Properties

Label 231.2.i.e.67.3
Level $231$
Weight $2$
Character 231.67
Analytic conductor $1.845$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,2,Mod(67,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 231.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.84454428669\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.10423593216.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} + 21x^{4} - 4x^{3} + 28x^{2} + 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.3
Root \(-0.276205 - 0.478401i\) of defining polynomial
Character \(\chi\) \(=\) 231.67
Dual form 231.2.i.e.100.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.276205 + 0.478401i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.847422 - 1.46778i) q^{4} +(-0.795012 - 1.37700i) q^{5} -0.552409 q^{6} +(0.886763 - 2.49272i) q^{7} +2.04107 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.276205 + 0.478401i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.847422 - 1.46778i) q^{4} +(-0.795012 - 1.37700i) q^{5} -0.552409 q^{6} +(0.886763 - 2.49272i) q^{7} +2.04107 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.439172 - 0.760669i) q^{10} +(0.500000 - 0.866025i) q^{11} +(0.847422 + 1.46778i) q^{12} +2.87834 q^{13} +(1.43745 - 0.264273i) q^{14} +1.59002 q^{15} +(-1.13109 - 1.95911i) q^{16} +(-2.41864 + 4.18921i) q^{17} +(0.276205 - 0.478401i) q^{18} +(0.572943 + 0.992366i) q^{19} -2.69484 q^{20} +(1.71538 + 2.01432i) q^{21} +0.552409 q^{22} +(1.82594 + 3.16261i) q^{23} +(-1.02053 + 1.76762i) q^{24} +(1.23591 - 2.14066i) q^{25} +(0.795012 + 1.37700i) q^{26} +1.00000 q^{27} +(-2.90730 - 3.41396i) q^{28} -0.325935 q^{29} +(0.439172 + 0.760669i) q^{30} +(-3.22577 + 5.58719i) q^{31} +(2.66589 - 4.61746i) q^{32} +(0.500000 + 0.866025i) q^{33} -2.67216 q^{34} +(-4.13747 + 0.760669i) q^{35} -1.69484 q^{36} +(-0.847422 - 1.46778i) q^{37} +(-0.316499 + 0.548192i) q^{38} +(-1.43917 + 2.49272i) q^{39} +(-1.62267 - 2.81055i) q^{40} -4.05839 q^{41} +(-0.489856 + 1.37700i) q^{42} +4.62764 q^{43} +(-0.847422 - 1.46778i) q^{44} +(-0.795012 + 1.37700i) q^{45} +(-1.00866 + 1.74706i) q^{46} +(-0.152578 - 0.264273i) q^{47} +2.26218 q^{48} +(-5.42730 - 4.42090i) q^{49} +1.36546 q^{50} +(-2.41864 - 4.18921i) q^{51} +(2.43917 - 4.22477i) q^{52} +(-2.85686 + 4.94822i) q^{53} +(0.276205 + 0.478401i) q^{54} -1.59002 q^{55} +(1.80994 - 5.08781i) q^{56} -1.14589 q^{57} +(-0.0900249 - 0.155928i) q^{58} +(-5.93075 + 10.2724i) q^{59} +(1.34742 - 2.33380i) q^{60} +(-0.886763 - 1.53592i) q^{61} -3.56389 q^{62} +(-2.60214 + 0.478401i) q^{63} -1.57904 q^{64} +(-2.28832 - 3.96349i) q^{65} +(-0.276205 + 0.478401i) q^{66} +(-7.63574 + 13.2255i) q^{67} +(4.09922 + 7.10005i) q^{68} -3.65187 q^{69} +(-1.50669 - 1.76927i) q^{70} +9.16666 q^{71} +(-1.02053 - 1.76762i) q^{72} +(5.86648 - 10.1610i) q^{73} +(0.468124 - 0.810814i) q^{74} +(1.23591 + 2.14066i) q^{75} +1.94210 q^{76} +(-1.71538 - 2.01432i) q^{77} -1.59002 q^{78} +(4.35513 + 7.54331i) q^{79} +(-1.79846 + 3.11503i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-1.12095 - 1.94154i) q^{82} +8.40856 q^{83} +(4.41022 - 0.810814i) q^{84} +7.69139 q^{85} +(1.27818 + 2.21387i) q^{86} +(0.162968 - 0.282268i) q^{87} +(1.02053 - 1.76762i) q^{88} +(2.87489 + 4.97946i) q^{89} -0.878345 q^{90} +(2.55241 - 7.17491i) q^{91} +6.18935 q^{92} +(-3.22577 - 5.58719i) q^{93} +(0.0842856 - 0.145987i) q^{94} +(0.910993 - 1.57789i) q^{95} +(2.66589 + 4.61746i) q^{96} -3.65329 q^{97} +(0.615916 - 3.81750i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} + 4 q^{6} + 2 q^{7} + 24 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} + 4 q^{6} + 2 q^{7} + 24 q^{8} - 4 q^{9} - 10 q^{10} + 4 q^{11} - 4 q^{12} - 4 q^{13} - 4 q^{14} + 8 q^{15} - 12 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{21} - 4 q^{22} - 4 q^{23} - 12 q^{24} - 4 q^{25} + 4 q^{26} + 8 q^{27} - 22 q^{28} + 16 q^{29} - 10 q^{30} + 12 q^{31} - 26 q^{32} + 4 q^{33} - 32 q^{34} - 2 q^{35} + 8 q^{36} + 4 q^{37} - 8 q^{38} + 2 q^{39} + 6 q^{40} + 4 q^{41} + 20 q^{42} + 36 q^{43} + 4 q^{44} - 4 q^{45} + 14 q^{46} - 12 q^{47} + 24 q^{48} - 4 q^{49} + 4 q^{50} - 2 q^{51} + 6 q^{52} + 12 q^{53} - 2 q^{54} - 8 q^{55} + 48 q^{56} + 4 q^{58} - 12 q^{59} - 2 q^{61} - 52 q^{62} + 2 q^{63} + 112 q^{64} + 4 q^{65} + 2 q^{66} - 28 q^{67} + 48 q^{68} + 8 q^{69} - 32 q^{70} + 24 q^{71} - 12 q^{72} - 6 q^{73} + 16 q^{74} - 4 q^{75} - 36 q^{76} + 4 q^{77} - 8 q^{78} - 2 q^{79} - 16 q^{80} - 4 q^{81} + 12 q^{82} - 24 q^{83} - 4 q^{84} + 36 q^{85} - 36 q^{86} - 8 q^{87} + 12 q^{88} - 8 q^{89} + 20 q^{90} + 12 q^{91} - 32 q^{92} + 12 q^{93} - 20 q^{94} - 34 q^{95} - 26 q^{96} - 88 q^{97} + 16 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/231\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.276205 + 0.478401i 0.195306 + 0.338280i 0.947001 0.321231i \(-0.104097\pi\)
−0.751695 + 0.659511i \(0.770763\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0.847422 1.46778i 0.423711 0.733889i
\(5\) −0.795012 1.37700i −0.355540 0.615814i 0.631670 0.775237i \(-0.282370\pi\)
−0.987210 + 0.159423i \(0.949036\pi\)
\(6\) −0.552409 −0.225520
\(7\) 0.886763 2.49272i 0.335165 0.942159i
\(8\) 2.04107 0.721626
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.439172 0.760669i 0.138879 0.240545i
\(11\) 0.500000 0.866025i 0.150756 0.261116i
\(12\) 0.847422 + 1.46778i 0.244630 + 0.423711i
\(13\) 2.87834 0.798309 0.399155 0.916884i \(-0.369304\pi\)
0.399155 + 0.916884i \(0.369304\pi\)
\(14\) 1.43745 0.264273i 0.384174 0.0706299i
\(15\) 1.59002 0.410543
\(16\) −1.13109 1.95911i −0.282773 0.489777i
\(17\) −2.41864 + 4.18921i −0.586606 + 1.01603i 0.408067 + 0.912952i \(0.366203\pi\)
−0.994673 + 0.103080i \(0.967130\pi\)
\(18\) 0.276205 0.478401i 0.0651021 0.112760i
\(19\) 0.572943 + 0.992366i 0.131442 + 0.227664i 0.924233 0.381830i \(-0.124706\pi\)
