\) −42.0000 −0.00931119
\(274\) 4878.00 1.07551
\(275\) −781.000 −0.171258
\(276\) −444.000 −0.0968321
\(277\) −3294.00 −0.714503 −0.357251 0.934008i \(-0.616286\pi\)
−0.357251 + 0.934008i \(0.616286\pi\)
\(278\) 1608.00 0.346912
\(279\) 1008.00 0.216299
\(280\) −2058.00 −0.439247
\(281\) 3454.00 0.733268 0.366634 0.930365i \(-0.380510\pi\)
0.366634 + 0.930365i \(0.380510\pi\)
\(282\) 4140.00 0.874232
\(283\) 8520.00 1.78962 0.894808 0.446451i \(-0.147312\pi\)
0.894808 + 0.446451i \(0.147312\pi\)
\(284\) −748.000 −0.156287
\(285\) 0 0
\(286\) −66.0000 −0.0136457
\(287\) 70.0000 0.0143971
\(288\) −405.000 −0.0828641
\(289\) 563.000 0.114594
\(290\) −1092.00 −0.221119
\(291\) 1686.00 0.339639
\(292\) −230.000 −0.0460950
\(293\) 5682.00 1.13292 0.566461 0.824089i \(-0.308312\pi\)
0.566461 + 0.824089i \(0.308312\pi\)
\(294\) 441.000 0.0874818
\(295\) 2856.00 0.563670
\(296\) 2058.00 0.404118
\(297\) −297.000 −0.0580259
\(298\) −10410.0 −2.02361
\(299\) −296.000 −0.0572512
\(300\) 213.000 0.0409919
\(301\) −1456.00 −0.278812
\(302\) 4176.00 0.795701
\(303\) −1242.00 −0.235482
\(304\) 0 0
\(305\) −2492.00 −0.467841
\(306\) −1998.00 −0.373262
\(307\) 1040.00 0.193342 0.0966709 0.995316i \(-0.469181\pi\)
0.0966709 + 0.995316i \(0.469181\pi\)
\(308\) 77.0000 0.0142451
\(309\) 2952.00 0.543474
\(310\) −4704.00 −0.861836
\(311\) 7972.00 1.45354 0.726770 0.686881i \(-0.241021\pi\)
0.726770 + 0.686881i \(0.241021\pi\)
\(312\) −126.000 −0.0228633
\(313\) −3158.00 −0.570290 −0.285145 0.958484i \(-0.592042\pi\)
−0.285145 + 0.958484i \(0.592042\pi\)
\(314\) 8274.00 1.48703
\(315\) 882.000 0.157762
\(316\) −456.000 −0.0811772
\(317\) −6246.00 −1.10666 −0.553329 0.832963i \(-0.686643\pi\)
−0.553329 + 0.832963i \(0.686643\pi\)
\(318\) 2322.00 0.409469
\(319\) −286.000 −0.0501973
\(320\) −6062.00 −1.05899
\(321\) −5748.00 −0.999446
\(322\) 3108.00 0.537895
\(323\) 0 0
\(324\) 81.0000 0.0138889
\(325\) 142.000 0.0242361
\(326\) −4164.00 −0.707431
\(327\) −1482.00 −0.250626
\(328\) 210.000 0.0353516
\(329\) −3220.00 −0.539588
\(330\) 1386.00 0.231202
\(331\) 7900.00 1.31185 0.655926 0.754825i \(-0.272278\pi\)
0.655926 + 0.754825i \(0.272278\pi\)
\(332\) −228.000 −0.0376901
\(333\) −882.000 −0.145145
\(334\) 5064.00 0.829610
\(335\) 12936.0 2.10976
\(336\) 1491.00 0.242085
\(337\) 4890.00 0.790431 0.395216 0.918588i \(-0.370670\pi\)
0.395216 + 0.918588i \(0.370670\pi\)
\(338\) −6579.00 −1.05873
\(339\) −3714.00 −0.595035
\(340\) 1036.00 0.165250
\(341\) −1232.00 −0.195650
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −4368.00 −0.684613
\(345\) 6216.00 0.970024
\(346\) −354.000 −0.0550033
\(347\) 10732.0 1.66030 0.830150 0.557540i \(-0.188255\pi\)
0.830150 + 0.557540i \(0.188255\pi\)
\(348\) 78.0000 0.0120151
\(349\) 7370.00 1.13039 0.565196 0.824956i \(-0.308800\pi\)
0.565196 + 0.824956i \(0.308800\pi\)
\(350\) −1491.00 −0.227707
\(351\) 54.0000 0.00821170
\(352\) 495.000 0.0749534
\(353\) −2526.00 −0.380865 −0.190433 0.981700i \(-0.560989\pi\)
−0.190433 + 0.981700i \(0.560989\pi\)
\(354\) −1836.00 −0.275656
\(355\) 10472.0 1.56562
\(356\) −198.000 −0.0294775
\(357\) 1554.00 0.230382
\(358\) −9012.00 −1.33044
\(359\) 8080.00 1.18787 0.593936 0.804512i \(-0.297573\pi\)
0.593936 + 0.804512i \(0.297573\pi\)
\(360\) 2646.00 0.387379
\(361\) −6859.00 −1.00000
\(362\) 2346.00 0.340616
\(363\) 363.000 0.0524864
