Properties

Label 231.2.j.c
Level 231
Weight 2
Character orbit 231.j
Analytic conductor 1.845
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 231.j (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.84454428669\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{2} -\zeta_{10}^{2} q^{3} + \zeta_{10}^{3} q^{4} + ( 3 - 2 \zeta_{10} + 3 \zeta_{10}^{2} ) q^{5} -\zeta_{10} q^{6} -\zeta_{10}^{3} q^{7} + 3 \zeta_{10}^{2} q^{8} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{9} +O(q^{10})\) \( q + ( 1 - \zeta_{10} + \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{2} -\zeta_{10}^{2} q^{3} + \zeta_{10}^{3} q^{4} + ( 3 - 2 \zeta_{10} + 3 \zeta_{10}^{2} ) q^{5} -\zeta_{10} q^{6} -\zeta_{10}^{3} q^{7} + 3 \zeta_{10}^{2} q^{8} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{9} + ( 1 + 3 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{10} + ( 1 + \zeta_{10} + \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{11} + q^{12} + ( 2 \zeta_{10} - 2 \zeta_{10}^{2} ) q^{13} -\zeta_{10}^{2} q^{14} + ( 3 - 3 \zeta_{10} - \zeta_{10}^{3} ) q^{15} + \zeta_{10} q^{16} + ( -3 - 3 \zeta_{10} - 3 \zeta_{10}^{2} ) q^{17} + \zeta_{10}^{3} q^{18} + ( \zeta_{10} + \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{19} + ( -1 - 2 \zeta_{10} + 2 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{20} - q^{21} + ( 2 - 2 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{22} + ( -5 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{23} + ( 3 - 3 \zeta_{10} + 3 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{24} + ( -3 \zeta_{10} + 8 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{25} + ( 2 - 2 \zeta_{10} ) q^{26} + \zeta_{10} q^{27} + \zeta_{10} q^{28} + 2 \zeta_{10}^{3} q^{29} + ( -3 \zeta_{10} + 2 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{30} + ( 3 + 4 \zeta_{10} - 4 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{31} -5 q^{32} + ( -2 - \zeta_{10} - 2 \zeta_{10}^{3} ) q^{33} + ( -6 - 3 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{34} + ( 1 + 2 \zeta_{10} - 2 \zeta_{10}^{2} - \zeta_{10}^{3} ) q^{35} -\zeta_{10}^{2} q^{36} + ( -5 + 5 \zeta_{10} + 9 \zeta_{10}^{3} ) q^{37} + ( 1 + \zeta_{10} + \zeta_{10}^{2} ) q^{38} + ( -2 + 2 \zeta_{10} - 2 \zeta_{10}^{2} ) q^{39} + ( -9 + 9 \zeta_{10} + 3 \zeta_{10}^{3} ) q^{40} + ( -3 \zeta_{10} - 6 \zeta_{10}^{2} - 3 \zeta_{10}^{3} ) q^{41} + ( -1 + \zeta_{10} - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{42} + ( -2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{43} + ( -2 + 4 \zeta_{10} - \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{44} + ( -1 - 3 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{45} + ( -5 \zeta_{10} + 5 \zeta_{10}^{2} ) q^{46} + 2 \zeta_{10}^{2} q^{47} -\zeta_{10}^{3} q^{48} -\zeta_{10} q^{49} + ( -3 + 8 \zeta_{10} - 3 \zeta_{10}^{2} ) q^{50} + ( -3 + 3 \zeta_{10} + 6 \zeta_{10}^{3} ) q^{51} + ( 2 \zeta_{10} - 2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{52} + ( -6 - 4 \zeta_{10} + 4 \zeta_{10}^{2} + 6 \zeta_{10}^{3} ) q^{53} + q^{54} + ( 3 + 10 \zeta_{10} - 5 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{55} + 3 q^{56} + ( 2 - \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{57} + 2 \zeta_{10}^{2} q^{58} + ( -2 + 2 \zeta_{10} - 8 \zeta_{10}^{3} ) q^{59} + ( 3 - 2 \zeta_{10} + 3 \zeta_{10}^{2} ) q^{60} + ( -8 + 4 \zeta_{10} - 8 \zeta_{10}^{2} ) q^{61} + ( 7 - 7 \zeta_{10} - 3 \zeta_{10}^{3} ) q^{62} + \zeta_{10}^{2} q^{63} + ( -7 + 7 \zeta_{10} - 7 \zeta_{10}^{2} + 7 \zeta_{10}^{3} ) q^{64} + ( 6 - 4 \zeta_{10}^{2} + 4 \zeta_{10}^{3} ) q^{65} + ( -3 + 2 \zeta_{10} - 4 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{66} + 8 q^{67} + ( 6 - 3 \zeta_{10} + 3 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{68} + ( 5 \zeta_{10} - 5 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{69} + ( 3 - 3 \zeta_{10} - \zeta_{10}^{3} ) q^{70} + ( -8 + 4 \zeta_{10} - 8 \zeta_{10}^{2} ) q^{71} -3 \zeta_{10} q^{72} + ( -2 + 2 \zeta_{10} + 4 \zeta_{10}^{3} ) q^{73} + ( 5 \zeta_{10} + 4 \zeta_{10}^{2} + 5 \zeta_{10}^{3} ) q^{74} + ( 5 - 8 \zeta_{10} + 8 \zeta_{10}^{2} - 5 \zeta_{10}^{3} ) q^{75} + ( -2 - \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{76} + ( 2 - 4 \zeta_{10} + \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{77} + ( -2 \zeta_{10}^{2} + 2 \zeta_{10}^{3} ) q^{78} + ( 14 - 14 \zeta_{10} + 14 \zeta_{10}^{2} - 14 \zeta_{10}^{3} ) q^{79} + ( 3 \zeta_{10} - 2 \zeta_{10}^{2} + 3 \zeta_{10}^{3} ) q^{80} -\zeta_{10}^{3} q^{81} + ( -3 - 6 \zeta_{10} - 3 \zeta_{10}^{2} ) q^{82} + ( -8 + 10 \zeta_{10} - 8 \zeta_{10}^{2} ) q^{83} -\zeta_{10}^{3} q^{84} + ( -12 \zeta_{10} - 3 \zeta_{10}^{2} - 12 \zeta_{10}^{3} ) q^{85} + ( -2 \zeta_{10} + 2 \zeta_{10}^{2} ) q^{86} + 2 q^{87} + ( 6 + 3 \zeta_{10} + 6 \zeta_{10}^{3} ) q^{88} + ( -2 + 5 \zeta_{10}^{2} - 5 \zeta_{10}^{3} ) q^{89} + ( -1 - 2 \zeta_{10} + 2 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{90} + ( -2 \zeta_{10} + 2 \zeta_{10}^{2} - 2 \zeta_{10}^{3} ) q^{91} + ( 5 - 5 \zeta_{10} ) q^{92} + ( -7 + 4 \zeta_{10} - 7 \zeta_{10}^{2} ) q^{93} + 2 \zeta_{10} q^{94} + ( -4 + 4 \zeta_{10} + 5 \zeta_{10}^{3} ) q^{95} + 