−0.792791 + 0.609494i \(0.791373\pi\)
\(20\) −2.69484 −0.602585
\(21\) 1.71538 + 2.01432i 0.374326 + 0.439560i
\(22\) 0.552409 0.117774
\(23\) 1.82594 + 3.16261i 0.380734 + 0.659450i 0.991167 0.132617i \(-0.0423381\pi\)
−0.610434 + 0.792068i \(0.709005\pi\)
\(24\) −1.02053 + 1.76762i −0.208315 + 0.360813i
\(25\) 1.23591 2.14066i 0.247182 0.428132i
\(26\) 0.795012 + 1.37700i 0.155915 + 0.270052i
\(27\) 1.00000 0.192450
\(28\) −2.90730 3.41396i −0.549427 0.645177i
\(29\) −0.325935 −0.0605247 −0.0302623 0.999542i \(-0.509634\pi\)
−0.0302623 + 0.999542i \(0.509634\pi\)
\(30\) 0.439172 + 0.760669i 0.0801815 + 0.138879i
\(31\) −3.22577 + 5.58719i −0.579365 + 1.00349i 0.416188 + 0.909279i \(0.363366\pi\)
−0.995552 + 0.0942105i \(0.969967\pi\)
\(32\) 2.66589 4.61746i 0.471268 0.816259i
\(33\) 0.500000 + 0.866025i 0.0870388 + 0.150756i
\(34\) −2.67216 −0.458271
\(35\) −4.13747 + 0.760669i −0.699360 + 0.128577i
\(36\) −1.69484 −0.282474
\(37\) −0.847422 1.46778i −0.139315 0.241301i 0.787922 0.615775i \(-0.211157\pi\)
−0.927238 + 0.374473i \(0.877823\pi\)
\(38\) −0.316499 + 0.548192i −0.0513429 + 0.0889285i
\(39\) −1.43917 + 2.49272i −0.230452 + 0.399155i
\(40\) −1.62267 2.81055i −0.256567 0.444387i
\(41\) −4.05839 −0.633815 −0.316907 0.948456i \(-0.602644\pi\)
−0.316907 + 0.948456i \(0.602644\pi\)
\(42\) −0.489856 + 1.37700i −0.0755865 + 0.212476i
\(43\) 4.62764 0.705709 0.352854 0.935678i \(-0.385211\pi\)
0.352854 + 0.935678i \(0.385211\pi\)
\(44\) −0.847422 1.46778i −0.127754 0.221276i
\(45\) −0.795012 + 1.37700i −0.118513 + 0.205271i
\(46\) −1.00866 + 1.74706i −0.148719 + 0.257590i
\(47\) −0.152578 0.264273i −0.0222558 0.0385482i 0.854683 0.519150i \(-0.173751\pi\)
−0.876939 + 0.480602i \(0.840418\pi\)
\(48\) 2.26218 0.326518
\(49\) −5.42730 4.42090i −0.775329 0.631558i
\(50\) 1.36546 0.193105
\(51\) −2.41864 4.18921i −0.338677 0.586606i
\(52\) 2.43917 4.22477i 0.338252 0.585870i
\(53\) −2.85686 + 4.94822i −0.392420 + 0.679691i −0.992768 0.120048i \(-0.961695\pi\)
0.600348 + 0.799739i \(0.295029\pi\)
\(54\) 0.276205 + 0.478401i 0.0375867 + 0.0651021i
\(55\) −1.59002 −0.214399
\(56\) 1.80994 5.08781i 0.241864 0.679887i
\(57\) −1.14589 −0.151776
\(58\) −0.0900249 0.155928i −0.0118208 0.0204743i
\(59\) −5.93075 + 10.2724i −0.772118 + 1.33735i 0.164281 + 0.986414i \(0.447469\pi\)
−0.936400 + 0.350935i \(0.885864\pi\)
\(60\) 1.34742 2.33380i 0.173951 0.301293i
\(61\) −0.886763 1.53592i −0.113538 0.196654i 0.803656 0.595094i \(-0.202885\pi\)
−0.917195 + 0.398440i \(0.869552\pi\)
\(62\) −3.56389 −0.452614
\(63\) −2.60214 + 0.478401i −0.327839 + 0.0602728i
\(64\) −1.57904 −0.197380
\(65\) −2.28832 3.96349i −0.283831 0.491610i
\(66\) −0.276205 + 0.478401i −0.0339985 + 0.0588870i
\(67\) −7.63574 + 13.2255i −0.932854 + 1.61575i −0.154438 + 0.988002i \(0.549357\pi\)
−0.778416 + 0.627749i \(0.783977\pi\)
\(68\) 4.09922 + 7.10005i 0.497103 + 0.861007i
\(69\) −3.65187 −0.439634
\(70\) −1.50669 1.76927i −0.180084 0.211468i
\(71\) 9.16666 1.08788 0.543941 0.839123i \(-0.316931\pi\)
0.543941 + 0.839123i \(0.316931\pi\)
\(72\) −1.02053 1.76762i −0.120271 0.208315i
\(73\) 5.86648 10.1610i 0.686619 1.18926i −0.286306 0.958138i \(-0.592427\pi\)
0.972925 0.231121i \(-0.0742393\pi\)
\(74\) 0.468124 0.810814i 0.0544183 0.0942553i
\(75\) 1.23591 + 2.14066i 0.142711 + 0.247182i
\(76\) 1.94210 0.222774
\(77\) −1.71538 2.01432i −0.195485 0.229553i
\(78\) −1.59002 −0.180035
\(79\) 4.35513 + 7.54331i 0.489991 + 0.848689i 0.999934 0.0115194i \(-0.00366683\pi\)
−0.509943 + 0.860208i \(0.670333\pi\)
\(80\) −1.79846 + 3.11503i −0.201074 + 0.348271i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −1.12095 1.94154i −0.123788 0.214407i
\(83\) 8.40856 0.922959 0.461480 0.887151i \(-0.347319\pi\)
0.461480 + 0.887151i \(0.347319\pi\)
\(84\) 4.41022 0.810814i 0.481195 0.0884671i
\(85\) 7.69139 0.834249
\(86\) 1.27818 + 2.21387i 0.137829 + 0.238727i
\(87\) 0.162968 0.282268i 0.0174720 0.0302623i
\(88\) 1.02053 1.76762i 0.108789 0.188428i
\(89\) 2.87489 + 4.97946i 0.304738 + 0.527822i 0.977203 0.212307i \(-0.0680977\pi\)
−0.672465 + 0.740129i \(0.734764\pi\)
\(90\) −0.878345 −0.0925857
\(91\) 2.55241 7.17491i 0.267565 0.752135i
\(92\) 6.18935 0.645284
\(93\) −3.22577 5.58719i −0.334496 0.579365i
\(94\) 0.0842856 0.145987i 0.00869339 0.0150574i
\(95\) 0.910993 1.57789i 0.0934659 0.161888i
\(96\) 2.66589 + 4.61746i 0.272086 + 0.471268i
\(97\) −3.65329 −0.370935 −0.185467 0.982650i \(-0.559380\pi\)
−0.185467 + 0.982650i \(0.559380\pi\)
\(98\) 0.615916 3.81750i 0.0622169 0.385626i
\(99\) −1.00000 −0.100504
\(100\) −2.09468 3.62808i −0.209468 0.362808i
\(101\) −0.142189 + 0.246278i −0.0141483 + 0.0245056i −0.873013 0.487697i \(-0.837837\pi\)
0.858865 + 0.512203i \(0.171170\pi\)
\(102\) 1.33608 2.31416i 0.132292 0.229136i
\(103\) 8.34671 + 14.4569i 0.822426 + 1.42448i 0.903871 + 0.427806i \(0.140713\pi\)
−0.0814443 + 0.996678i \(0.525953\pi\)
\(104\) 5.87489 0.576081
\(105\) 1.40998 3.96349i 0.137599 0.386797i
\(106\) −3.15631 −0.306568
\(107\) −8.97475 15.5447i −0.867621 1.50276i −0.864421 0.502769i \(-0.832314\pi\)
−0.00320086 0.999995i \(-0.501019\pi\)
\(108\) 0.847422 1.46778i 0.0815432 0.141237i
\(109\) −5.54399 + 9.60247i −0.531018 + 0.919750i 0.468327 + 0.883555i \(0.344857\pi\)
−0.999345 + 0.0361949i \(0.988476\pi\)
\(110\) −0.439172 0.760669i −0.0418734 0.0725269i
\(111\) 1.69484 0.160867
\(112\) −5.88652 + 1.08223i −0.556224 + 0.102261i
\(113\) 1.72443 0.162221 0.0811105 0.996705i \(-0.474153\pi\)
0.0811105 + 0.996705i \(0.474153\pi\)
\(114\) −0.316499 0.548192i −0.0296428 0.0513429i
\(115\) 2.90328 5.02863i 0.270732 0.468922i
\(116\) −0.276205 + 0.478401i −0.0256450 + 0.0444184i
\(117\) −1.43917 2.49272i −0.133052 0.230452i
\(118\) −6.55241 −0.603198
\(119\) 8.29776 + 9.74382i 0.760654 + 0.893215i
\(120\) 3.24535 0.296258