\(364\) −14.0000 −0.00201593
\(365\) 3220.00 0.461760
\(366\) 1602.00 0.228792
\(367\) −152.000 −0.0216194 −0.0108097 0.999942i \(-0.503441\pi\)
−0.0108097 + 0.999942i \(0.503441\pi\)
\(368\) 10508.0 1.48850
\(369\) −90.0000 −0.0126971
\(370\) 4116.00 0.578326
\(371\) −1806.00 −0.252730
\(372\) 336.000 0.0468301
\(373\) 1106.00 0.153530 0.0767648 0.997049i \(-0.475541\pi\)
0.0767648 + 0.997049i \(0.475541\pi\)
\(374\) 2442.00 0.337628
\(375\) 2268.00 0.312317
\(376\) −9660.00 −1.32494
\(377\) 52.0000 0.00710381
\(378\) −567.000 −0.0771517
\(379\) −3428.00 −0.464603 −0.232301 0.972644i \(-0.574626\pi\)
−0.232301 + 0.972644i \(0.574626\pi\)
\(380\) 0 0
\(381\) 3048.00 0.409852
\(382\) −14820.0 −1.98497
\(383\) −4052.00 −0.540594 −0.270297 0.962777i \(-0.587122\pi\)
−0.270297 + 0.962777i \(0.587122\pi\)
\(384\) 4977.00 0.661410
\(385\) −1078.00 −0.142701
\(386\) 9870.00 1.30148
\(387\) 1872.00 0.245889
\(388\) 562.000 0.0735341
\(389\) 4554.00 0.593565 0.296783 0.954945i \(-0.404086\pi\)
0.296783 + 0.954945i \(0.404086\pi\)
\(390\) −252.000 −0.0327193
\(391\) 10952.0 1.41654
\(392\) −1029.00 −0.132583
\(393\) −7668.00 −0.984222
\(394\) 198.000 0.0253175
\(395\) 6384.00 0.813200
\(396\) −99.0000 −0.0125630
\(397\) −6666.00 −0.842713 −0.421356 0.906895i \(-0.638446\pi\)
−0.421356 + 0.906895i \(0.638446\pi\)
\(398\) −8016.00 −1.00956
\(399\) 0 0
\(400\) −5041.00 −0.630125
\(401\) 12210.0 1.52054 0.760272 0.649605i \(-0.225066\pi\)
0.760272 + 0.649605i \(0.225066\pi\)
\(402\) −8316.00 −1.03175
\(403\) 224.000 0.0276879
\(404\) −414.000 −0.0509833
\(405\) −1134.00 −0.139133
\(406\) −546.000 −0.0667427
\(407\) 1078.00 0.131289
\(408\) 4662.00 0.565695
\(409\) −10190.0 −1.23194 −0.615970 0.787770i \(-0.711236\pi\)
−0.615970 + 0.787770i \(0.711236\pi\)
\(410\) 420.000 0.0505910
\(411\) 4878.00 0.585436
\(412\) 984.000 0.117666
\(413\) 1428.00 0.170139
\(414\) −3996.00 −0.474378
\(415\) 3192.00 0.377564
\(416\) −90.0000 −0.0106072
\(417\) 1608.00 0.188835
\(418\) 0 0
\(419\) −16780.0 −1.95646 −0.978230 0.207524i \(-0.933459\pi\)
−0.978230 + 0.207524i \(0.933459\pi\)
\(420\) 294.000 0.0341565
\(421\) 9214.00 1.06666 0.533329 0.845908i \(-0.320941\pi\)
0.533329 + 0.845908i \(0.320941\pi\)
\(422\) 8976.00 1.03541
\(423\) 4140.00 0.475872
\(424\) −5418.00 −0.620569
\(425\) −5254.00 −0.599662
\(426\) −6732.00 −0.765649
\(427\) −1246.00 −0.141214
\(428\) −1916.00 −0.216386
\(429\) −66.0000 −0.00742776
\(430\) −8736.00 −0.979738
\(431\) 9896.00 1.10597 0.552986 0.833191i \(-0.313488\pi\)
0.552986 + 0.833191i \(0.313488\pi\)
\(432\) −1917.00 −0.213499
\(433\) −8878.00 −0.985334 −0.492667 0.870218i \(-0.663978\pi\)
−0.492667 + 0.870218i \(0.663978\pi\)
\(434\) −2352.00 −0.260137
\(435\) −1092.00 −0.120362
\(436\) −494.000 −0.0542622
\(437\) 0 0
\(438\) −2070.00 −0.225818
\(439\) 5464.00 0.594038 0.297019 0.954872i \(-0.404008\pi\)
0.297019 + 0.954872i \(0.404008\pi\)
\(440\) −3234.00 −0.350398
\(441\) 441.000 0.0476190
\(442\) −444.000 −0.0477804
\(443\) 1668.00 0.178892 0.0894459 0.995992i \(-0.471490\pi\)
0.0894459 + 0.995992i \(0.471490\pi\)
\(444\) −294.000 −0.0314248
\(445\) 2772.00 0.295293
\(446\) −7224.00 −0.766965
\(447\) −10410.0 −1.10151
\(448\) −3031.00 −0.319646
\(449\) −10374.0 −1.09038 −0.545189 0.838313i \(-0.683542\pi\)
−0.545189 + 0.838313i \(0.683542\pi\)
\(450\) 1917.00 0.200818
\(451\) 110.000 0.0114849
