Properties

Label 231.2.i.e.67.2
Level $231$
Weight $2$
Character 231.67
Analytic conductor $1.845$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,2,Mod(67,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 231.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.84454428669\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.10423593216.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} + 21x^{4} - 4x^{3} + 28x^{2} + 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.2
Root \(0.643668 + 1.11487i\) of defining polynomial
Character \(\chi\) \(=\) 231.67
Dual form 231.2.i.e.100.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.643668 - 1.11487i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.171383 - 0.296844i) q^{4} +(-1.95872 - 3.39260i) q^{5} +1.28734 q^{6} +(-0.234193 + 2.63537i) q^{7} -3.01593 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.643668 - 1.11487i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.171383 - 0.296844i) q^{4} +(-1.95872 - 3.39260i) q^{5} +1.28734 q^{6} +(-0.234193 + 2.63537i) q^{7} -3.01593 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-2.52153 + 4.36742i) q^{10} +(0.500000 - 0.866025i) q^{11} +(0.171383 + 0.296844i) q^{12} -3.04306 q^{13} +(3.08882 - 1.43521i) q^{14} +3.91744 q^{15} +(1.59849 + 2.76866i) q^{16} +(-1.98643 + 3.44061i) q^{17} +(-0.643668 + 1.11487i) q^{18} +(-3.79530 - 6.57365i) q^{19} -1.34277 q^{20} +(-2.16520 - 1.52050i) q^{21} -1.28734 q^{22} +(-2.25572 - 3.90703i) q^{23} +(1.50796 - 2.61187i) q^{24} +(-5.17316 + 8.96018i) q^{25} +(1.95872 + 3.39260i) q^{26} +1.00000 q^{27} +(0.742157 + 0.521177i) q^{28} +3.75572 q^{29} +(-2.52153 - 4.36742i) q^{30} +(3.37168 - 5.83991i) q^{31} +(-0.958135 + 1.65954i) q^{32} +(0.500000 + 0.866025i) q^{33} +5.11442 q^{34} +(9.39946 - 4.36742i) q^{35} -0.342766 q^{36} +(-0.171383 - 0.296844i) q^{37} +(-4.88582 + 8.46250i) q^{38} +(1.52153 - 2.63537i) q^{39} +(5.90735 + 10.2318i) q^{40} -2.79182 q^{41} +(-0.301486 + 3.39260i) q^{42} +11.1222 q^{43} +(-0.171383 - 0.296844i) q^{44} +(-1.95872 + 3.39260i) q^{45} +(-2.90387 + 5.02965i) q^{46} +(-0.828617 - 1.43521i) q^{47} -3.19698 q^{48} +(-6.89031 - 1.23437i) q^{49} +13.3192 q^{50} +(-1.98643 - 3.44061i) q^{51} +(-0.521529 + 0.903315i) q^{52} +(6.47016 - 11.2067i) q^{53} +(-0.643668 - 1.11487i) q^{54} -3.91744 q^{55} +(0.706310 - 7.94807i) q^{56} +7.59060 q^{57} +(-2.41744 - 4.18713i) q^{58} +(1.83039 - 3.17034i) q^{59} +(0.671383 - 1.16287i) q^{60} +(0.234193 + 0.405635i) q^{61} -8.68096 q^{62} +(2.39939 - 1.11487i) q^{63} +8.86084 q^{64} +(5.96050 + 10.3239i) q^{65} +(0.643668 - 1.11487i) q^{66} +(1.28911 - 2.23281i) q^{67} +(0.680883 + 1.17932i) q^{68} +4.51145 q^{69} +(-10.9192 - 7.66797i) q^{70} -5.00355 q^{71} +(1.50796 + 2.61187i) q^{72} +(4.36878 - 7.56694i) q^{73} +(-0.220628 + 0.382139i) q^{74} +(-5.17316 - 8.96018i) q^{75} -2.60180 q^{76} +(2.16520 + 1.52050i) q^{77} -3.91744 q^{78} +(-0.359814 - 0.623216i) q^{79} +(6.26198 - 10.8461i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(1.79700 + 3.11250i) q^{82} -11.5976 q^{83} +(-0.822431 + 0.382139i) q^{84} +15.5635 q^{85} +(-7.15901 - 12.3998i) q^{86} +(-1.87786 + 3.25255i) q^{87} +(-1.50796 + 2.61187i) q^{88} +(6.17764 + 10.7000i) q^{89} +5.04306 q^{90} +(0.712664 - 8.01957i) q^{91} -1.54637 q^{92} +(3.37168 + 5.83991i) q^{93} +(-1.06671 + 1.84759i) q^{94} +(-14.8679 + 25.7519i) q^{95} +(-0.958135 - 1.65954i) q^{96} -13.1687 q^{97} +(3.05891 + 8.47629i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} + 4 q^{6} + 2 q^{7} + 24 