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0.489856 0.848456i 0.0443495 0.0768156i
\(123\) 2.02920 3.51467i 0.182967 0.316907i
\(124\) 5.46717 + 9.46942i 0.490966 + 0.850379i
\(125\) −11.8804 −1.06261
\(126\) −0.947591 1.11273i −0.0844181 0.0991298i
\(127\) 20.3675 1.80732 0.903661 0.428248i \(-0.140869\pi\)
0.903661 + 0.428248i \(0.140869\pi\)
\(128\) −5.76792 9.99033i −0.509817 0.883029i
\(129\) −2.31382 + 4.00765i −0.203721 + 0.352854i
\(130\) 1.26409 2.18947i 0.110868 0.192029i
\(131\) −10.0910 17.4782i −0.881659 1.52708i −0.849496 0.527595i \(-0.823094\pi\)
−0.0321623 0.999483i \(-0.510239\pi\)
\(132\) 1.69484 0.147517
\(133\) 2.98175 0.548192i 0.258551 0.0475343i
\(134\) −8.43611 −0.728769
\(135\) −0.795012 1.37700i −0.0684238 0.118513i
\(136\) −4.93660 + 8.55045i −0.423310 + 0.733195i
\(137\) 10.6316 18.4144i 0.908317 1.57325i 0.0919163 0.995767i \(-0.470701\pi\)
0.816401 0.577485i \(-0.195966\pi\)
\(138\) −1.00866 1.74706i −0.0858632 0.148719i
\(139\) 5.27951 0.447802 0.223901 0.974612i \(-0.428121\pi\)
0.223901 + 0.974612i \(0.428121\pi\)
\(140\) −2.38969 + 6.71749i −0.201965 + 0.567732i
\(141\) 0.305156 0.0256988
\(142\) 2.53188 + 4.38534i 0.212470 + 0.368009i
\(143\) 1.43917 2.49272i 0.120350 0.208452i
\(144\) −1.13109 + 1.95911i −0.0942576 + 0.163259i
\(145\) 0.259123 + 0.448814i 0.0215190 + 0.0372719i
\(146\) 6.48139 0.536404
\(147\) 6.54227 2.48973i 0.539597 0.205350i
\(148\) −2.87250 −0.236118
\(149\) −0.682729 1.18252i −0.0559313 0.0968759i 0.836704 0.547655i \(-0.184479\pi\)
−0.892635 + 0.450779i \(0.851146\pi\)
\(150\) −0.682729 + 1.18252i −0.0557446 + 0.0965524i
\(151\) −7.97450 + 13.8122i −0.648956 + 1.12402i 0.334417 + 0.942425i \(0.391461\pi\)
−0.983373 + 0.181599i \(0.941873\pi\)
\(152\) 1.16941 + 2.02549i 0.0948520 + 0.164289i
\(153\) 4.83728 0.391071
\(154\) 0.489856 1.37700i 0.0394737 0.110962i
\(155\) 10.2581 0.823950
\(156\) 2.43917 + 4.22477i 0.195290 + 0.338252i
\(157\) 4.19830 7.27166i 0.335060 0.580342i −0.648436 0.761269i \(-0.724577\pi\)
0.983496 + 0.180927i \(0.0579099\pi\)
\(158\) −2.40582 + 4.16700i −0.191396 + 0.331508i
\(159\) −2.85686 4.94822i −0.226564 0.392420i
\(160\) −8.47767 −0.670219
\(161\) 9.50268 1.74706i 0.748916 0.137687i
\(162\) −0.552409 −0.0434014
\(163\) 8.65652 + 14.9935i 0.678031 + 1.17438i 0.975573 + 0.219675i \(0.0704999\pi\)
−0.297542 + 0.954709i \(0.596167\pi\)
\(164\) −3.43917 + 5.95682i −0.268554 + 0.465150i
\(165\) 0.795012 1.37700i 0.0618916 0.107199i
\(166\) 2.32248 + 4.02266i 0.180260 + 0.312219i
\(167\) 18.4945 1.43115 0.715574 0.698537i \(-0.246165\pi\)
0.715574 + 0.698537i \(0.246165\pi\)
\(168\) 3.50120 + 4.11136i 0.270123 + 0.317198i
\(169\) −4.71513 −0.362702
\(170\) 2.12440 + 3.67957i 0.162934 + 0.282210i
\(171\) 0.572943 0.992366i 0.0438140 0.0758881i
\(172\) 3.92156 6.79235i 0.299016 0.517912i
\(173\) −6.13402 10.6244i −0.466361 0.807760i 0.532901 0.846177i \(-0.321102\pi\)
−0.999262 + 0.0384172i \(0.987768\pi\)
\(174\) 0.180050 0.0136495
\(175\) −4.24010 4.97904i −0.320522 0.376380i
\(176\) −2.26218 −0.170518
\(177\) −5.93075 10.2724i −0.445783 0.772118i
\(178\) −1.58812 + 2.75070i −0.119035 + 0.206174i
\(179\) −6.90582 + 11.9612i −0.516165 + 0.894024i 0.483659 + 0.875257i \(0.339308\pi\)
−0.999824 + 0.0187674i \(0.994026\pi\)
\(180\) 1.34742 + 2.33380i 0.100431 + 0.173951i
\(181\) −18.7687 −1.39506 −0.697532 0.716554i \(-0.745718\pi\)
−0.697532 + 0.716554i \(0.745718\pi\)
\(182\) 4.13747 0.760669i 0.306689 0.0563845i
\(183\) 1.77353 0.131103
\(184\) 3.72686 + 6.45510i 0.274747 + 0.475877i
\(185\) −1.34742 + 2.33380i −0.0990644 + 0.171585i
\(186\) 1.78194 3.08642i 0.130658 0.226307i
\(187\) 2.41864 + 4.18921i 0.176868 + 0.306345i
\(188\) −0.517192 −0.0377201
\(189\) 0.886763 2.49272i 0.0645025 0.181319i
\(190\) 1.00648 0.0730179
\(191\) −4.05839 7.02935i −0.293655 0.508626i 0.681016 0.732269i \(-0.261538\pi\)
−0.974671 + 0.223643i \(0.928205\pi\)
\(192\) 0.789519 1.36749i 0.0569786 0.0986899i
\(193\) −0.595383 + 1.03123i −0.0428566 + 0.0742298i −0.886658 0.462426i \(-0.846979\pi\)
0.843801 + 0.536656i \(0.180313\pi\)
\(194\) −1.00905 1.74773i −0.0724459 0.125480i
\(195\) 4.57664 0.327740
\(196\) −11.0881 + 4.21970i −0.792008 + 0.301407i
\(197\) −26.7523 −1.90602 −0.953012 0.302933i \(-0.902034\pi\)
−0.953012 + 0.302933i \(0.902034\pi\)
\(198\) −0.276205 0.478401i −0.0196290 0.0339985i
\(199\) 3.01684 5.22531i 0.213858 0.370413i −0.739061 0.673639i \(-0.764730\pi\)
0.952919 + 0.303226i \(0.0980637\pi\)
\(200\) 2.52258 4.36923i 0.178373 0.308951i
\(201\) −7.63574 13.2255i −0.538584 0.932854i
\(202\) −0.157093 −0.0110530
\(203\) −0.289027 + 0.812465i −0.0202857 + 0.0570239i
\(204\) −8.19843 −0.574005
\(205\) 3.22647 + 5.58842i 0.225347 + 0.390312i
\(206\) −4.61080 + 7.98615i −0.321250 + 0.556421i
\(207\) 1.82594 3.16261i 0.126911 0.219817i
\(208\) −3.25567 5.63899i −0.225740 0.390993i
\(209\) 1.14589 0.0792626
\(210\) 2.28558 0.420201i 0.157720 0.0289966i
\(211\) −20.4601 −1.40853 −0.704264 0.709938i \(-0.748723\pi\)
−0.704264 + 0.709938i \(0.748723\pi\)
\(212\) 4.84193 + 8.38647i 0.332545 + 0.575985i
\(213\) −4.58333 + 7.93856i −0.314045 + 0.543941i
\(214\) 4.95773 8.58705i 0.338904 0.586998i
\(215\) −3.67903 6.37227i −0.250908 0.434585i
\(216\) 2.04107 0.138877
\(217\) 11.0668 + 12.9954i 0.751264 + 0.882188i
\(218\) −6.12511 −0.414845
\(219\) 5.86648 + 10.1610i 0.396420 + 0.686619i
\(220\) −1.34742 + 2.33380i −0.0908432 + 0.157345i
\(221\) −6.96168 + 12.0580i −0.468293 + 0.811107i
\(222\) 0.468124 + 0.810814i 0.0314184 + 0.0544183i
\(223\) −29.6048 −1.98248 −0.991242 0.132055i \(-0.957843\pi\)
−0.991242 + 0.132055i \(0.957843\pi\)
\(224\) −9.14602 10.7399i −0.611094 0.717591i
\(225\) −2.47182 −0.164788
\(226\) 0.476296 + 0.824969i 0.0316828 + 0.0548761i
\(227\) 12.0416 20.8566i 0.799226 1.38430i −0.120894 0.992665i \(-0.538576\pi\)