\(452\) −1238.00 −0.128829
\(453\) 4176.00 0.433125
\(454\) −7140.00 −0.738099
\(455\) 196.000 0.0201948
\(456\) 0 0
\(457\) −3046.00 −0.311785 −0.155893 0.987774i \(-0.549825\pi\)
−0.155893 + 0.987774i \(0.549825\pi\)
\(458\) −13494.0 −1.37671
\(459\) −1998.00 −0.203178
\(460\) 2072.00 0.210016
\(461\) 1770.00 0.178822 0.0894112 0.995995i \(-0.471501\pi\)
0.0894112 + 0.995995i \(0.471501\pi\)
\(462\) 693.000 0.0697863
\(463\) 12088.0 1.21334 0.606671 0.794953i \(-0.292505\pi\)
0.606671 + 0.794953i \(0.292505\pi\)
\(464\) −1846.00 −0.184695
\(465\) −4704.00 −0.469124
\(466\) −15030.0 −1.49410
\(467\) −19836.0 −1.96553 −0.982763 0.184870i \(-0.940814\pi\)
−0.982763 + 0.184870i \(0.940814\pi\)
\(468\) 18.0000 0.00177789
\(469\) 6468.00 0.636811
\(470\) −19320.0 −1.89610
\(471\) 8274.00 0.809439
\(472\) 4284.00 0.417769
\(473\) −2288.00 −0.222415
\(474\) −4104.00 −0.397686
\(475\) 0 0
\(476\) 518.000 0.0498792
\(477\) 2322.00 0.222887
\(478\) 2112.00 0.202093
\(479\) −4520.00 −0.431157 −0.215578 0.976487i \(-0.569164\pi\)
−0.215578 + 0.976487i \(0.569164\pi\)
\(480\) 1890.00 0.179721
\(481\) −196.000 −0.0185797
\(482\) −18306.0 −1.72991
\(483\) 3108.00 0.292793
\(484\) 121.000 0.0113636
\(485\) −7868.00 −0.736634
\(486\) 729.000 0.0680414
\(487\) −1768.00 −0.164509 −0.0822543 0.996611i \(-0.526212\pi\)
−0.0822543 + 0.996611i \(0.526212\pi\)
\(488\) −3738.00 −0.346744
\(489\) −4164.00 −0.385077
\(490\) −2058.00 −0.189737
\(491\) 17988.0 1.65333 0.826667 0.562691i \(-0.190234\pi\)
0.826667 + 0.562691i \(0.190234\pi\)
\(492\) −30.0000 −0.00274899
\(493\) −1924.00 −0.175766
\(494\) 0 0
\(495\) 1386.00 0.125851
\(496\) −7952.00 −0.719870
\(497\) 5236.00 0.472569
\(498\) −2052.00 −0.184643
\(499\) 1916.00 0.171888 0.0859438 0.996300i \(-0.472609\pi\)
0.0859438 + 0.996300i \(0.472609\pi\)
\(500\) 756.000 0.0676187
\(501\) 5064.00 0.451583
\(502\) 18468.0 1.64197
\(503\) −18552.0 −1.64452 −0.822259 0.569113i \(-0.807287\pi\)
−0.822259 + 0.569113i \(0.807287\pi\)
\(504\) 1323.00 0.116927
\(505\) 5796.00 0.510730
\(506\) 4884.00 0.429091
\(507\) −6579.00 −0.576299
\(508\) 1016.00 0.0887357
\(509\) −9326.00 −0.812117 −0.406059 0.913847i \(-0.633097\pi\)
−0.406059 + 0.913847i \(0.633097\pi\)
\(510\) 9324.00 0.809556
\(511\) 1610.00 0.139378
\(512\) −8733.00 −0.753804
\(513\) 0 0
\(514\) −9162.00 −0.786223
\(515\) −13776.0 −1.17872
\(516\) 624.000 0.0532366
\(517\) −5060.00 −0.430442
\(518\) 2058.00 0.174562
\(519\) −354.000 −0.0299400
\(520\) 588.000 0.0495875
\(521\) −14038.0 −1.18045 −0.590226 0.807238i \(-0.700962\pi\)
−0.590226 + 0.807238i \(0.700962\pi\)
\(522\) 702.000 0.0588615
\(523\) 5384.00 0.450145 0.225073 0.974342i \(-0.427738\pi\)
0.225073 + 0.974342i \(0.427738\pi\)
\(524\) −2556.00 −0.213090
\(525\) −1491.00 −0.123948
\(526\) −14832.0 −1.22948
\(527\) −8288.00 −0.685068
\(528\) 2343.00 0.193117
\(529\) 9737.00 0.800279
\(530\) −10836.0 −0.888086
\(531\) −1836.00 −0.150048
\(532\) 0 0
\(533\) −20.0000 −0.00162532
\(534\) −1782.00 −0.144410
\(535\) 26824.0 2.16767
\(536\) 19404.0 1.56367
\(537\) −9012.00 −0.724202
\(538\) 22806.0 1.82758
\(539\) −539.000 −0.0430730
\(540\) −378.000 −0.0301232
\(541\) −8398.00 −0.667390 −0.333695 0.942681i \(-0.608296\pi\)
−0.333695 + 0.942681i \(0.608296\pi\)
\(542\) 13656.0 1.08224
\(543\) 2346.00 0.185408
\(544\) 3330.00 0.262450
\(545\) 6916.00 0.543576
\(546\) −126.000 −0.00987601