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} + 4 q^{6} + 2 q^{7} + 24 q^{8} - 4 q^{9} - 10 q^{10} + 4 q^{11} - 4 q^{12} - 4 q^{13} - 4 q^{14} + 8 q^{15} - 12 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{21} - 4 q^{22} - 4 q^{23} - 12 q^{24} - 4 q^{25} + 4 q^{26} + 8 q^{27} - 22 q^{28} + 16 q^{29} - 10 q^{30} + 12 q^{31} - 26 q^{32} + 4 q^{33} - 32 q^{34} - 2 q^{35} + 8 q^{36} + 4 q^{37} - 8 q^{38} + 2 q^{39} + 6 q^{40} + 4 q^{41} + 20 q^{42} + 36 q^{43} + 4 q^{44} - 4 q^{45} + 14 q^{46} - 12 q^{47} + 24 q^{48} - 4 q^{49} + 4 q^{50} - 2 q^{51} + 6 q^{52} + 12 q^{53} - 2 q^{54} - 8 q^{55} + 48 q^{56} + 4 q^{58} - 12 q^{59} - 2 q^{61} - 52 q^{62} + 2 q^{63} + 112 q^{64} + 4 q^{65} + 2 q^{66} - 28 q^{67} + 48 q^{68} + 8 q^{69} - 32 q^{70} + 24 q^{71} - 12 q^{72} - 6 q^{73} + 16 q^{74} - 4 q^{75} - 36 q^{76} + 4 q^{77} - 8 q^{78} - 2 q^{79} - 16 q^{80} - 4 q^{81} + 12 q^{82} - 24 q^{83} - 4 q^{84} + 36 q^{85} - 36 q^{86} - 8 q^{87} + 12 q^{88} - 8 q^{89} + 20 q^{90} + 12 q^{91} - 32 q^{92} + 12 q^{93} - 20 q^{94} - 34 q^{95} - 26 q^{96} - 88 q^{97} + 16 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/231\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.643668 1.11487i −0.455142 0.788329i 0.543554 0.839374i \(-0.317078\pi\)
−0.998696 + 0.0510450i \(0.983745\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0.171383 0.296844i 0.0856916 0.148422i
\(5\) −1.95872 3.39260i −0.875966 1.51722i −0.855730 0.517422i \(-0.826892\pi\)
−0.0202354 0.999795i \(-0.506442\pi\)
\(6\) 1.28734 0.525553
\(7\) −0.234193 + 2.63537i −0.0885168 + 0.996075i
\(8\) −3.01593 −1.06629
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −2.52153 + 4.36742i −0.797378 + 1.38110i
\(11\) 0.500000 0.866025i 0.150756 0.261116i
\(12\) 0.171383 + 0.296844i 0.0494741 + 0.0856916i
\(13\) −3.04306 −0.843993 −0.421996 0.906598i \(-0.638670\pi\)
−0.421996 + 0.906598i \(0.638670\pi\)
\(14\) 3.08882 1.43521i 0.825522 0.383575i
\(15\) 3.91744 1.01148
\(16\) 1.59849 + 2.76866i 0.399622 + 0.692166i
\(17\) −1.98643 + 3.44061i −0.481781 + 0.834469i −0.999781 0.0209111i \(-0.993343\pi\)
0.518000 + 0.855380i \(0.326677\pi\)
\(18\) −0.643668 + 1.11487i −0.151714 + 0.262776i
\(19\) −3.79530 6.57365i −0.870701 1.50810i −0.861272 0.508144i \(-0.830332\pi\)
−0.00942900 0.999956i \(-0.503001\pi\)
\(20\) −1.34277 −0.300252
\(21\) −2.16520 1.52050i −0.472485 0.331800i
\(22\) −1.28734 −0.274461
\(23\) −2.25572 3.90703i −0.470351 0.814671i 0.529074 0.848575i \(-0.322539\pi\)
−0.999425 + 0.0339042i \(0.989206\pi\)
\(24\) 1.50796 2.61187i 0.307812 0.533146i
\(25\) −5.17316 + 8.96018i −1.03463 + 1.79204i
\(26\) 1.95872 + 3.39260i 0.384136 + 0.665344i
\(27\) 1.00000 0.192450
\(28\) 0.742157 + 0.521177i 0.140254 + 0.0984931i
\(29\) 3.75572 0.697420 0.348710 0.937231i \(-0.386620\pi\)
0.348710 + 0.937231i \(0.386620\pi\)
\(30\) −2.52153 4.36742i −0.460366 0.797378i
\(31\) 3.37168 5.83991i 0.605571 1.04888i −0.386390 0.922335i \(-0.626278\pi\)
0.991961 0.126544i \(-0.0403885\pi\)
\(32\) −0.958135 + 1.65954i −0.169376 + 0.293368i
\(33\) 0.500000 + 0.866025i 0.0870388 + 0.150756i
\(34\) 5.11442 0.877115
\(35\) 9.39946 4.36742i 1.58880 0.738228i
\(36\) −0.342766 −0.0571277
\(37\) −0.171383 0.296844i −0.0281752 0.0488009i 0.851594 0.524202i \(-0.175636\pi\)
−0.879769 + 0.475401i \(0.842303\pi\)
\(38\) −4.88582 + 8.46250i −0.792585 + 1.37280i
\(39\) 1.52153 2.63537i 0.243640 0.421996i
\(40\) 5.90735 + 10.2318i 0.934035 + 1.61780i
\(41\) −2.79182 −0.436009 −0.218004 0.975948i \(-0.569955\pi\)
−0.218004 + 0.975948i \(0.569955\pi\)