0.920121 0.391635i \(-0.128090\pi\)
\(228\) −0.971049 + 1.68191i −0.0643093 + 0.111387i
\(229\) 2.60735 + 4.51607i 0.172299 + 0.298430i 0.939223 0.343307i \(-0.111547\pi\)
−0.766924 + 0.641737i \(0.778214\pi\)
\(230\) 3.20760 0.211503
\(231\) 2.60214 0.478401i 0.171208 0.0314765i
\(232\) −0.665256 −0.0436762
\(233\) −1.57294 2.72442i −0.103047 0.178482i 0.809892 0.586579i \(-0.199526\pi\)
−0.912939 + 0.408097i \(0.866193\pi\)
\(234\) 0.795012 1.37700i 0.0519716 0.0900174i
\(235\) −0.242603 + 0.420201i −0.0158257 + 0.0274109i
\(236\) 10.0517 + 17.4101i 0.654310 + 1.13330i
\(237\) −8.71027 −0.565793
\(238\) −2.36957 + 6.66094i −0.153596 + 0.431765i
\(239\) 2.75465 0.178184 0.0890919 0.996023i \(-0.471604\pi\)
0.0890919 + 0.996023i \(0.471604\pi\)
\(240\) −1.79846 3.11503i −0.116090 0.201074i
\(241\) 4.51479 7.81985i 0.290823 0.503721i −0.683181 0.730249i \(-0.739404\pi\)
0.974005 + 0.226528i \(0.0727374\pi\)
\(242\) 0.276205 0.478401i 0.0177551 0.0307528i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −3.00585 −0.192430
\(245\) −1.77282 + 10.9881i −0.113261 + 0.702003i
\(246\) 2.24190 0.142938
\(247\) 1.64913 + 2.85637i 0.104931 + 0.181747i
\(248\) −6.58400 + 11.4038i −0.418085 + 0.724144i
\(249\) −4.20428 + 7.28203i −0.266435 + 0.461480i
\(250\) −3.28142 5.68358i −0.207535 0.359461i
\(251\) −6.73133 −0.424878 −0.212439 0.977174i \(-0.568141\pi\)
−0.212439 + 0.977174i \(0.568141\pi\)
\(252\) −1.50292 + 4.22477i −0.0946754 + 0.266136i
\(253\) 3.65187 0.229591
\(254\) 5.62560 + 9.74382i 0.352981 + 0.611382i
\(255\) −3.84570 + 6.66094i −0.240827 + 0.417124i
\(256\) 1.60722 2.78378i 0.100451 0.173986i
\(257\) −13.8447 23.9797i −0.863607 1.49581i −0.868424 0.495823i \(-0.834867\pi\)
0.00481687 0.999988i \(-0.498467\pi\)
\(258\) −2.55635 −0.159152
\(259\) −4.41022 + 0.810814i −0.274038 + 0.0503816i
\(260\) −7.75669 −0.481049
\(261\) 0.162968 + 0.282268i 0.0100874 + 0.0174720i
\(262\) 5.57439 9.65512i 0.344387 0.596495i
\(263\) −2.30170 + 3.98667i −0.141929 + 0.245829i −0.928223 0.372024i \(-0.878664\pi\)
0.786294 + 0.617853i \(0.211997\pi\)
\(264\) 1.02053 + 1.76762i 0.0628095 + 0.108789i
\(265\) 9.08495 0.558084
\(266\) 1.08583 + 1.27506i 0.0665765 + 0.0781789i
\(267\) −5.74979 −0.351881
\(268\) 12.9414 + 22.4151i 0.790521 + 1.36922i
\(269\) −9.55515 + 16.5500i −0.582588 + 1.00907i 0.412583 + 0.910920i \(0.364627\pi\)
−0.995171 + 0.0981522i \(0.968707\pi\)
\(270\) 0.439172 0.760669i 0.0267272 0.0462928i
\(271\) −7.68643 13.3133i −0.466917 0.808724i 0.532369 0.846513i \(-0.321302\pi\)
−0.999286 + 0.0377885i \(0.987969\pi\)
\(272\) 10.9428 0.663505
\(273\) 4.93745 + 5.79790i 0.298828 + 0.350905i
\(274\) 11.7460 0.709600
\(275\) −1.23591 2.14066i −0.0745282 0.129087i
\(276\) −3.09468 + 5.36013i −0.186278 + 0.322642i
\(277\) 4.69484 8.13171i 0.282086 0.488587i −0.689812 0.723988i \(-0.742307\pi\)
0.971898 + 0.235401i \(0.0756404\pi\)
\(278\) 1.45823 + 2.52572i 0.0874586 + 0.151483i
\(279\) 6.45153 0.386243
\(280\) −8.44485 + 1.55258i −0.504676 + 0.0927842i
\(281\) 26.9788 1.60942 0.804710 0.593668i \(-0.202321\pi\)
0.804710 + 0.593668i \(0.202321\pi\)
\(282\) 0.0842856 + 0.145987i 0.00501913 + 0.00869339i
\(283\) 11.7878 20.4171i 0.700712 1.21367i −0.267505 0.963556i \(-0.586199\pi\)
0.968217 0.250112i \(-0.0804673\pi\)
\(284\) 7.76803 13.4546i 0.460948 0.798385i
\(285\) 0.910993 + 1.57789i 0.0539626 + 0.0934659i
\(286\) 1.59002 0.0940201
\(287\) −3.59883 + 10.1164i −0.212432 + 0.597155i
\(288\) −5.33178 −0.314178
\(289\) −3.19963 5.54192i −0.188214 0.325995i
\(290\) −0.143142 + 0.247929i −0.00840558 + 0.0145589i
\(291\) 1.82664 3.16384i 0.107080 0.185467i
\(292\) −9.94276 17.2214i −0.581856 1.00780i
\(293\) −11.8500 −0.692286 −0.346143 0.938182i \(-0.612509\pi\)
−0.346143 + 0.938182i \(0.612509\pi\)
\(294\) 2.99809 + 2.44215i 0.174852 + 0.142429i
\(295\) 18.8601 1.09808
\(296\) −1.72964 2.99583i −0.100534 0.174129i
\(297\) 0.500000 0.866025i 0.0290129 0.0502519i
\(298\) 0.377146 0.653236i 0.0218475 0.0378409i
\(299\) 5.25567 + 9.10309i 0.303943 + 0.526445i
\(300\) 4.18935 0.241872
\(301\) 4.10362 11.5354i 0.236529 0.664890i
\(302\) −8.81038 −0.506980
\(303\) −0.142189 0.246278i −0.00816852 0.0141483i
\(304\) 1.29610 2.24491i 0.0743365 0.128755i
\(305\) −1.40998 + 2.44215i −0.0807349 + 0.139837i
\(306\) 1.33608 + 2.31416i 0.0763786 + 0.132292i
\(307\) 19.5894 1.11803 0.559013 0.829159i \(-0.311180\pi\)
0.559013 + 0.829159i \(0.311180\pi\)
\(308\) −4.41022 + 0.810814i −0.251296 + 0.0462004i
\(309\) −16.6934 −0.949656
\(310\) 2.83334 + 4.90748i 0.160923 + 0.278726i
\(311\) 10.7008 18.5344i 0.606788 1.05099i −0.384978 0.922926i \(-0.625791\pi\)
0.991766 0.128062i \(-0.0408758\pi\)
\(312\) −2.93745 + 5.08781i −0.166300 + 0.288040i
\(313\) 6.66392 + 11.5422i 0.376667 + 0.652407i 0.990575 0.136971i \(-0.0437367\pi\)
−0.613908 + 0.789378i \(0.710403\pi\)
\(314\) 4.63836 0.261758
\(315\) 2.72749 + 3.20282i 0.153677 + 0.180458i
\(316\) 14.7625 0.830458
\(317\) 3.54776 + 6.14490i 0.199262 + 0.345132i 0.948289 0.317407i \(-0.102812\pi\)
−0.749027 + 0.662539i \(0.769479\pi\)
\(318\) 1.57816 2.73345i 0.0884986 0.153284i
\(319\) −0.162968 + 0.282268i −0.00912444 + 0.0158040i
\(320\) 1.25535 + 2.17434i 0.0701765 + 0.121549i
\(321\) 17.9495 1.00184
\(322\) 3.46048 + 4.06354i 0.192845 + 0.226452i
\(323\) −5.54297 −0.308419
\(324\) 0.847422 + 1.46778i 0.0470790 + 0.0815432i
\(325\) 3.55738 6.16156i 0.197328 0.341782i
\(326\) −4.78194 + 8.28257i −0.264847 + 0.458729i
\(327\) −5.54399 9.60247i −0.306583 0.531018i
\(328\) −8.28345 −0.457377
\(329\) −0.794059 + 0.145987i −0.0437779 + 0.00804852i
\(330\) 0.878345 0.0483513
\(331\) −10.3675 17.9570i −0.569849 0.987007i −0.996580 0.0826290i \(-0.973668\pi\)
0.426731 0.904378i \(-0.359665\pi\)
\(332\) 7.12560 12.3419i 0.391068 0.677350i
\(333\) −0.847422 + 1.46778i −0.0464384 + 0.0804337i