\(547\) 21312.0 1.66588 0.832939 0.553365i \(-0.186656\pi\)
0.832939 + 0.553365i \(0.186656\pi\)
\(548\) 1626.00 0.126751
\(549\) 1602.00 0.124539
\(550\) −2343.00 −0.181647
\(551\) 0 0
\(552\) 9324.00 0.718942
\(553\) 3192.00 0.245457
\(554\) −9882.00 −0.757845
\(555\) 4116.00 0.314801
\(556\) 536.000 0.0408839
\(557\) 12778.0 0.972031 0.486015 0.873950i \(-0.338450\pi\)
0.486015 + 0.873950i \(0.338450\pi\)
\(558\) 3024.00 0.229420
\(559\) 416.000 0.0314757
\(560\) −6958.00 −0.525052
\(561\) 2442.00 0.183781
\(562\) 10362.0 0.777748
\(563\) 22444.0 1.68011 0.840055 0.542501i \(-0.182523\pi\)
0.840055 + 0.542501i \(0.182523\pi\)
\(564\) 1380.00 0.103029
\(565\) 17332.0 1.29055
\(566\) 25560.0 1.89817
\(567\) −567.000 −0.0419961
\(568\) 15708.0 1.16038
\(569\) −26874.0 −1.97999 −0.989997 0.141088i \(-0.954940\pi\)
−0.989997 + 0.141088i \(0.954940\pi\)
\(570\) 0 0
\(571\) 12712.0 0.931665 0.465832 0.884873i \(-0.345755\pi\)
0.465832 + 0.884873i \(0.345755\pi\)
\(572\) −22.0000 −0.00160816
\(573\) −14820.0 −1.08048
\(574\) 210.000 0.0152704
\(575\) −10508.0 −0.762111
\(576\) 3897.00 0.281901
\(577\) −17470.0 −1.26046 −0.630230 0.776408i \(-0.717039\pi\)
−0.630230 + 0.776408i \(0.717039\pi\)
\(578\) 1689.00 0.121545
\(579\) 9870.00 0.708434
\(580\) −364.000 −0.0260591
\(581\) 1596.00 0.113964
\(582\) 5058.00 0.360242
\(583\) −2838.00 −0.201609
\(584\) 4830.00 0.342238
\(585\) −252.000 −0.0178101
\(586\) 17046.0 1.20164
\(587\) 8340.00 0.586420 0.293210 0.956048i \(-0.405276\pi\)
0.293210 + 0.956048i \(0.405276\pi\)
\(588\) 147.000 0.0103098
\(589\) 0 0
\(590\) 8568.00 0.597863
\(591\) 198.000 0.0137811
\(592\) 6958.00 0.483061
\(593\) −10818.0 −0.749143 −0.374572 0.927198i \(-0.622210\pi\)
−0.374572 + 0.927198i \(0.622210\pi\)
\(594\) −891.000 −0.0615457
\(595\) −7252.00 −0.499669
\(596\) −3470.00 −0.238484
\(597\) −8016.00 −0.549536
\(598\) −888.000 −0.0607241
\(599\) −3348.00 −0.228373 −0.114187 0.993459i \(-0.536426\pi\)
−0.114187 + 0.993459i \(0.536426\pi\)
\(600\) −4473.00 −0.304349
\(601\) −9934.00 −0.674237 −0.337118 0.941462i \(-0.609452\pi\)
−0.337118 + 0.941462i \(0.609452\pi\)
\(602\) −4368.00 −0.295725
\(603\) −8316.00 −0.561615
\(604\) 1392.00 0.0937743
\(605\) −1694.00 −0.113836
\(606\) −3726.00 −0.249766
\(607\) 19640.0 1.31328 0.656642 0.754203i \(-0.271976\pi\)
0.656642 + 0.754203i \(0.271976\pi\)
\(608\) 0 0
\(609\) −546.000 −0.0363301
\(610\) −7476.00 −0.496220
\(611\) 920.000 0.0609152
\(612\) −666.000 −0.0439893
\(613\) 10042.0 0.661652 0.330826 0.943692i \(-0.392673\pi\)
0.330826 + 0.943692i \(0.392673\pi\)
\(614\) 3120.00 0.205070
\(615\) 420.000 0.0275383
\(616\) −1617.00 −0.105764
\(617\) 26226.0 1.71121 0.855607 0.517626i \(-0.173184\pi\)
0.855607 + 0.517626i \(0.173184\pi\)
\(618\) 8856.00 0.576441
\(619\) −29932.0 −1.94357 −0.971784 0.235872i \(-0.924205\pi\)
−0.971784 + 0.235872i \(0.924205\pi\)
\(620\) −1568.00 −0.101568
\(621\) −3996.00 −0.258219
\(622\) 23916.0 1.54171
\(623\) 1386.00 0.0891315
\(624\) −426.000 −0.0273296
\(625\) −19459.0 −1.24538
\(626\) −9474.00 −0.604884
\(627\) 0 0
\(628\) 2758.00 0.175249
\(629\) 7252.00 0.459708
\(630\) 2646.00 0.167332
\(631\) −1920.00 −0.121132 −0.0605658 0.998164i \(-0.519290\pi\)
−0.0605658 + 0.998164i \(0.519290\pi\)
\(632\) 9576.00 0.602710
\(633\) 8976.00 0.563608
\(634\) −18738.0 −1.17379
\(635\) −14224.0 −0.888917