\(42\) −0.301486 + 3.39260i −0.0465202 + 0.523490i
\(43\) 11.1222 1.69612 0.848061 0.529899i \(-0.177770\pi\)
0.848061 + 0.529899i \(0.177770\pi\)
\(44\) −0.171383 0.296844i −0.0258370 0.0447510i
\(45\) −1.95872 + 3.39260i −0.291989 + 0.505739i
\(46\) −2.90387 + 5.02965i −0.428153 + 0.741582i
\(47\) −0.828617 1.43521i −0.120866 0.209346i 0.799243 0.601008i \(-0.205234\pi\)
−0.920109 + 0.391661i \(0.871901\pi\)
\(48\) −3.19698 −0.461444
\(49\) −6.89031 1.23437i −0.984330 0.176339i
\(50\) 13.3192 1.88362
\(51\) −1.98643 3.44061i −0.278156 0.481781i
\(52\) −0.521529 + 0.903315i −0.0723231 + 0.125267i
\(53\) 6.47016 11.2067i 0.888745 1.53935i 0.0473857 0.998877i \(-0.484911\pi\)
0.841360 0.540476i \(-0.181756\pi\)
\(54\) −0.643668 1.11487i −0.0875921 0.151714i
\(55\) −3.91744 −0.528227
\(56\) 0.706310 7.94807i 0.0943847 1.06211i
\(57\) 7.59060 1.00540
\(58\) −2.41744 4.18713i −0.317425 0.549797i
\(59\) 1.83039 3.17034i 0.238297 0.412743i −0.721929 0.691967i \(-0.756744\pi\)
0.960226 + 0.279225i \(0.0900775\pi\)
\(60\) 0.671383 1.16287i 0.0866752 0.150126i
\(61\) 0.234193 + 0.405635i 0.0299854 + 0.0519362i 0.880629 0.473807i \(-0.157121\pi\)
−0.850643 + 0.525743i \(0.823787\pi\)
\(62\) −8.68096 −1.10248
\(63\) 2.39939 1.11487i 0.302295 0.140460i
\(64\) 8.86084 1.10760
\(65\) 5.96050 + 10.3239i 0.739309 + 1.28052i
\(66\) 0.643668 1.11487i 0.0792300 0.137230i
\(67\) 1.28911 2.23281i 0.157490 0.272781i −0.776473 0.630151i \(-0.782993\pi\)
0.933963 + 0.357370i \(0.116326\pi\)
\(68\) 0.680883 + 1.17932i 0.0825692 + 0.143014i
\(69\) 4.51145 0.543114
\(70\) −10.9192 7.66797i −1.30510 0.916498i
\(71\) −5.00355 −0.593813 −0.296906 0.954907i \(-0.595955\pi\)
−0.296906 + 0.954907i \(0.595955\pi\)
\(72\) 1.50796 + 2.61187i 0.177715 + 0.307812i
\(73\) 4.36878 7.56694i 0.511327 0.885644i −0.488587 0.872515i \(-0.662488\pi\)
0.999914 0.0131288i \(-0.00417914\pi\)
\(74\) −0.220628 + 0.382139i −0.0256475 + 0.0444227i
\(75\) −5.17316 8.96018i −0.597345 1.03463i
\(76\) −2.60180 −0.298447
\(77\) 2.16520 + 1.52050i 0.246747 + 0.173277i
\(78\) −3.91744 −0.443563
\(79\) −0.359814 0.623216i −0.0404822 0.0701172i 0.845074 0.534649i \(-0.179556\pi\)
−0.885557 + 0.464532i \(0.846223\pi\)
\(80\) 6.26198 10.8461i 0.700111 1.21263i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 1.79700 + 3.11250i 0.198446 + 0.343718i
\(83\) −11.5976 −1.27300 −0.636499 0.771278i \(-0.719618\pi\)
−0.636499 + 0.771278i \(0.719618\pi\)
\(84\) −0.822431 + 0.382139i −0.0897345 + 0.0416947i
\(85\) 15.5635 1.68810
\(86\) −7.15901 12.3998i −0.771976 1.33710i
\(87\) −1.87786 + 3.25255i −0.201328 + 0.348710i
\(88\) −1.50796 + 2.61187i −0.160749 + 0.278426i
\(89\) 6.17764 + 10.7000i 0.654829 + 1.13420i 0.981937 + 0.189210i \(0.0605926\pi\)
−0.327108 + 0.944987i \(0.606074\pi\)
\(90\) 5.04306 0.531585
\(91\) 0.712664 8.01957i 0.0747075 0.840680i
\(92\) −1.54637 −0.161220
\(93\) 3.37168 + 5.83991i 0.349626 + 0.605571i
\(94\) −1.06671 + 1.84759i −0.110023 + 0.190565i
\(95\) −14.8679 + 25.7519i −1.52541 + 2.64209i
\(96\) −0.958135 1.65954i −0.0977892 0.169376i
\(97\) −13.1687 −1.33708 −0.668538 0.743678i \(-0.733080\pi\)
−0.668538 + 0.743678i \(0.733080\pi\)
\(98\) 3.05891 + 8.47629i 0.308997 + 0.856235i
\(99\) −1.00000 −0.100504
\(100\) 1.77319 + 3.07125i 0.177319 + 0.307125i
\(101\) −3.53509 + 6.12296i −0.351755 + 0.609258i −0.986557 0.163417i \(-0.947748\pi\)
0.634802 + 0.772675i \(0.281082\pi\)
\(102\) −2.55721 + 4.42921i −0.253201 + 0.438558i
\(103\) −1.16868 2.02421i −0.115153 0.199451i 0.802688 0.596400i \(-0.203403\pi\)