\(334\) 5.10827 + 8.84778i 0.279512 + 0.484129i
\(335\) 24.2820 1.32667
\(336\) 2.00602 5.63899i 0.109437 0.307632i
\(337\) −5.30755 −0.289121 −0.144560 0.989496i \(-0.546177\pi\)
−0.144560 + 0.989496i \(0.546177\pi\)
\(338\) −1.30234 2.25572i −0.0708380 0.122695i
\(339\) −0.862216 + 1.49340i −0.0468291 + 0.0811105i
\(340\) 6.51785 11.2893i 0.353480 0.612246i
\(341\) 3.22577 + 5.58719i 0.174685 + 0.302563i
\(342\) 0.632998 0.0342286
\(343\) −15.8328 + 9.60845i −0.854891 + 0.518808i
\(344\) 9.44532 0.509258
\(345\) 2.90328 + 5.02863i 0.156307 + 0.270732i
\(346\) 3.38849 5.86903i 0.182166 0.315521i
\(347\) −8.40156 + 14.5519i −0.451019 + 0.781188i −0.998450 0.0556630i \(-0.982273\pi\)
0.547430 + 0.836851i \(0.315606\pi\)
\(348\) −0.276205 0.478401i −0.0148061 0.0256450i
\(349\) −0.870459 −0.0465946 −0.0232973 0.999729i \(-0.507416\pi\)
−0.0232973 + 0.999729i \(0.507416\pi\)
\(350\) 1.21084 3.40370i 0.0647220 0.181936i
\(351\) 2.87834 0.153635
\(352\) −2.66589 4.61746i −0.142093 0.246111i
\(353\) 0.469077 0.812465i 0.0249665 0.0432432i −0.853272 0.521466i \(-0.825385\pi\)
0.878239 + 0.478223i \(0.158719\pi\)
\(354\) 3.27620 5.67455i 0.174128 0.301599i
\(355\) −7.28761 12.6225i −0.386786 0.669934i
\(356\) 9.74499 0.516483
\(357\) −12.5873 + 2.31416i −0.666189 + 0.122478i
\(358\) −7.62968 −0.403241
\(359\) 13.5050 + 23.3913i 0.712765 + 1.23454i 0.963815 + 0.266571i \(0.0858905\pi\)
−0.251051 + 0.967974i \(0.580776\pi\)
\(360\) −1.62267 + 2.81055i −0.0855224 + 0.148129i
\(361\) 8.84347 15.3173i 0.465446 0.806176i
\(362\) −5.18399 8.97894i −0.272465 0.471923i
\(363\) 1.00000 0.0524864
\(364\) −8.36820 9.82654i −0.438613 0.515051i
\(365\) −18.6557 −0.976483
\(366\) 0.489856 + 0.848456i 0.0256052 + 0.0443495i
\(367\) 14.2055 24.6046i 0.741520 1.28435i −0.210283 0.977641i \(-0.567439\pi\)
0.951803 0.306710i \(-0.0992281\pi\)
\(368\) 4.13060 7.15441i 0.215322 0.372949i
\(369\) 2.02920 + 3.51467i 0.105636 + 0.182967i
\(370\) −1.48866 −0.0773916
\(371\) 9.80118 + 11.5092i 0.508852 + 0.597530i
\(372\) −10.9343 −0.566919
\(373\) 4.87338 + 8.44094i 0.252334 + 0.437055i 0.964168 0.265293i \(-0.0854685\pi\)
−0.711834 + 0.702348i \(0.752135\pi\)
\(374\) −1.33608 + 2.31416i −0.0690870 + 0.119662i
\(375\) 5.94019 10.2887i 0.306750 0.531307i
\(376\) −0.311422 0.539399i −0.0160604 0.0278174i
\(377\) −0.938154 −0.0483174
\(378\) 1.43745 0.264273i 0.0739343 0.0135927i
\(379\) −33.1034 −1.70041 −0.850204 0.526454i \(-0.823521\pi\)
−0.850204 + 0.526454i \(0.823521\pi\)
\(380\) −1.54399 2.67427i −0.0792051 0.137187i
\(381\) −10.1837 + 17.6388i −0.521729 + 0.903661i
\(382\) 2.24190 3.88308i 0.114705 0.198676i
\(383\) 5.34418 + 9.25639i 0.273075 + 0.472980i 0.969648 0.244507i \(-0.0786260\pi\)
−0.696573 + 0.717486i \(0.745293\pi\)
\(384\) 11.5358 0.588686
\(385\) −1.40998 + 3.96349i −0.0718590 + 0.201998i
\(386\) −0.657790 −0.0334806
\(387\) −2.31382 4.00765i −0.117618 0.203721i
\(388\) −3.09587 + 5.36221i −0.157169 + 0.272225i
\(389\) 19.2942 33.4185i 0.978253 1.69438i 0.309501 0.950899i \(-0.399838\pi\)
0.668753 0.743485i \(-0.266829\pi\)
\(390\) 1.26409 + 2.18947i 0.0640097 + 0.110868i
\(391\) −17.6651 −0.893363
\(392\) −11.0775 9.02336i −0.559498 0.455748i
\(393\) 20.1821 1.01805
\(394\) −7.38912 12.7983i −0.372258 0.644770i
\(395\) 6.92477 11.9941i 0.348423 0.603486i
\(396\) −0.847422 + 1.46778i −0.0425846 + 0.0737586i
\(397\) −6.96957 12.0716i −0.349793 0.605859i 0.636420 0.771343i \(-0.280415\pi\)
−0.986212 + 0.165484i \(0.947081\pi\)
\(398\) 3.33306 0.167071
\(399\) −1.01613 + 2.85637i −0.0508701 + 0.142997i
\(400\) −5.59171 −0.279586
\(401\) 6.56854 + 11.3770i 0.328017 + 0.568142i 0.982118 0.188265i \(-0.0602863\pi\)
−0.654101 + 0.756407i \(0.726953\pi\)
\(402\) 4.21806 7.30589i 0.210378 0.364385i
\(403\) −9.28487 + 16.0819i −0.462512 + 0.801095i
\(404\) 0.240987 + 0.417402i 0.0119896 + 0.0207665i
\(405\) 1.59002 0.0790090
\(406\) −0.468515 + 0.0861359i −0.0232520 + 0.00427485i
\(407\) −1.69484 −0.0840103
\(408\) −4.93660 8.55045i −0.244398 0.423310i
\(409\) 12.5164 21.6791i 0.618898 1.07196i −0.370789 0.928717i \(-0.620913\pi\)
0.989687 0.143246i \(-0.0457540\pi\)
\(410\) −1.78233 + 3.08709i −0.0880232 + 0.152461i
\(411\) 10.6316 + 18.4144i 0.524417 + 0.908317i
\(412\) 28.2928 1.39388
\(413\) 20.3470 + 23.8929i 1.00121 + 1.17569i
\(414\) 2.01733 0.0991463
\(415\) −6.68491 11.5786i −0.328149 0.568371i
\(416\) 7.67336 13.2906i 0.376217 0.651627i
\(417\) −2.63976 + 4.57219i −0.129269 + 0.223901i
\(418\) 0.316499 + 0.548192i 0.0154805 + 0.0268130i
\(419\) 5.04297 0.246365 0.123183 0.992384i \(-0.460690\pi\)
0.123183 + 0.992384i \(0.460690\pi\)
\(420\) −4.62267 5.42828i −0.225563 0.264873i
\(421\) 9.94055 0.484473 0.242236 0.970217i \(-0.422119\pi\)
0.242236 + 0.970217i \(0.422119\pi\)
\(422\) −5.65116 9.78810i −0.275094 0.476477i
\(423\) −0.152578 + 0.264273i −0.00741860 + 0.0128494i
\(424\) −5.83104 + 10.0997i −0.283180 + 0.490483i
\(425\) 5.97844 + 10.3550i 0.289997 + 0.502290i
\(426\) −5.06375 −0.245340
\(427\) −4.61496 + 0.848456i −0.223334 + 0.0410597i
\(428\) −30.4216 −1.47048
\(429\) 1.43917 + 2.49272i 0.0694839 + 0.120350i
\(430\) 2.03233 3.52010i 0.0980077 0.169754i
\(431\) −6.84379 + 11.8538i −0.329654 + 0.570977i −0.982443 0.186562i \(-0.940265\pi\)
0.652789 + 0.757539i \(0.273599\pi\)
\(432\) −1.13109 1.95911i −0.0544197 0.0942576i
\(433\) −4.26360 −0.204895 −0.102448 0.994738i \(-0.532667\pi\)
−0.102448 + 0.994738i \(0.532667\pi\)
\(434\) −3.16032 + 8.88377i −0.151700 + 0.426435i
\(435\) −0.518245 −0.0248480
\(436\) 9.39620 + 16.2747i 0.449996 + 0.779417i
\(437\) −2.09231 + 3.62399i −0.100089 + 0.173359i
\(438\) −3.24070 + 5.61305i −0.154846 + 0.268202i
\(439\) 11.7016 + 20.2678i 0.558487 + 0.967328i 0.997623 + 0.0689072i \(0.0219513\pi\)
−0.439136 + 0.898421i \(0.644715\pi\)
\(440\) −3.24535 −0.154716