\(636\) 774.000 0.0482564
\(637\) 98.0000 0.00609561
\(638\) −858.000 −0.0532422
\(639\) −6732.00 −0.416767
\(640\) −23226.0 −1.43451
\(641\) −2550.00 −0.157128 −0.0785639 0.996909i \(-0.525033\pi\)
−0.0785639 + 0.996909i \(0.525033\pi\)
\(642\) −17244.0 −1.06007
\(643\) −24500.0 −1.50262 −0.751311 0.659949i \(-0.770578\pi\)
−0.751311 + 0.659949i \(0.770578\pi\)
\(644\) 1036.00 0.0633915
\(645\) −8736.00 −0.533302
\(646\) 0 0
\(647\) 20436.0 1.24177 0.620883 0.783904i \(-0.286774\pi\)
0.620883 + 0.783904i \(0.286774\pi\)
\(648\) −1701.00 −0.103120
\(649\) 2244.00 0.135724
\(650\) 426.000 0.0257063
\(651\) −2352.00 −0.141601
\(652\) −1388.00 −0.0833716
\(653\) −20062.0 −1.20228 −0.601138 0.799145i \(-0.705286\pi\)
−0.601138 + 0.799145i \(0.705286\pi\)
\(654\) −4446.00 −0.265829
\(655\) 35784.0 2.13465
\(656\) 710.000 0.0422574
\(657\) −2070.00 −0.122920
\(658\) −9660.00 −0.572319
\(659\) −13324.0 −0.787601 −0.393801 0.919196i \(-0.628840\pi\)
−0.393801 + 0.919196i \(0.628840\pi\)
\(660\) 462.000 0.0272475
\(661\) 4958.00 0.291746 0.145873 0.989303i \(-0.453401\pi\)
0.145873 + 0.989303i \(0.453401\pi\)
\(662\) 23700.0 1.39143
\(663\) −444.000 −0.0260083
\(664\) 4788.00 0.279835
\(665\) 0 0
\(666\) −2646.00 −0.153950
\(667\) −3848.00 −0.223381
\(668\) 1688.00 0.0977705
\(669\) −7224.00 −0.417483
\(670\) 38808.0 2.23774
\(671\) −1958.00 −0.112649
\(672\) 945.000 0.0542473
\(673\) 2458.00 0.140786 0.0703930 0.997519i \(-0.477575\pi\)
0.0703930 + 0.997519i \(0.477575\pi\)
\(674\) 14670.0 0.838379
\(675\) 1917.00 0.109312
\(676\) −2193.00 −0.124772
\(677\) 18658.0 1.05921 0.529605 0.848244i \(-0.322340\pi\)
0.529605 + 0.848244i \(0.322340\pi\)
\(678\) −11142.0 −0.631130
\(679\) −3934.00 −0.222346
\(680\) −21756.0 −1.22692
\(681\) −7140.00 −0.401770
\(682\) −3696.00 −0.207518
\(683\) 28092.0 1.57381 0.786904 0.617076i \(-0.211683\pi\)
0.786904 + 0.617076i \(0.211683\pi\)
\(684\) 0 0
\(685\) −22764.0 −1.26973
\(686\) −1029.00 −0.0572703
\(687\) −13494.0 −0.749386
\(688\) −14768.0 −0.818350
\(689\) 516.000 0.0285313
\(690\) 18648.0 1.02887
\(691\) 25596.0 1.40914 0.704571 0.709633i \(-0.251139\pi\)
0.704571 + 0.709633i \(0.251139\pi\)
\(692\) −118.000 −0.00648221
\(693\) 693.000 0.0379869
\(694\) 32196.0 1.76101
\(695\) −7504.00 −0.409558
\(696\) −1638.00 −0.0892072
\(697\) 740.000 0.0402145
\(698\) 22110.0 1.19896
\(699\) −15030.0 −0.813286
\(700\) −497.000 −0.0268355
\(701\) 21498.0 1.15830 0.579150 0.815221i \(-0.303385\pi\)
0.579150 + 0.815221i \(0.303385\pi\)
\(702\) 162.000 0.00870982
\(703\) 0 0
\(704\) −4763.00 −0.254989
\(705\) −19320.0 −1.03210
\(706\) −7578.00 −0.403969
\(707\) 2898.00 0.154159
\(708\) −612.000 −0.0324864
\(709\) −17706.0 −0.937888 −0.468944 0.883228i \(-0.655365\pi\)
−0.468944 + 0.883228i \(0.655365\pi\)
\(710\) 31416.0 1.66059
\(711\) −4104.00 −0.216473
\(712\) 4158.00 0.218859
\(713\) −16576.0 −0.870654
\(714\) 4662.00 0.244357
\(715\) 308.000 0.0161099
\(716\) −3004.00 −0.156794
\(717\) 2112.00 0.110006
\(718\) 24240.0 1.25993
\(719\) 31796.0 1.64922 0.824611 0.565700i \(-0.191394\pi\)
0.824611 + 0.565700i \(0.191394\pi\)
\(720\) 8946.00 0.463052
\(721\) −6888.00 −0.355787
\(722\) −20577.0 −1.06066
\(723\) −18306.0 −0.941642
\(724\) 782.000 0.0401420
\(725\) 1846.00 0.0945638
\(726\) 1089.00 0.0556702
\(727\) −9952.00 −0.507702 −0.253851 0.967243i \(-0.581697\pi\)
−0.253851 + 0.967243i \(0.581697\pi\)