−0.917841 + 0.396948i \(0.870069\pi\)
\(104\) 9.17764 0.899942
\(105\) −0.917438 + 10.3239i −0.0895328 + 1.00751i
\(106\) −16.6585 −1.61802
\(107\) 5.42660 + 9.39914i 0.524609 + 0.908649i 0.999589 + 0.0286528i \(0.00912171\pi\)
−0.474981 + 0.879996i \(0.657545\pi\)
\(108\) 0.171383 0.296844i 0.0164914 0.0285639i
\(109\) 1.09620 1.89868i 0.104997 0.181860i −0.808740 0.588166i \(-0.799850\pi\)
0.913737 + 0.406306i \(0.133183\pi\)
\(110\) 2.52153 + 4.36742i 0.240418 + 0.416417i
\(111\) 0.342766 0.0325340
\(112\) −7.67080 + 3.56420i −0.724822 + 0.336785i
\(113\) −11.6415 −1.09514 −0.547568 0.836761i \(-0.684446\pi\)
−0.547568 + 0.836761i \(0.684446\pi\)
\(114\) −4.88582 8.46250i −0.457599 0.792585i
\(115\) −8.83665 + 15.3055i −0.824022 + 1.42725i
\(116\) 0.643668 1.11487i 0.0597631 0.103513i
\(117\) 1.52153 + 2.63537i 0.140665 + 0.243640i
\(118\) −4.71266 −0.433836
\(119\) −8.60204 6.04075i −0.788548 0.553755i
\(120\) −11.8147 −1.07853
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0.301486 0.522188i 0.0272952 0.0472767i
\(123\) 1.39591 2.41779i 0.125865 0.218004i
\(124\) −1.15570 2.00173i −0.103785 0.179760i
\(125\) 20.9439 1.87328
\(126\) −2.78734 1.95739i −0.248316 0.174379i
\(127\) 5.41837 0.480802 0.240401 0.970674i \(-0.422721\pi\)
0.240401 + 0.970674i \(0.422721\pi\)
\(128\) −3.78717 6.55957i −0.334742 0.579789i
\(129\) −5.56111 + 9.63212i −0.489628 + 0.848061i
\(130\) 7.67316 13.2903i 0.672981 1.16564i
\(131\) 1.03297 + 1.78916i 0.0902514 + 0.156320i 0.907617 0.419800i \(-0.137900\pi\)
−0.817365 + 0.576120i \(0.804566\pi\)
\(132\) 0.342766 0.0298340
\(133\) 18.2128 8.46250i 1.57925 0.733792i
\(134\) −3.31904 −0.286722
\(135\) −1.95872 3.39260i −0.168580 0.291989i
\(136\) 5.99094 10.3766i 0.513719 0.889787i
\(137\) 2.09153 3.62263i 0.178691 0.309502i −0.762741 0.646704i \(-0.776147\pi\)
0.941432 + 0.337202i \(0.109480\pi\)
\(138\) −2.90387 5.02965i −0.247194 0.428153i
\(139\) 3.61077 0.306261 0.153131 0.988206i \(-0.451064\pi\)
0.153131 + 0.988206i \(0.451064\pi\)
\(140\) 0.314467 3.53868i 0.0265773 0.299073i
\(141\) 1.65723 0.139564
\(142\) 3.22063 + 5.57829i 0.270269 + 0.468120i
\(143\) −1.52153 + 2.63537i −0.127237 + 0.220380i
\(144\) 1.59849 2.76866i 0.133207 0.230722i
\(145\) −7.35641 12.7417i −0.610916 1.05814i
\(146\) −11.2482 −0.930905
\(147\) 4.51415 5.35000i 0.372321 0.441260i
\(148\) −0.117489 −0.00965752
\(149\) −6.65960 11.5348i −0.545575 0.944964i −0.998570 0.0534512i \(-0.982978\pi\)
0.452995 0.891513i \(-0.350355\pi\)
\(150\) −6.65960 + 11.5348i −0.543754 + 0.941809i
\(151\) 3.52160 6.09959i 0.286584 0.496378i −0.686408 0.727217i \(-0.740814\pi\)
0.972992 + 0.230839i \(0.0741469\pi\)
\(152\) 11.4463 + 19.8257i 0.928421 + 1.60807i
\(153\) 3.97287 0.321187
\(154\) 0.301486 3.39260i 0.0242944 0.273384i
\(155\) −26.4167 −2.12184
\(156\) −0.521529 0.903315i −0.0417558 0.0723231i
\(157\) −6.37793 + 11.0469i −0.509015 + 0.881639i 0.490931 + 0.871199i \(0.336657\pi\)
−0.999945 + 0.0104406i \(0.996677\pi\)
\(158\) −0.463201 + 0.802288i −0.0368503 + 0.0638266i
\(159\) 6.47016 + 11.2067i 0.513117 + 0.888745i
\(160\) 7.50687 0.593470
\(161\) 10.8247 5.02965i 0.853107 0.396392i
\(162\) 1.28734 0.101143
\(163\) −5.70207 9.87627i −0.446621 0.773569i 0.551543 0.834146i \(-0.314039\pi\)
−0.998164 + 0.0605770i \(0.980706\pi\)
\(164\) −0.478471 + 0.828736i −0.0373623 + 0.0647134i
\(165\) 1.95872 3.39260i 0.152486 0.264114i
\(166\) 7.46498 + 12.9297i 0.579395 + 1.00354i
\(167\) 12.1109 0.937167 0.468583 0.883419i \(-0.344765\pi\)