\(441\) −1.11496 + 6.91063i −0.0530935 + 0.329078i
\(442\) −7.69139 −0.365842
\(443\) 7.35960 + 12.7472i 0.349665 + 0.605638i 0.986190 0.165618i \(-0.0529620\pi\)
−0.636525 + 0.771256i \(0.719629\pi\)
\(444\) 1.43625 2.48765i 0.0681613 0.118059i
\(445\) 4.57115 7.91747i 0.216693 0.375324i
\(446\) −8.17699 14.1630i −0.387192 0.670636i
\(447\) 1.36546 0.0645839
\(448\) −1.40023 + 3.93610i −0.0661548 + 0.185963i
\(449\) −34.8625 −1.64526 −0.822631 0.568575i \(-0.807495\pi\)
−0.822631 + 0.568575i \(0.807495\pi\)
\(450\) −0.682729 1.18252i −0.0321841 0.0557446i
\(451\) −2.02920 + 3.51467i −0.0955512 + 0.165499i
\(452\) 1.46132 2.53108i 0.0687348 0.119052i
\(453\) −7.97450 13.8122i −0.374675 0.648956i
\(454\) 13.3037 0.624376
\(455\) −11.9091 + 2.18947i −0.558305 + 0.102644i
\(456\) −2.33883 −0.109526
\(457\) 5.30068 + 9.18105i 0.247955 + 0.429471i 0.962958 0.269650i \(-0.0869080\pi\)
−0.715003 + 0.699121i \(0.753575\pi\)
\(458\) −1.44033 + 2.49472i −0.0673020 + 0.116571i
\(459\) −2.41864 + 4.18921i −0.112892 + 0.195535i
\(460\) −4.92061 8.52275i −0.229425 0.397375i
\(461\) −6.84418 −0.318765 −0.159383 0.987217i \(-0.550950\pi\)
−0.159383 + 0.987217i \(0.550950\pi\)
\(462\) 0.947591 + 1.11273i 0.0440859 + 0.0517688i
\(463\) −11.7299 −0.545136 −0.272568 0.962137i \(-0.587873\pi\)
−0.272568 + 0.962137i \(0.587873\pi\)
\(464\) 0.368663 + 0.638542i 0.0171147 + 0.0296436i
\(465\) −5.12905 + 8.88377i −0.237854 + 0.411975i
\(466\) 0.868908 1.50499i 0.0402514 0.0697175i
\(467\) 19.1443 + 33.1590i 0.885894 + 1.53441i 0.844685 + 0.535263i \(0.179788\pi\)
0.0412088 + 0.999151i \(0.486879\pi\)
\(468\) −4.87834 −0.225502
\(469\) 26.1964 + 30.7616i 1.20964 + 1.42044i
\(470\) −0.268032 −0.0123634
\(471\) 4.19830 + 7.27166i 0.193447 + 0.335060i
\(472\) −12.1051 + 20.9666i −0.557181 + 0.965065i
\(473\) 2.31382 4.00765i 0.106390 0.184272i
\(474\) −2.40582 4.16700i −0.110503 0.191396i
\(475\) 2.83242 0.129961
\(476\) 21.3335 3.92213i 0.977818 0.179771i
\(477\) 5.71372 0.261613
\(478\) 0.760848 + 1.31783i 0.0348004 + 0.0602760i
\(479\) −6.31446 + 10.9370i −0.288515 + 0.499722i −0.973455 0.228876i \(-0.926495\pi\)
0.684941 + 0.728599i \(0.259828\pi\)
\(480\) 4.23884 7.34188i 0.193475 0.335109i
\(481\) −2.43917 4.22477i −0.111217 0.192633i
\(482\) 4.98803 0.227199
\(483\) −3.23834 + 9.10309i −0.147350 + 0.414205i
\(484\) −1.69484 −0.0770384
\(485\) 2.90441 + 5.03058i 0.131882 + 0.228427i
\(486\) 0.276205 0.478401i 0.0125289 0.0217007i
\(487\) −17.8070 + 30.8426i −0.806911 + 1.39761i 0.108082 + 0.994142i \(0.465529\pi\)
−0.914993 + 0.403470i \(0.867804\pi\)
\(488\) −1.80994 3.13491i −0.0819322 0.141911i
\(489\) −17.3130 −0.782923
\(490\) −5.74636 + 2.18684i −0.259594 + 0.0987915i
\(491\) 7.59854 0.342917 0.171459 0.985191i \(-0.445152\pi\)
0.171459 + 0.985191i \(0.445152\pi\)
\(492\) −3.43917 5.95682i −0.155050 0.268554i
\(493\) 0.788320 1.36541i 0.0355041 0.0614950i
\(494\) −0.910993 + 1.57789i −0.0409875 + 0.0709925i
\(495\) 0.795012 + 1.37700i 0.0357332 + 0.0618916i
\(496\) 14.5945 0.655315
\(497\) 8.12866 22.8499i 0.364620 1.02496i
\(498\) −4.64497 −0.208146
\(499\) −0.803040 1.39091i −0.0359490 0.0622655i 0.847491 0.530810i \(-0.178112\pi\)
−0.883440 + 0.468544i \(0.844779\pi\)
\(500\) −10.0677 + 17.4378i −0.450241 + 0.779840i
\(501\) −9.24725 + 16.0167i −0.413137 + 0.715574i
\(502\) −1.85923 3.22027i −0.0829813 0.143728i
\(503\) −38.6291 −1.72239 −0.861194 0.508277i \(-0.830283\pi\)
−0.861194 + 0.508277i \(0.830283\pi\)
\(504\) −5.31114 + 0.976448i −0.236577 + 0.0434944i
\(505\) 0.452167 0.0201212
\(506\) 1.00866 + 1.74706i 0.0448406 + 0.0776662i
\(507\) 2.35757 4.08342i 0.104703 0.181351i
\(508\) 17.2599 29.8950i 0.765782 1.32637i
\(509\) −15.8991 27.5381i −0.704716 1.22060i −0.966794 0.255558i \(-0.917741\pi\)
0.262078 0.965047i \(-0.415592\pi\)
\(510\) −4.24880 −0.188140
\(511\) −20.1264 23.6339i −0.890341 1.04550i
\(512\) −21.2960 −0.941159
\(513\) 0.572943 + 0.992366i 0.0252960 + 0.0438140i
\(514\) 7.64793 13.2466i 0.337336 0.584282i
\(515\) 13.2715 22.9869i 0.584811 1.01292i
\(516\) 3.92156 + 6.79235i 0.172637 + 0.299016i
\(517\) −0.305156 −0.0134208
\(518\) −1.60602 1.88590i −0.0705644 0.0828618i
\(519\) 12.2680 0.538507
\(520\) −4.67061 8.08974i −0.204820 0.354759i
\(521\) −6.03416 + 10.4515i −0.264362 + 0.457888i −0.967396 0.253268i \(-0.918495\pi\)
0.703035 + 0.711156i \(0.251828\pi\)
\(522\) −0.0900249 + 0.155928i −0.00394028 + 0.00682477i
\(523\) −0.142825 0.247380i −0.00624531 0.0108172i 0.862886 0.505399i \(-0.168655\pi\)
−0.869131 + 0.494582i \(0.835321\pi\)
\(524\) −34.2055 −1.49427
\(525\) 6.43202 1.18252i 0.280717 0.0516094i
\(526\) −2.54297 −0.110879
\(527\) −15.6039 27.0268i −0.679718 1.17731i
\(528\) 1.13109 1.95911i 0.0492244 0.0852592i
\(529\) 4.83192 8.36913i 0.210083 0.363875i
\(530\) 2.50931 + 4.34625i 0.108997 + 0.188789i
\(531\) 11.8615 0.514746
\(532\) 1.72218 4.84110i 0.0746660 0.209888i
\(533\) −11.6815 −0.505980
\(534\) −1.58812 2.75070i −0.0687246 0.119035i
\(535\) −14.2701 + 24.7165i −0.616949 + 1.06859i
\(536\) −15.5851 + 26.9941i −0.673172 + 1.16597i
\(537\) −6.90582 11.9612i −0.298008 0.516165i
\(538\) −10.5567 −0.455132
\(539\) −6.54227 + 2.48973i −0.281795 + 0.107240i
\(540\) −2.69484 −0.115968
\(541\) −1.40501 2.43355i −0.0604060 0.104626i 0.834241 0.551400i \(-0.185906\pi\)
−0.894647 + 0.446774i \(0.852573\pi\)
\(542\) 4.24605 7.35438i 0.182384 0.315898i
\(543\) 9.38433 16.2541i 0.402720 0.697532i
\(544\) 12.8957 + 22.3359i 0.552897 + 0.957646i
\(545\) 17.6302 0.755193
\(546\) −1.40998 + 3.96349i −0.0603414 + 0.169622i
\(547\) −20.8781 −0.892681 −0.446341 0.894863i \(-0.647273\pi\)
−0.446341 + 0.894863i \(0.647273\pi\)
\(548\) −18.0189 31.2096i −0.769728 1.33321i
\(549\) −0.886763 + 1.53592i −0.0378461 + 0.0655514i
\(550\) 0.682729 1.18252i 0.0291116 0.0504229i
\(551\) −0.186742 0.323447i −0.00795549 0.0137793i