\(728\) 294.000 0.0149675
\(729\) 729.000 0.0370370
\(730\) 9660.00 0.489771
\(731\) −15392.0 −0.778788
\(732\) 534.000 0.0269634
\(733\) 22850.0 1.15141 0.575705 0.817657i \(-0.304728\pi\)
0.575705 + 0.817657i \(0.304728\pi\)
\(734\) −456.000 −0.0229309
\(735\) −2058.00 −0.103280
\(736\) 6660.00 0.333547
\(737\) 10164.0 0.508000
\(738\) −270.000 −0.0134673
\(739\) −33144.0 −1.64983 −0.824913 0.565259i \(-0.808776\pi\)
−0.824913 + 0.565259i \(0.808776\pi\)
\(740\) 1372.00 0.0681564
\(741\) 0 0
\(742\) −5418.00 −0.268061
\(743\) −15408.0 −0.760787 −0.380393 0.924825i \(-0.624211\pi\)
−0.380393 + 0.924825i \(0.624211\pi\)
\(744\) −7056.00 −0.347696
\(745\) 48580.0 2.38904
\(746\) 3318.00 0.162843
\(747\) −2052.00 −0.100507
\(748\) 814.000 0.0397898
\(749\) 13412.0 0.654291
\(750\) 6804.00 0.331263
\(751\) −23288.0 −1.13155 −0.565773 0.824561i \(-0.691422\pi\)
−0.565773 + 0.824561i \(0.691422\pi\)
\(752\) −32660.0 −1.58376
\(753\) 18468.0 0.893773
\(754\) 156.000 0.00753473
\(755\) −19488.0 −0.939392
\(756\) −189.000 −0.00909241
\(757\) −34018.0 −1.63330 −0.816648 0.577136i \(-0.804170\pi\)
−0.816648 + 0.577136i \(0.804170\pi\)
\(758\) −10284.0 −0.492786
\(759\) 4884.00 0.233568
\(760\) 0 0
\(761\) 17118.0 0.815410 0.407705 0.913114i \(-0.366329\pi\)
0.407705 + 0.913114i \(0.366329\pi\)
\(762\) 9144.00 0.434714
\(763\) 3458.00 0.164073
\(764\) −4940.00 −0.233931
\(765\) 9324.00 0.440667
\(766\) −12156.0 −0.573387
\(767\) −408.000 −0.0192073
\(768\) 4539.00 0.213264
\(769\) −10622.0 −0.498100 −0.249050 0.968491i \(-0.580118\pi\)
−0.249050 + 0.968491i \(0.580118\pi\)
\(770\) −3234.00 −0.151357
\(771\) −9162.00 −0.427965
\(772\) 3290.00 0.153380
\(773\) −12870.0 −0.598838 −0.299419 0.954122i \(-0.596793\pi\)
−0.299419 + 0.954122i \(0.596793\pi\)
\(774\) 5616.00 0.260805
\(775\) 7952.00 0.368573
\(776\) −11802.0 −0.545963
\(777\) 2058.00 0.0950197
\(778\) 13662.0 0.629571
\(779\) 0 0
\(780\) −84.0000 −0.00385600
\(781\) 8228.00 0.376979
\(782\) 32856.0 1.50247
\(783\) 702.000 0.0320401
\(784\) −3479.00 −0.158482
\(785\) −38612.0 −1.75557
\(786\) −23004.0 −1.04393
\(787\) 20288.0 0.918919 0.459459 0.888199i \(-0.348043\pi\)
0.459459 + 0.888199i \(0.348043\pi\)
\(788\) 66.0000 0.00298370
\(789\) −14832.0 −0.669244
\(790\) 19152.0 0.862529
\(791\) 8666.00 0.389542
\(792\) 2079.00 0.0932753
\(793\) 356.000 0.0159419
\(794\) −19998.0 −0.893832
\(795\) −10836.0 −0.483413
\(796\) −2672.00 −0.118978
\(797\) 9754.00 0.433506 0.216753 0.976226i \(-0.430453\pi\)
0.216753 + 0.976226i \(0.430453\pi\)
\(798\) 0 0
\(799\) −34040.0 −1.50719
\(800\) −3195.00 −0.141200
\(801\) −1782.00 −0.0786066
\(802\) 36630.0 1.61278
\(803\) 2530.00 0.111185
\(804\) −2772.00 −0.121593
\(805\) −14504.0 −0.635030
\(806\) 672.000 0.0293675
\(807\) 22806.0 0.994807
\(808\) 8694.00 0.378532
\(809\) −4554.00 −0.197911 −0.0989556 0.995092i \(-0.531550\pi\)
−0.0989556 + 0.995092i \(0.531550\pi\)
\(810\) −3402.00 −0.147573
\(811\) −5584.00 −0.241777 −0.120888 0.992666i \(-0.538574\pi\)
−0.120888 + 0.992666i \(0.538574\pi\)
\(812\) −182.000 −0.00786570
\(813\) 13656.0 0.589098
\(814\) 3234.00 0.139253
\(815\) 19432.0 0.835182
\(816\) 15762.0 0.676201
\(817\) 0 0
\(818\) −30570.0 −1.30667
\(819\) −126.000 −0.00537582
\(820\) 140.000 0.00596221
\(821\) 29490.0 1.25360 0.626802 0.779179i \(-0.284364\pi\)
0.626802 + 0.779179i \(0.284364\pi\)