0.468583 + 0.883419i \(0.344765\pi\)
\(168\) 6.53008 + 4.58572i 0.503806 + 0.353796i
\(169\) −3.73980 −0.287677
\(170\) −10.0177 17.3512i −0.768323 1.33077i
\(171\) −3.79530 + 6.57365i −0.290234 + 0.502700i
\(172\) 1.90616 3.30157i 0.145343 0.251742i
\(173\) −1.82124 3.15448i −0.138466 0.239830i 0.788450 0.615099i \(-0.210884\pi\)
−0.926916 + 0.375268i \(0.877551\pi\)
\(174\) 4.83488 0.366531
\(175\) −22.4018 15.7316i −1.69342 1.18920i
\(176\) 3.19698 0.240981
\(177\) 1.83039 + 3.17034i 0.137581 + 0.238297i
\(178\) 7.95270 13.7745i 0.596080 1.03244i
\(179\) −4.96320 + 8.59652i −0.370967 + 0.642534i −0.989715 0.143056i \(-0.954307\pi\)
0.618748 + 0.785590i \(0.287640\pi\)
\(180\) 0.671383 + 1.16287i 0.0500420 + 0.0866752i
\(181\) −8.07219 −0.600001 −0.300001 0.953939i \(-0.596987\pi\)
−0.300001 + 0.953939i \(0.596987\pi\)
\(182\) −9.39946 + 4.36742i −0.696735 + 0.323734i
\(183\) −0.468387 −0.0346241
\(184\) 6.80310 + 11.7833i 0.501531 + 0.868677i
\(185\) −0.671383 + 1.16287i −0.0493611 + 0.0854959i
\(186\) 4.34048 7.51793i 0.318259 0.551241i
\(187\) 1.98643 + 3.44061i 0.145262 + 0.251602i
\(188\) −0.568044 −0.0414289
\(189\) −0.234193 + 2.63537i −0.0170351 + 0.191695i
\(190\) 38.2798 2.77711
\(191\) −2.79182 4.83557i −0.202009 0.349890i 0.747167 0.664637i \(-0.231414\pi\)
−0.949176 + 0.314747i \(0.898080\pi\)
\(192\) −4.43042 + 7.67371i −0.319738 + 0.553802i
\(193\) −5.56688 + 9.64211i −0.400712 + 0.694054i −0.993812 0.111075i \(-0.964571\pi\)
0.593100 + 0.805129i \(0.297904\pi\)
\(194\) 8.47626 + 14.6813i 0.608560 + 1.05406i
\(195\) −11.9210 −0.853680
\(196\) −1.54730 + 1.83380i −0.110521 + 0.130986i
\(197\) −0.644475 −0.0459170 −0.0229585 0.999736i \(-0.507309\pi\)
−0.0229585 + 0.999736i \(0.507309\pi\)
\(198\) 0.643668 + 1.11487i 0.0457435 + 0.0792300i
\(199\) 12.6177 21.8545i 0.894447 1.54923i 0.0599599 0.998201i \(-0.480903\pi\)
0.834487 0.551027i \(-0.185764\pi\)
\(200\) 15.6019 27.0232i 1.10322 1.91083i
\(201\) 1.28911 + 2.23281i 0.0909270 + 0.157490i
\(202\) 9.10171 0.640394
\(203\) −0.879565 + 9.89770i −0.0617334 + 0.694683i
\(204\) −1.36177 −0.0953427
\(205\) 5.46839 + 9.47152i 0.381929 + 0.661520i
\(206\) −1.50448 + 2.60584i −0.104822 + 0.181557i
\(207\) −2.25572 + 3.90703i −0.156784 + 0.271557i
\(208\) −4.86430 8.42521i −0.337278 0.584183i
\(209\) −7.59060 −0.525053
\(210\) 12.1003 5.62233i 0.834998 0.387978i
\(211\) −17.6357 −1.21409 −0.607044 0.794668i \(-0.707645\pi\)
−0.607044 + 0.794668i \(0.707645\pi\)
\(212\) −2.21776 3.84127i −0.152316 0.263819i
\(213\) 2.50178 4.33321i 0.171419 0.296906i
\(214\) 6.98585 12.0998i 0.477543 0.827129i
\(215\) −21.7853 37.7332i −1.48574 2.57338i
\(216\) −3.01593 −0.205208
\(217\) 14.6007 + 10.2533i 0.991159 + 0.696037i
\(218\) −2.82236 −0.191154
\(219\) 4.36878 + 7.56694i 0.295215 + 0.511327i
\(220\) −0.671383 + 1.16287i −0.0452646 + 0.0784007i
\(221\) 6.04484 10.4700i 0.406620 0.704286i
\(222\) −0.220628 0.382139i −0.0148076 0.0256475i
\(223\) 16.5853 1.11064 0.555318 0.831638i \(-0.312596\pi\)
0.555318 + 0.831638i \(0.312596\pi\)
\(224\) −4.14910 2.91369i −0.277224 0.194679i
\(225\) 10.3463 0.689755
\(226\) 7.49323 + 12.9787i 0.498442 + 0.863327i
\(227\) 1.17409 2.03358i 0.0779269 0.134973i −0.824428 0.565966i \(-0.808503\pi\)
0.902355 + 0.430993i \(0.141837\pi\)
\(228\) 1.30090 2.25323i 0.0861543 0.149224i
\(229\) 8.72518 + 15.1125i 0.576576 + 0.998660i 0.995868 + 0.0908081i \(0.0289450\pi\)
−0.419292 + 0.907851i \(0.637722\pi\)
\(230\) 22.7515 1.50019
\(231\) −2.39939 + 1.11487i −0.157868 + 0.0733528i
\(232\) −11.3270 −0.743653