\(552\) −7.45371 −0.317251
\(553\) 22.6653 4.16700i 0.963828 0.177199i
\(554\) 5.18695 0.220372
\(555\) −1.34742 2.33380i −0.0571949 0.0990644i
\(556\) 4.47397 7.74915i 0.189739 0.328637i
\(557\) −9.13771 + 15.8270i −0.387177 + 0.670611i −0.992069 0.125697i \(-0.959883\pi\)
0.604891 + 0.796308i \(0.293217\pi\)
\(558\) 1.78194 + 3.08642i 0.0754357 + 0.130658i
\(559\) 13.3199 0.563374
\(560\) 6.17009 + 7.24536i 0.260734 + 0.306172i
\(561\) −4.83728 −0.204230
\(562\) 7.45167 + 12.9067i 0.314330 + 0.544435i
\(563\) −8.14944 + 14.1152i −0.343458 + 0.594886i −0.985072 0.172141i \(-0.944932\pi\)
0.641615 + 0.767027i \(0.278265\pi\)
\(564\) 0.258596 0.447902i 0.0108889 0.0188601i
\(565\) −1.37094 2.37455i −0.0576761 0.0998979i
\(566\) 13.0234 0.547413
\(567\) 1.71538 + 2.01432i 0.0720391 + 0.0845934i
\(568\) 18.7098 0.785045
\(569\) −8.37221 14.5011i −0.350981 0.607918i 0.635440 0.772150i \(-0.280819\pi\)
−0.986422 + 0.164232i \(0.947485\pi\)
\(570\) −0.503241 + 0.871640i −0.0210785 + 0.0365090i
\(571\) −12.1461 + 21.0377i −0.508300 + 0.880401i 0.491654 + 0.870791i \(0.336392\pi\)
−0.999954 + 0.00961042i \(0.996941\pi\)
\(572\) −2.43917 4.22477i −0.101987 0.176647i
\(573\) 8.11679 0.339084
\(574\) −5.83373 + 1.07252i −0.243495 + 0.0447663i
\(575\) 9.02677 0.376442
\(576\) 0.789519 + 1.36749i 0.0328966 + 0.0569786i
\(577\) −11.1586 + 19.3273i −0.464540 + 0.804607i −0.999181 0.0404725i \(-0.987114\pi\)
0.534641 + 0.845080i \(0.320447\pi\)
\(578\) 1.76751 3.06141i 0.0735185 0.127338i
\(579\) −0.595383 1.03123i −0.0247433 0.0428566i
\(580\) 0.878345 0.0364713
\(581\) 7.45640 20.9602i 0.309344 0.869575i
\(582\) 2.01811 0.0836533
\(583\) 2.85686 + 4.94822i 0.118319 + 0.204934i
\(584\) 11.9739 20.7393i 0.495482 0.858200i
\(585\) −2.28832 + 3.96349i −0.0946104 + 0.163870i
\(586\) −3.27303 5.66906i −0.135208 0.234187i
\(587\) −26.6944 −1.10180 −0.550898 0.834572i \(-0.685715\pi\)
−0.550898 + 0.834572i \(0.685715\pi\)
\(588\) 1.88969 11.7124i 0.0779294 0.483013i
\(589\) −7.39272 −0.304612
\(590\) 5.20925 + 9.02268i 0.214461 + 0.371458i
\(591\) 13.3762 23.1682i 0.550222 0.953012i
\(592\) −1.91702 + 3.32038i −0.0787892 + 0.136467i
\(593\) 11.4721 + 19.8702i 0.471101 + 0.815971i 0.999454 0.0330538i \(-0.0105233\pi\)
−0.528352 + 0.849025i \(0.677190\pi\)
\(594\) 0.552409 0.0226656
\(595\) 6.82044 19.1725i 0.279611 0.785995i
\(596\) −2.31424 −0.0947948
\(597\) 3.01684 + 5.22531i 0.123471 + 0.213858i
\(598\) −2.90328 + 5.02863i −0.118724 + 0.205636i
\(599\) 10.3521 17.9303i 0.422974 0.732613i −0.573255 0.819377i \(-0.694319\pi\)
0.996229 + 0.0867645i \(0.0276528\pi\)
\(600\) 2.52258 + 4.36923i 0.102984 + 0.178373i
\(601\) −11.2354 −0.458302 −0.229151 0.973391i \(-0.573595\pi\)
−0.229151 + 0.973391i \(0.573595\pi\)
\(602\) 6.65199 1.22296i 0.271115 0.0498441i
\(603\) 15.2715 0.621903
\(604\) 13.5155 + 23.4096i 0.549939 + 0.952523i
\(605\) −0.795012 + 1.37700i −0.0323219 + 0.0559831i
\(606\) 0.0785463 0.136046i 0.00319073 0.00552650i
\(607\) 3.72700 + 6.45535i 0.151274 + 0.262015i 0.931696 0.363239i \(-0.118329\pi\)
−0.780422 + 0.625253i \(0.784996\pi\)
\(608\) 6.10962 0.247778
\(609\) −0.559102 0.656538i −0.0226560 0.0266043i
\(610\) −1.55777 −0.0630721
\(611\) −0.439172 0.760669i −0.0177670 0.0307734i
\(612\) 4.09922 7.10005i 0.165701 0.287002i
\(613\) −10.5940 + 18.3493i −0.427886 + 0.741121i −0.996685 0.0813559i \(-0.974075\pi\)
0.568799 + 0.822477i \(0.307408\pi\)
\(614\) 5.41068 + 9.37158i 0.218357 + 0.378206i
\(615\) −6.45295 −0.260208
\(616\) −3.50120 4.11136i −0.141067 0.165651i
\(617\) 39.7670 1.60096 0.800479 0.599361i \(-0.204578\pi\)
0.800479 + 0.599361i \(0.204578\pi\)
\(618\) −4.61080 7.98615i −0.185474 0.321250i
\(619\) −8.64771 + 14.9783i −0.347581 + 0.602028i −0.985819 0.167811i \(-0.946330\pi\)
0.638238 + 0.769839i \(0.279663\pi\)
\(620\) 8.69294 15.0566i 0.349117 0.604688i
\(621\) 1.82594 + 3.16261i 0.0732723 + 0.126911i
\(622\) 11.8225 0.474038
\(623\) 14.9618 2.75070i 0.599430 0.110205i
\(624\) 6.51134 0.260662
\(625\) 3.26550 + 5.65601i 0.130620 + 0.226240i
\(626\) −3.68121 + 6.37605i −0.147131 + 0.254838i
\(627\) −0.572943 + 0.992366i −0.0228811 + 0.0396313i
\(628\) −7.11545 12.3243i −0.283938 0.491794i
\(629\) 8.19843 0.326893
\(630\) −0.778884 + 2.18947i −0.0310315 + 0.0872305i
\(631\) −22.8639 −0.910198 −0.455099 0.890441i \(-0.650396\pi\)
−0.455099 + 0.890441i \(0.650396\pi\)
\(632\) 8.88912 + 15.3964i 0.353590 + 0.612436i
\(633\) 10.2300 17.7189i 0.406607 0.704264i
\(634\) −1.95982 + 3.39450i −0.0778342 + 0.134813i
\(635\) −16.1924 28.0461i −0.642576 1.11297i
\(636\) −9.68386 −0.383990
\(637\) −15.6216 12.7249i −0.618952 0.504178i
\(638\) −0.180050 −0.00712824
\(639\) −4.58333 7.93856i −0.181314 0.314045i
\(640\) −9.17114 + 15.8849i −0.362521 + 0.627905i
\(641\) 3.36284 5.82462i 0.132824 0.230058i −0.791940 0.610599i \(-0.790929\pi\)
0.924764 + 0.380541i \(0.124262\pi\)
\(642\) 4.95773 + 8.58705i 0.195666 + 0.338904i
\(643\) 8.16118 0.321845 0.160923 0.986967i \(-0.448553\pi\)
0.160923 + 0.986967i \(0.448553\pi\)
\(644\) 5.48849 15.4283i 0.216277 0.607961i
\(645\) 7.35806 0.289723
\(646\) −1.53099 2.65176i −0.0602361 0.104332i
\(647\) 9.83192 17.0294i 0.386533 0.669494i −0.605448 0.795885i \(-0.707006\pi\)
0.991981 + 0.126391i \(0.0403393\pi\)
\(648\) −1.02053 + 1.76762i −0.0400903 + 0.0694385i
\(649\) 5.93075 + 10.2724i 0.232802 + 0.403226i
\(650\) 3.93026 0.154157
\(651\) −16.7878 + 3.08642i −0.657965 + 0.120966i
\(652\) 29.3429 1.14916
\(653\) 11.1517 + 19.3154i 0.436401 + 0.755869i 0.997409 0.0719417i \(-0.0229195\pi\)
−0.561008 + 0.827811i \(0.689586\pi\)
\(654\) 3.06255 5.30450i 0.119755 0.207422i
\(655\) −16.0450 + 27.7908i −0.626930 + 1.08588i
\(656\) 4.59042 + 7.95083i 0.179226 + 0.310428i
\(657\) −11.7330 −0.457746
\(658\) −0.289163 0.339556i −0.0112728 0.0132373i