\(822\) 14634.0 0.620948
\(823\) −5032.00 −0.213128 −0.106564 0.994306i \(-0.533985\pi\)
−0.106564 + 0.994306i \(0.533985\pi\)
\(824\) −20664.0 −0.873622
\(825\) −2343.00 −0.0988761
\(826\) 4284.00 0.180459
\(827\) 36604.0 1.53911 0.769556 0.638579i \(-0.220478\pi\)
0.769556 + 0.638579i \(0.220478\pi\)
\(828\) −1332.00 −0.0559060
\(829\) −37154.0 −1.55659 −0.778294 0.627900i \(-0.783915\pi\)
−0.778294 + 0.627900i \(0.783915\pi\)
\(830\) 9576.00 0.400467
\(831\) −9882.00 −0.412518
\(832\) 866.000 0.0360855
\(833\) −3626.00 −0.150820
\(834\) 4824.00 0.200290
\(835\) −23632.0 −0.979424
\(836\) 0 0
\(837\) 3024.00 0.124880
\(838\) −50340.0 −2.07514
\(839\) 3852.00 0.158505 0.0792526 0.996855i \(-0.474747\pi\)
0.0792526 + 0.996855i \(0.474747\pi\)
\(840\) −6174.00 −0.253599
\(841\) −23713.0 −0.972283
\(842\) 27642.0 1.13136
\(843\) 10362.0 0.423353
\(844\) 2992.00 0.122025
\(845\) 30702.0 1.24992
\(846\) 12420.0 0.504738
\(847\) −847.000 −0.0343604
\(848\) −18318.0 −0.741796
\(849\) 25560.0 1.03324
\(850\) −15762.0 −0.636038
\(851\) 14504.0 0.584243
\(852\) −2244.00 −0.0902326
\(853\) −9622.00 −0.386226 −0.193113 0.981176i \(-0.561858\pi\)
−0.193113 + 0.981176i \(0.561858\pi\)
\(854\) −3738.00 −0.149780
\(855\) 0 0
\(856\) 40236.0 1.60659
\(857\) −25202.0 −1.00453 −0.502266 0.864713i \(-0.667500\pi\)
−0.502266 + 0.864713i \(0.667500\pi\)
\(858\) −198.000 −0.00787833
\(859\) 20188.0 0.801869 0.400935 0.916107i \(-0.368685\pi\)
0.400935 + 0.916107i \(0.368685\pi\)
\(860\) −2912.00 −0.115463
\(861\) 210.000 0.00831217
\(862\) 29688.0 1.17306
\(863\) 26876.0 1.06010 0.530052 0.847965i \(-0.322172\pi\)
0.530052 + 0.847965i \(0.322172\pi\)
\(864\) −1215.00 −0.0478416
\(865\) 1652.00 0.0649361
\(866\) −26634.0 −1.04510
\(867\) 1689.00 0.0661608
\(868\) −784.000 −0.0306575
\(869\) 5016.00 0.195807
\(870\) −3276.00 −0.127663
\(871\) −1848.00 −0.0718910
\(872\) 10374.0 0.402876
\(873\) 5058.00 0.196091
\(874\) 0 0
\(875\) −5292.00 −0.204460
\(876\) −690.000 −0.0266129
\(877\) −38198.0 −1.47076 −0.735379 0.677656i \(-0.762996\pi\)
−0.735379 + 0.677656i \(0.762996\pi\)
\(878\) 16392.0 0.630072
\(879\) 17046.0 0.654093
\(880\) −10934.0 −0.418847
\(881\) −27222.0 −1.04101 −0.520507 0.853858i \(-0.674257\pi\)
−0.520507 + 0.853858i \(0.674257\pi\)
\(882\) 1323.00 0.0505076
\(883\) −34316.0 −1.30784 −0.653921 0.756562i \(-0.726877\pi\)
−0.653921 + 0.756562i \(0.726877\pi\)
\(884\) −148.000 −0.00563097
\(885\) 8568.00 0.325435
\(886\) 5004.00 0.189743
\(887\) −8944.00 −0.338568 −0.169284 0.985567i \(-0.554146\pi\)
−0.169284 + 0.985567i \(0.554146\pi\)
\(888\) 6174.00 0.233317
\(889\) −7112.00 −0.268311
\(890\) 8316.00 0.313206
\(891\) −891.000 −0.0335013
\(892\) −2408.00 −0.0903877
\(893\) 0 0
\(894\) −31230.0 −1.16833
\(895\) 42056.0 1.57070
\(896\) −11613.0 −0.432995
\(897\) −888.000 −0.0330540
\(898\) −31122.0 −1.15652
\(899\) 2912.00 0.108032
\(900\) 639.000 0.0236667
\(901\) −19092.0 −0.705934
\(902\) 330.000 0.0121816
\(903\) −4368.00 −0.160972
\(904\) 25998.0 0.956505
\(905\) −10948.0 −0.402126
\(906\) 12528.0 0.459398
\(907\) −19948.0 −0.730278 −0.365139 0.930953i \(-0.618979\pi\)
−0.365139 + 0.930953i \(0.618979\pi\)
\(908\) −2380.00 −0.0869858
\(909\) −3726.00 −0.135956
\(910\) 588.000 0.0214198
\(911\) −7812.00 −0.284109 −0.142054 0.989859i \(-0.545371\pi\)
−0.142054 + 0.989859i \(0.545371\pi\)
\(912\) 0 0