\(233\) 2.79530 + 4.84160i 0.183126 + 0.317184i 0.942943 0.332953i \(-0.108045\pi\)
−0.759817 + 0.650137i \(0.774712\pi\)
\(234\) 1.95872 3.39260i 0.128045 0.221781i
\(235\) −3.24605 + 5.62233i −0.211749 + 0.366760i
\(236\) −0.627398 1.08668i −0.0408401 0.0707372i
\(237\) 0.719627 0.0467448
\(238\) −1.19776 + 13.4784i −0.0776394 + 0.873672i
\(239\) 17.8147 1.15234 0.576169 0.817331i \(-0.304547\pi\)
0.576169 + 0.817331i \(0.304547\pi\)
\(240\) 6.26198 + 10.8461i 0.404209 + 0.700111i
\(241\) −1.49211 + 2.58441i −0.0961152 + 0.166476i −0.910074 0.414447i \(-0.863975\pi\)
0.813958 + 0.580923i \(0.197308\pi\)
\(242\) −0.643668 + 1.11487i −0.0413765 + 0.0716663i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0.160547 0.0102780
\(245\) 9.30845 + 25.7938i 0.594695 + 1.64791i
\(246\) −3.59401 −0.229146
\(247\) 11.5493 + 20.0040i 0.734866 + 1.27282i
\(248\) −10.1687 + 17.6128i −0.645715 + 1.11841i
\(249\) 5.79878 10.0438i 0.367483 0.636499i
\(250\) −13.4809 23.3496i −0.852607 1.47676i
\(251\) 25.0829 1.58322 0.791608 0.611029i \(-0.209244\pi\)
0.791608 + 0.611029i \(0.209244\pi\)
\(252\) 0.0802736 0.903315i 0.00505676 0.0569035i
\(253\) −4.51145 −0.283632
\(254\) −3.48763 6.04075i −0.218833 0.379030i
\(255\) −7.78173 + 13.4784i −0.487311 + 0.844048i
\(256\) 3.98548 6.90306i 0.249093 0.431441i
\(257\) 11.2785 + 19.5350i 0.703535 + 1.21856i 0.967218 + 0.253948i \(0.0817293\pi\)
−0.263683 + 0.964609i \(0.584937\pi\)
\(258\) 14.3180 0.891401
\(259\) 0.822431 0.382139i 0.0511034 0.0237449i
\(260\) 4.08612 0.253410
\(261\) −1.87786 3.25255i −0.116237 0.201328i
\(262\) 1.32978 2.30326i 0.0821544 0.142296i
\(263\) −12.8779 + 22.3052i −0.794087 + 1.37540i 0.129330 + 0.991602i \(0.458717\pi\)
−0.923417 + 0.383798i \(0.874616\pi\)
\(264\) −1.50796 2.61187i −0.0928087 0.160749i
\(265\) −50.6929 −3.11404
\(266\) −21.1575 14.8578i −1.29725 0.910990i
\(267\) −12.3553 −0.756131
\(268\) −0.441865 0.765332i −0.0269912 0.0467501i
\(269\) 10.3481 17.9234i 0.630935 1.09281i −0.356426 0.934323i \(-0.616005\pi\)
0.987361 0.158488i \(-0.0506618\pi\)
\(270\) −2.52153 + 4.36742i −0.153455 + 0.265793i
\(271\) −1.53390 2.65680i −0.0931779 0.161389i 0.815669 0.578519i \(-0.196369\pi\)
−0.908847 + 0.417130i \(0.863036\pi\)
\(272\) −12.7012 −0.770122
\(273\) 6.58882 + 4.62697i 0.398774 + 0.280037i
\(274\) −5.38499 −0.325319
\(275\) 5.17316 + 8.96018i 0.311953 + 0.540319i
\(276\) 0.773186 1.33920i 0.0465403 0.0806102i
\(277\) 3.34277 5.78984i 0.200847 0.347878i −0.747954 0.663750i \(-0.768964\pi\)
0.948802 + 0.315872i \(0.102297\pi\)
\(278\) −2.32413 4.02552i −0.139392 0.241435i
\(279\) −6.74335 −0.403714
\(280\) −28.3481 + 13.1718i −1.69412 + 0.787166i
\(281\) 3.11286 0.185698 0.0928489 0.995680i \(-0.470403\pi\)
0.0928489 + 0.995680i \(0.470403\pi\)
\(282\) −1.06671 1.84759i −0.0635215 0.110023i
\(283\) 11.1799 19.3642i 0.664578 1.15108i −0.314822 0.949151i \(-0.601945\pi\)
0.979400 0.201932i \(-0.0647220\pi\)
\(284\) −0.857525 + 1.48528i −0.0508848 + 0.0881350i
\(285\) −14.8679 25.7519i −0.880695 1.52541i
\(286\) 3.91744 0.231643
\(287\) 0.653825 7.35746i 0.0385941 0.434297i
\(288\) 1.91627 0.112917
\(289\) 0.608157 + 1.05336i 0.0357739 + 0.0619623i
\(290\) −9.47016 + 16.4028i −0.556107 + 0.963206i
\(291\) 6.58434 11.4044i 0.385981 0.668538i
\(292\) −1.49747 2.59370i −0.0876328 0.151785i
\(293\) 10.6291 0.620958 0.310479 0.950580i \(-0.399511\pi\)
0.310479 + 0.950580i \(0.399511\pi\)
\(294\) −8.87014 1.58905i −0.517317 0.0926752i
\(295\) −14.3409 −0.834960
\(296\) 0.516879 + 0.895261i 0.0300430 + 0.0520360i