\(659\) 19.0497 0.742072 0.371036 0.928619i \(-0.379003\pi\)
0.371036 + 0.928619i \(0.379003\pi\)
\(660\) −1.34742 2.33380i −0.0524483 0.0908432i
\(661\) −12.1612 + 21.0638i −0.473015 + 0.819286i −0.999523 0.0308845i \(-0.990168\pi\)
0.526508 + 0.850170i \(0.323501\pi\)
\(662\) 5.72710 9.91963i 0.222590 0.385537i
\(663\) −6.96168 12.0580i −0.270369 0.468293i
\(664\) 17.1624 0.666032
\(665\) −3.12539 3.67006i −0.121198 0.142319i
\(666\) −0.936248 −0.0362789
\(667\) −0.595137 1.03081i −0.0230438 0.0399130i
\(668\) 15.6726 27.1458i 0.606393 1.05030i
\(669\) 14.8024 25.6385i 0.572294 0.991242i
\(670\) 6.70681 + 11.6165i 0.259107 + 0.448786i
\(671\) −1.77353 −0.0684662
\(672\) 13.8741 2.55073i 0.535203 0.0983965i
\(673\) 42.6054 1.64232 0.821159 0.570699i \(-0.193328\pi\)
0.821159 + 0.570699i \(0.193328\pi\)
\(674\) −1.46597 2.53914i −0.0564671 0.0978039i
\(675\) 1.23591 2.14066i 0.0475702 0.0823940i
\(676\) −3.99571 + 6.92076i −0.153681 + 0.266183i
\(677\) 6.98302 + 12.0949i 0.268379 + 0.464846i 0.968443 0.249233i \(-0.0801786\pi\)
−0.700064 + 0.714080i \(0.746845\pi\)
\(678\) −0.952592 −0.0365841
\(679\) −3.23960 + 9.10662i −0.124324 + 0.349480i
\(680\) 15.6986 0.602016
\(681\) 12.0416 + 20.8566i 0.461434 + 0.799226i
\(682\) −1.78194 + 3.08642i −0.0682342 + 0.118185i
\(683\) 2.64173 4.57561i 0.101083 0.175081i −0.811048 0.584979i \(-0.801103\pi\)
0.912131 + 0.409899i \(0.134436\pi\)
\(684\) −0.971049 1.68191i −0.0371290 0.0643093i
\(685\) −33.8090 −1.29177
\(686\) −8.96978 4.92052i −0.342468 0.187866i
\(687\) −5.21471 −0.198953
\(688\) −5.23428 9.06605i −0.199555 0.345640i
\(689\) −8.22302 + 14.2427i −0.313272 + 0.542603i
\(690\) −1.60380 + 2.77786i −0.0610557 + 0.105751i
\(691\) −14.0658 24.3627i −0.535088 0.926799i −0.999159 0.0410014i \(-0.986945\pi\)
0.464071 0.885798i \(-0.346388\pi\)
\(692\) −20.7924 −0.790408
\(693\) −0.886763 + 2.49272i −0.0336853 + 0.0946906i
\(694\) −9.28220 −0.352347
\(695\) −4.19728 7.26990i −0.159212 0.275763i
\(696\) 0.332628 0.576128i 0.0126082 0.0218381i
\(697\) 9.81579 17.0014i 0.371800 0.643976i
\(698\) −0.240425 0.416428i −0.00910022 0.0157620i
\(699\) 3.14589 0.118988
\(700\) −10.9013 + 2.00419i −0.412030 + 0.0757512i
\(701\) 29.9421 1.13090 0.565449 0.824783i \(-0.308703\pi\)
0.565449 + 0.824783i \(0.308703\pi\)
\(702\) 0.795012 + 1.37700i 0.0300058 + 0.0519716i
\(703\) 0.971049 1.68191i 0.0366238 0.0634343i
\(704\) −0.789519 + 1.36749i −0.0297561 + 0.0515391i
\(705\) −0.242603 0.420201i −0.00913696 0.0158257i
\(706\) 0.518245 0.0195044
\(707\) 0.487814 + 0.572826i 0.0183461 + 0.0215433i
\(708\) −20.1034 −0.755532
\(709\) 8.35341 + 14.4685i 0.313719 + 0.543377i 0.979164 0.203070i \(-0.0650917\pi\)
−0.665446 + 0.746446i \(0.731758\pi\)
\(710\) 4.02575 6.97280i 0.151084 0.261684i
\(711\) 4.35513 7.54331i 0.163330 0.282896i
\(712\) 5.86785 + 10.1634i 0.219907 + 0.380890i
\(713\) −23.5602 −0.882335
\(714\) −4.58376 5.38258i −0.171543 0.201438i
\(715\) −4.57664 −0.171157
\(716\) 11.7043 + 20.2724i 0.437409 + 0.757615i
\(717\) −1.37733 + 2.38560i −0.0514372 + 0.0890919i
\(718\) −7.46027 + 12.9216i −0.278415 + 0.482228i
\(719\) −11.6748 20.2213i −0.435395 0.754127i 0.561933 0.827183i \(-0.310058\pi\)
−0.997328 + 0.0730563i \(0.976725\pi\)
\(720\) 3.59693 0.134050
\(721\) 43.4386 7.98615i 1.61774 0.297420i
\(722\) 9.77044 0.363618
\(723\) 4.51479 + 7.81985i 0.167907 + 0.290823i
\(724\) −15.9050 + 27.5482i −0.591104 + 1.02382i
\(725\) −0.402827 + 0.697717i −0.0149606 + 0.0259125i
\(726\) 0.276205 + 0.478401i 0.0102509 + 0.0177551i
\(727\) 14.4262 0.535037 0.267519 0.963553i \(-0.413796\pi\)
0.267519 + 0.963553i \(0.413796\pi\)
\(728\) 5.20964 14.6445i 0.193082 0.542760i
\(729\) 1.00000 0.0370370
\(730\) −5.15279 8.92489i −0.190713 0.330325i
\(731\) −11.1926 + 19.3861i −0.413973 + 0.717022i
\(732\) 1.50292 2.60314i 0.0555497 0.0962149i
\(733\) −13.4733 23.3365i −0.497649 0.861953i 0.502347 0.864666i \(-0.332470\pi\)
−0.999996 + 0.00271253i \(0.999137\pi\)
\(734\) 15.6945 0.579294
\(735\) −8.62955 7.02935i −0.318306 0.259281i
\(736\) 19.4710 0.717710
\(737\) 7.63574 + 13.2255i 0.281266 + 0.487167i
\(738\) −1.12095 + 1.94154i −0.0412627 + 0.0714690i
\(739\) 22.2858 38.6001i 0.819795 1.41993i −0.0860388 0.996292i \(-0.527421\pi\)
0.905833 0.423634i \(-0.139246\pi\)
\(740\) 2.28367 + 3.95543i 0.0839494 + 0.145405i
\(741\) −3.29825 −0.121164
\(742\) −2.79890 + 7.86780i −0.102751 + 0.288836i
\(743\) 44.7041 1.64004 0.820018 0.572338i \(-0.193963\pi\)
0.820018 + 0.572338i \(0.193963\pi\)
\(744\) −6.58400 11.4038i −0.241381 0.418085i
\(745\) −1.08556 + 1.88024i −0.0397717 + 0.0688866i
\(746\) −2.69210 + 4.66285i −0.0985648 + 0.170719i
\(747\) −4.20428 7.28203i −0.153827 0.266435i
\(748\) 8.19843 0.299764
\(749\) −46.7071 + 8.58705i −1.70664 + 0.313764i
\(750\) 6.56283 0.239641
\(751\) −22.2962 38.6182i −0.813600 1.40920i −0.910329 0.413886i \(-0.864171\pi\)
0.0967287 0.995311i \(-0.469162\pi\)
\(752\) −0.345160 + 0.597834i −0.0125867 + 0.0218008i
\(753\) 3.36567 5.82951i 0.122652 0.212439i
\(754\) −0.259123 0.448814i −0.00943669 0.0163448i
\(755\) 25.3593 0.922920
\(756\) −2.90730 3.41396i −0.105737 0.124164i
\(757\) 5.85842 0.212928 0.106464 0.994317i \(-0.466047\pi\)
0.106464 + 0.994317i \(0.466047\pi\)
\(758\) −9.14332 15.8367i −0.332100 0.575214i
\(759\) −1.82594 + 3.16261i −0.0662773 + 0.114796i
\(760\) 1.85940 3.22057i 0.0674475 0.116822i
\(761\) 19.2017 + 33.2583i 0.696061 + 1.20561i 0.969822 + 0.243816i \(0.0783992\pi\)
−0.273760 + 0.961798i \(0.588267\pi\)
\(762\) −11.2512 −0.407588
\(763\) 19.0201 + 22.3347i 0.688573 + 0.808572i
\(764\) −13.7567 −0.497700
\(765\) −3.84570 6.66094i −0.139041 0.240827i
\(766\) −2.95218 + 5.11332i −0.106666 + 0.184752i
\(767\) −17.0708 + 29.5674i −0.616389 + 1.06762i
\(768\) 1.60722 + 2.78378i 0.0579954 + 0.100451i
\(769\) −1.44505 −0.0521099