Properties

Label 231.2.s
Level $231$
Weight $2$
Character orbit 231.s
Rep. character $\chi_{231}(8,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $96$
Newform subspaces $1$
Sturm bound $64$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 231.s (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(64\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(231, [\chi])\).

Total New Old
Modular forms 144 96 48
Cusp forms 112 96 16
Eisenstein series 32 0 32

Trace form

\( 96 q + 6 q^{3} - 24 q^{4} - 10 q^{6} - 20 q^{9} + O(q^{10}) \) \( 96 q + 6 q^{3} - 24 q^{4} - 10 q^{6} - 20 q^{9} - 20 q^{12} - 32 q^{16} - 10 q^{18} - 60 q^{19} + 30 q^{24} + 12 q^{25} - 40 q^{28} + 60 q^{30} + 40 q^{31} - 44 q^{33} + 8 q^{34} + 2 q^{36} + 16 q^{37} - 10 q^{39} - 96 q^{45} - 40 q^{46} + 48 q^{48} + 24 q^{49} - 30 q^{51} - 40 q^{52} + 28 q^{55} - 30 q^{57} + 36 q^{58} - 32 q^{60} + 40 q^{61} - 28 q^{64} + 118 q^{66} - 56 q^{67} + 26 q^{69} + 20 q^{70} + 150 q^{72} + 40 q^{73} + 2 q^{75} - 20 q^{78} - 40 q^{79} + 8 q^{81} - 16 q^{82} + 40 q^{84} - 60 q^{85} - 156 q^{88} + 100 q^{90} + 36 q^{91} - 36 q^{93} + 160 q^{96} - 88 q^{97} - 94 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(231, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
231.2.s.a 231.s 33.f $96$ $1.845$ None \(0\) \(6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{2}^{\mathrm{old}}(231, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(231, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 2}\)