\(913\) 2508.00 0.0909120
\(914\) −9138.00 −0.330698
\(915\) −7476.00 −0.270108
\(916\) −4498.00 −0.162247
\(917\) 17892.0 0.644325
\(918\) −5994.00 −0.215503
\(919\) −36000.0 −1.29220 −0.646099 0.763253i \(-0.723601\pi\)
−0.646099 + 0.763253i \(0.723601\pi\)
\(920\) −43512.0 −1.55929
\(921\) 3120.00 0.111626
\(922\) 5310.00 0.189670
\(923\) −1496.00 −0.0533493
\(924\) 231.000 0.00822440
\(925\) −6958.00 −0.247327
\(926\) 36264.0 1.28694
\(927\) 8856.00 0.313775
\(928\) −1170.00 −0.0413870
\(929\) −15246.0 −0.538434 −0.269217 0.963080i \(-0.586765\pi\)
−0.269217 + 0.963080i \(0.586765\pi\)
\(930\) −14112.0 −0.497581
\(931\) 0 0
\(932\) −5010.00 −0.176082
\(933\) 23916.0 0.839201
\(934\) −59508.0 −2.08476
\(935\) −11396.0 −0.398598
\(936\) −378.000 −0.0132001
\(937\) 32706.0 1.14030 0.570149 0.821542i \(-0.306886\pi\)
0.570149 + 0.821542i \(0.306886\pi\)
\(938\) 19404.0 0.675440
\(939\) −9474.00 −0.329257
\(940\) −6440.00 −0.223457
\(941\) −10006.0 −0.346638 −0.173319 0.984866i \(-0.555449\pi\)
−0.173319 + 0.984866i \(0.555449\pi\)
\(942\) 24822.0 0.858540
\(943\) 1480.00 0.0511086
\(944\) 14484.0 0.499379
\(945\) 2646.00 0.0910840
\(946\) −6864.00 −0.235907
\(947\) −5540.00 −0.190101 −0.0950506 0.995472i \(-0.530301\pi\)
−0.0950506 + 0.995472i \(0.530301\pi\)
\(948\) −1368.00 −0.0468677
\(949\) −460.000 −0.0157347
\(950\) 0 0
\(951\) −18738.0 −0.638929
\(952\) −10878.0 −0.370334
\(953\) −32522.0 −1.10545 −0.552723 0.833365i \(-0.686411\pi\)
−0.552723 + 0.833365i \(0.686411\pi\)
\(954\) 6966.00 0.236407
\(955\) 69160.0 2.34342
\(956\) 704.000 0.0238169
\(957\) −858.000 −0.0289814
\(958\) −13560.0 −0.457311
\(959\) −11382.0 −0.383258
\(960\) −18186.0 −0.611407
\(961\) −17247.0 −0.578933
\(962\) −588.000 −0.0197067
\(963\) −17244.0 −0.577030
\(964\) −6102.00 −0.203872
\(965\) −46060.0 −1.53650
\(966\) 9324.00 0.310554
\(967\) −6976.00 −0.231989 −0.115994 0.993250i \(-0.537005\pi\)
−0.115994 + 0.993250i \(0.537005\pi\)
\(968\) −2541.00 −0.0843707
\(969\) 0 0
\(970\) −23604.0 −0.781318
\(971\) 46660.0 1.54211 0.771056 0.636767i \(-0.219729\pi\)
0.771056 + 0.636767i \(0.219729\pi\)
\(972\) 243.000 0.00801875
\(973\) −3752.00 −0.123621
\(974\) −5304.00 −0.174488
\(975\) 426.000 0.0139927
\(976\) −12638.0 −0.414480
\(977\) 11506.0 0.376775 0.188388 0.982095i \(-0.439674\pi\)
0.188388 + 0.982095i \(0.439674\pi\)
\(978\) −12492.0 −0.408436
\(979\) 2178.00 0.0711023
\(980\) −686.000 −0.0223607
\(981\) −4446.00 −0.144699
\(982\) 53964.0 1.75363
\(983\) −14844.0 −0.481638 −0.240819 0.970570i \(-0.577416\pi\)
−0.240819 + 0.970570i \(0.577416\pi\)
\(984\) 630.000 0.0204102
\(985\) −924.000 −0.0298894
\(986\) −5772.00 −0.186428
\(987\) −9660.00 −0.311531
\(988\) 0 0
\(989\) −30784.0 −0.989762
\(990\) 4158.00 0.133485
\(991\) −4616.00 −0.147964 −0.0739819 0.997260i \(-0.523571\pi\)
−0.0739819 + 0.997260i \(0.523571\pi\)
\(992\) −5040.00 −0.161311
\(993\) 23700.0 0.757399
\(994\) 15708.0 0.501235
\(995\) 37408.0 1.19187
\(996\) −684.000 −0.0217604
\(997\) 41298.0 1.31186 0.655928 0.754823i \(-0.272277\pi\)
0.655928 + 0.754823i \(0.272277\pi\)
\(998\) 5748.00 0.182314
\(999\) −2646.00 −0.0837995
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.d.1.1 1
3.2 odd 2 693.4.a.c.1.1 1
7.6 odd 2 1617.4.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.d.1.1 1 1.1 even 1 trivial
693.4.a.c.1.1 1 3.2 odd 2
1617.4.a.f.1.1 1 7.6 odd 2