5 \zeta_{10}^{2} q^{96} + ( 6 - 10 \zeta_{10} + 10 \zeta_{10}^{2} - 6 \zeta_{10}^{3} ) q^{97} - q^{98} + ( -2 + 2 \zeta_{10}^{2} + \zeta_{10}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + q^{2} + q^{3} + q^{4} + 7q^{5} - q^{6} - q^{7} - 3q^{8} - q^{9} + O(q^{10}) \) \( 4q + q^{2} + q^{3} + q^{4} + 7q^{5} - q^{6} - q^{7} - 3q^{8} - q^{9} - 2q^{10} + q^{11} + 4q^{12} + 4q^{13} + q^{14} + 8q^{15} + q^{16} - 12q^{17} + q^{18} + q^{19} - 7q^{20} - 4q^{21} + 9q^{22} + 10q^{23} + 3q^{24} - 14q^{25} + 6q^{26} + q^{27} + q^{28} + 2q^{29} - 8q^{30} + 17q^{31} - 20q^{32} - 11q^{33} - 18q^{34} + 7q^{35} + q^{36} - 6q^{37} + 4q^{38} - 4q^{39} - 24q^{40} - q^{42} + 4q^{43} - q^{44} + 2q^{45} - 10q^{46} - 2q^{47} - q^{48} - q^{49} - q^{50} - 3q^{51} + 6q^{52} - 26q^{53} + 4q^{54} + 28q^{55} + 12q^{56} + 4q^{57} - 2q^{58} - 14q^{59} + 7q^{60} - 20q^{61} + 18q^{62} - q^{63} - 7q^{64} + 32q^{65} - 4q^{66} + 32q^{67} + 12q^{68} + 15q^{69} + 8q^{70} - 20q^{71} - 3q^{72} - 2q^{73} + 6q^{74} - q^{75} - 6q^{76} + q^{77} + 4q^{78} + 14q^{79} + 8q^{80} - q^{81} - 15q^{82} - 14q^{83} - q^{84} - 21q^{85} - 4q^{86} + 8q^{87} + 33q^{88} - 18q^{89} - 7q^{90} - 6q^{91} + 15q^{92} - 17q^{93} + 2q^{94} - 7q^{95} - 5q^{96} - 2q^{97} - 4q^{98} - 9q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/231\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 + 0.951057i 0.809017 0.587785i 0.809017 + 0.587785i 1.19098 + 3.66547i 0.309017 + 0.951057i −0.809017 0.587785i −2.42705 + 1.76336i 0.309017 0.951057i −3.85410
148.1 −0.309017 0.951057i 0.809017 + 0.587785i 0.809017 0.587785i 1.19098 3.66547i 0.309017 0.951057i −0.809017 + 0.587785i −2.42705 1.76336i 0.309017 + 0.951057i −3.85410
169.1 0.809017 + 0.587785i −0.309017 + 0.951057i −0.309017 0.951057i 2.30902 1.67760i −0.809017 + 0.587785i 0.309017 + 0.951057i 0.927051 2.85317i −0.809017 0.587785i 2.85410
190.1 0.809017 0.587785i −0.309017 0.951057i −0.309017 + 0.951057i 2.30902 + 1.67760i −0.809017 0.587785i 0.309017 0.951057i 0.927051 + 2.85317i −0.809017 + 0.587785i 2.85410
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 231.2.j.c 4
3.b odd 2 1 693.2.m.c 4
11.c even 5 1 inner 231.2.j.c 4
11.c even 5 1 2541.2.a.n 2
11.d odd 10 1 2541.2.a.bd 2
33.f even 10 1 7623.2.a.w 2
33.h odd 10 1 693.2.m.c 4
33.h odd 10 1 7623.2.a.bu 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.2.j.c 4 1.a even 1 1 trivial
231.2.j.c 4 11.c even 5 1 inner
693.2.m.c 4 3.b odd 2 1
693.2.m.c 4 33.h odd 10 1
2541.2.a.n 2 11.c even 5 1
2541.2.a.bd 2 11.d odd 10 1
7623.2.a.w 2 33.f even 10 1