\(297\) 0.500000 0.866025i 0.0290129 0.0502519i
\(298\) −8.57314 + 14.8491i −0.496628 + 0.860186i
\(299\) 6.86430 + 11.8893i 0.396972 + 0.687576i
\(300\) −3.54637 −0.204750
\(301\) −2.60475 + 29.3111i −0.150135 + 1.68946i
\(302\) −9.06697 −0.521746
\(303\) −3.53509 6.12296i −0.203086 0.351755i
\(304\) 12.1335 21.0158i 0.695903 1.20534i
\(305\) 0.917438 1.58905i 0.0525324 0.0909887i
\(306\) −2.55721 4.42921i −0.146186 0.253201i
\(307\) −18.5229 −1.05716 −0.528580 0.848883i \(-0.677275\pi\)
−0.528580 + 0.848883i \(0.677275\pi\)
\(308\) 0.822431 0.382139i 0.0468623 0.0217744i
\(309\) 2.33736 0.132968
\(310\) 17.0036 + 29.4510i 0.965737 + 1.67271i
\(311\) 9.92192 17.1853i 0.562620 0.974487i −0.434646 0.900601i \(-0.643127\pi\)
0.997267 0.0738860i \(-0.0235401\pi\)
\(312\) −4.58882 + 7.94807i −0.259791 + 0.449971i
\(313\) 10.5572 + 18.2856i 0.596729 + 1.03356i 0.993300 + 0.115561i \(0.0368665\pi\)
−0.396572 + 0.918004i \(0.629800\pi\)
\(314\) 16.4211 0.926696
\(315\) −8.48203 5.95647i −0.477908 0.335609i
\(316\) −0.246664 −0.0138759
\(317\) 7.90329 + 13.6889i 0.443893 + 0.768845i 0.997974 0.0636174i \(-0.0202637\pi\)
−0.554081 + 0.832462i \(0.686930\pi\)
\(318\) 8.32927 14.4267i 0.467083 0.809011i
\(319\) 1.87786 3.25255i 0.105140 0.182108i
\(320\) −17.3559 30.0613i −0.970224 1.68048i
\(321\) −10.8532 −0.605766
\(322\) −12.5749 8.83068i −0.700772 0.492114i
\(323\) 30.1565 1.67795
\(324\) 0.171383 + 0.296844i 0.00952129 + 0.0164914i
\(325\) 15.7422 27.2663i 0.873222 1.51246i
\(326\) −7.34048 + 12.7141i −0.406551 + 0.704168i
\(327\) 1.09620 + 1.89868i 0.0606200 + 0.104997i
\(328\) 8.41992 0.464912
\(329\) 3.97635 1.84759i 0.219223 0.101861i
\(330\) −5.04306 −0.277611
\(331\) 4.58163 + 7.93562i 0.251829 + 0.436181i 0.964030 0.265795i \(-0.0856345\pi\)
−0.712200 + 0.701976i \(0.752301\pi\)
\(332\) −1.98763 + 3.44267i −0.109085 + 0.188941i
\(333\) −0.171383 + 0.296844i −0.00939174 + 0.0162670i
\(334\) −7.79537 13.5020i −0.426544 0.738796i
\(335\) −10.1000 −0.551824
\(336\) 0.748711 8.42521i 0.0408455 0.459633i
\(337\) −12.7174 −0.692760 −0.346380 0.938094i \(-0.612589\pi\)
−0.346380 + 0.938094i \(0.612589\pi\)
\(338\) 2.40719 + 4.16937i 0.130934 + 0.226784i
\(339\) 5.82073 10.0818i 0.316138 0.547568i
\(340\) 2.66732 4.61993i 0.144656 0.250551i
\(341\) −3.37168 5.83991i −0.182586 0.316249i
\(342\) 9.77165 0.528390
\(343\) 4.86668 17.8694i 0.262776 0.964857i
\(344\) −33.5438 −1.80856
\(345\) −8.83665 15.3055i −0.475749 0.824022i
\(346\) −2.34454 + 4.06087i −0.126043 + 0.218314i
\(347\) −1.27370 + 2.20611i −0.0683756 + 0.118430i −0.898186 0.439615i \(-0.855115\pi\)
0.829811 + 0.558045i \(0.188448\pi\)
\(348\) 0.643668 + 1.11487i 0.0345042 + 0.0597631i
\(349\) −25.0183 −1.33920 −0.669600 0.742722i \(-0.733534\pi\)
−0.669600 + 0.742722i \(0.733534\pi\)
\(350\) −3.11927 + 35.1009i −0.166732 + 1.87622i
\(351\) −3.04306 −0.162426
\(352\) 0.958135 + 1.65954i 0.0510688 + 0.0884537i
\(353\) 5.71444 9.89770i 0.304149 0.526802i −0.672922 0.739713i \(-0.734961\pi\)
0.977072 + 0.212911i \(0.0682946\pi\)
\(354\) 2.35633 4.08129i 0.125238 0.216918i
\(355\) 9.80056 + 16.9751i 0.520160 + 0.900943i
\(356\) 4.23498 0.224453
\(357\) 9.53246 4.42921i 0.504511 0.234419i
\(358\) 12.7786 0.675371
\(359\) −14.9811 25.9480i −0.790672 1.36948i −0.925551 0.378622i \(-0.876398\pi\)
0.134879 0.990862i \(-0.456935\pi\)
\(360\) 5.90735 10.2318i 0.311345 0.539265i
\(361\) −19.3086 + 33.4435i −1.01624 + 1.76018i
\(362\) 5.19581 + 8.99941i 0.273086 + 0.472998i
\(363\) 1.00000 0.0524864