7623.2.a.bu 2 33.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - T_{2}^{3} + T_{2}^{2} - T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(231, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - T - T^{2} + 3 T^{3} - T^{4} + 6 T^{5} - 4 T^{6} - 8 T^{7} + 16 T^{8} \)
$3$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
$5$ \( 1 - 7 T + 29 T^{2} - 93 T^{3} + 236 T^{4} - 465 T^{5} + 725 T^{6} - 875 T^{7} + 625 T^{8} \)
$7$ \( 1 + T + T^{2} + T^{3} + T^{4} \)
$11$ \( 1 - T - 9 T^{2} - 11 T^{3} + 121 T^{4} \)
$13$ \( 1 - 4 T + 3 T^{2} - 50 T^{3} + 341 T^{4} - 650 T^{5} + 507 T^{6} - 8788 T^{7} + 28561 T^{8} \)
$17$ \( 1 + 12 T + 37 T^{2} - 180 T^{3} - 1619 T^{4} - 3060 T^{5} + 10693 T^{6} + 58956 T^{7} + 83521 T^{8} \)
$19$ \( 1 - T - 13 T^{2} - 53 T^{3} + 400 T^{4} - 1007 T^{5} - 4693 T^{6} - 6859 T^{7} + 130321 T^{8} \)
$23$ \( ( 1 - 5 T + 21 T^{2} - 115 T^{3} + 529 T^{4} )^{2} \)
$29$ \( 1 - 2 T - 25 T^{2} + 108 T^{3} + 509 T^{4} + 3132 T^{5} - 21025 T^{6} - 48778 T^{7} + 707281 T^{8} \)
$31$ \( 1 - 17 T + 153 T^{2} - 1129 T^{3} + 7100 T^{4} - 34999 T^{5} + 147033 T^{6} - 506447 T^{7} + 923521 T^{8} \)
$37$ \( 1 + 6 T + 99 T^{2} + 272 T^{3} + 3969 T^{4} + 10064 T^{5} + 135531 T^{6} + 303918 T^{7} + 1874161 T^{8} \)
$41$ \( 1 + 49 T^{2} - 60 T^{3} + 1861 T^{4} - 2460 T^{5} + 82369 T^{6} + 2825761 T^{8} \)
$43$ \( ( 1 - 2 T + 82 T^{2} - 86 T^{3} + 1849 T^{4} )^{2} \)
$47$ \( 1 + 2 T - 43 T^{2} - 180 T^{3} + 1661 T^{4} - 8460 T^{5} - 94987 T^{6} + 207646 T^{7} + 4879681 T^{8} \)
$53$ \( 1 + 26 T + 323 T^{2} + 2870 T^{3} + 22001 T^{4} + 152110 T^{5} + 907307 T^{6} + 3870802 T^{7} + 7890481 T^{8} \)
$59$ \( 1 + 14 T + 37 T^{2} - 758 T^{3} - 10095 T^{4} - 44722 T^{5} + 128797 T^{6} + 2875306 T^{7} + 12117361 T^{8} \)
$61$ \( 1 + 20 T + 179 T^{2} + 1600 T^{3} + 15001 T^{4} + 97600 T^{5} + 666059 T^{6} + 4539620 T^{7} + 13845841 T^{8} \)
$67$ \( ( 1 - 8 T + 67 T^{2} )^{4} \)
$71$ \( 1 + 20 T + 169 T^{2} + 1600 T^{3} + 17121 T^{4} + 113600 T^{5} + 851929 T^{6} + 7158220 T^{7} + 25411681 T^{8} \)
$73$ \( 1 + 2 T - 49 T^{2} + 406 T^{3} + 5929 T^{4} + 29638 T^{5} - 261121 T^{6} + 778034 T^{7} + 28398241 T^{8} \)
$79$ \( 1 - 14 T + 117 T^{2} - 532 T^{3} - 1795 T^{4} - 42028 T^{5} + 730197 T^{6} - 6902546 T^{7} + 38950081 T^{8} \)
$83$ \( 1 + 14 T + 193 T^{2} + 2140 T^{3} + 26421 T^{4} + 177620 T^{5} + 1329577 T^{6} + 8005018 T^{7} + 47458321 T^{8} \)
$89$ \( ( 1 + 9 T + 167 T^{2} + 801 T^{3} + 7921 T^{4} )^{2} \)
$97$ \( 1 + 2 T + 27 T^{2} + 760 T^{3} + 10181 T^{4} + 73720 T^{5} + 254043 T^{6} + 1825346 T^{7} + 88529281 T^{8} \)
show more
show less