\(364\) −2.25843 1.58597i −0.118374 0.0831275i
\(365\) −34.2288 −1.79162
\(366\) 0.301486 + 0.522188i 0.0157589 + 0.0272952i
\(367\) 7.23130 12.5250i 0.377471 0.653798i −0.613223 0.789910i \(-0.710127\pi\)
0.990693 + 0.136112i \(0.0434606\pi\)
\(368\) 7.21150 12.4907i 0.375925 0.651122i
\(369\) 1.39591 + 2.41779i 0.0726681 + 0.125865i
\(370\) 1.72859 0.0898652
\(371\) 28.0184 + 19.6758i 1.45464 + 1.02152i
\(372\) 2.31139 0.119840
\(373\) −15.0726 26.1066i −0.780431 1.35175i −0.931691 0.363252i \(-0.881666\pi\)
0.151260 0.988494i \(-0.451667\pi\)
\(374\) 2.55721 4.42921i 0.132230 0.229029i
\(375\) −10.4719 + 18.1379i −0.540769 + 0.936639i
\(376\) 2.49905 + 4.32848i 0.128879 + 0.223224i
\(377\) −11.4289 −0.588617
\(378\) 3.08882 1.43521i 0.158872 0.0738190i
\(379\) −11.7452 −0.603311 −0.301655 0.953417i \(-0.597539\pi\)
−0.301655 + 0.953417i \(0.597539\pi\)
\(380\) 5.09620 + 8.82688i 0.261430 + 0.452809i
\(381\) −2.70918 + 4.69244i −0.138796 + 0.240401i
\(382\) −3.59401 + 6.22500i −0.183885 + 0.318499i
\(383\) −13.9685 24.1942i −0.713759 1.23627i −0.963436 0.267937i \(-0.913658\pi\)
0.249678 0.968329i \(-0.419675\pi\)
\(384\) 7.57434 0.386526
\(385\) 0.917438 10.3239i 0.0467570 0.526154i
\(386\) 14.3329 0.729524
\(387\) −5.56111 9.63212i −0.282687 0.489628i
\(388\) −2.25689 + 3.90905i −0.114576 + 0.198452i
\(389\) 7.87896 13.6468i 0.399479 0.691918i −0.594183 0.804330i \(-0.702524\pi\)
0.993662 + 0.112412i \(0.0358577\pi\)
\(390\) 7.67316 + 13.2903i 0.388546 + 0.672981i
\(391\) 17.9234 0.906424
\(392\) 20.7807 + 3.72277i 1.04958 + 0.188028i
\(393\) −2.06595 −0.104213
\(394\) 0.414828 + 0.718503i 0.0208987 + 0.0361977i
\(395\) −1.40955 + 2.44141i −0.0709221 + 0.122841i
\(396\) −0.171383 + 0.296844i −0.00861233 + 0.0149170i
\(397\) −6.40446 11.0928i −0.321430 0.556734i 0.659353 0.751834i \(-0.270830\pi\)
−0.980783 + 0.195100i \(0.937497\pi\)
\(398\) −32.4865 −1.62840
\(399\) −1.77767 + 20.0040i −0.0889947 + 1.00145i
\(400\) −33.0770 −1.65385
\(401\) 5.49033 + 9.50953i 0.274174 + 0.474883i 0.969926 0.243398i \(-0.0782622\pi\)
−0.695752 + 0.718282i \(0.744929\pi\)
\(402\) 1.65952 2.87438i 0.0827694 0.143361i
\(403\) −10.2602 + 17.7712i −0.511097 + 0.885246i
\(404\) 1.21171 + 2.09875i 0.0602849 + 0.104417i
\(405\) 3.91744 0.194659
\(406\) 11.6008 5.39024i 0.575736 0.267513i
\(407\) −0.342766 −0.0169903
\(408\) 5.99094 + 10.3766i 0.296596 + 0.513719i
\(409\) −9.01281 + 15.6106i −0.445655 + 0.771896i −0.998098 0.0616543i \(-0.980362\pi\)
0.552443 + 0.833551i \(0.313696\pi\)
\(410\) 7.03965 12.1930i 0.347664 0.602171i
\(411\) 2.09153 + 3.62263i 0.103167 + 0.178691i
\(412\) −0.801168 −0.0394707
\(413\) 7.92633 + 5.56623i 0.390029 + 0.273896i
\(414\) 5.80775 0.285435
\(415\) 22.7164 + 39.3459i 1.11510 + 1.93141i
\(416\) 2.91566 5.05007i 0.142952 0.247600i
\(417\) −1.80538 + 3.12702i −0.0884100 + 0.153131i
\(418\) 4.88582 + 8.46250i 0.238974 + 0.413914i
\(419\) 11.8542 0.579116 0.289558 0.957160i \(-0.406492\pi\)
0.289558 + 0.957160i \(0.406492\pi\)
\(420\) 2.90735 + 2.04168i 0.141864 + 0.0996236i
\(421\) 26.4890 1.29100 0.645498 0.763762i \(-0.276650\pi\)
0.645498 + 0.763762i \(0.276650\pi\)
\(422\) 11.3515 + 19.6614i 0.552583 + 0.957101i
\(423\) −0.828617 + 1.43521i −0.0402887 + 0.0697821i
\(424\) −19.5135 + 33.7985i −0.947661 + 1.64140i
\(425\) −20.5523 35.5976i −0.996932 1.72674i
\(426\) −6.44126 −0.312080
\(427\) −1.12384 + 0.522188i −0.0543866 + 0.0252705i
\(428\) 3.72011 0.179818
\(429\) −1.52153 2.63537i −0.0734601 0.127237i
\(430\) −28.0450 + 48.5753i −1.35245 + 2.34251i
\(431\) 1.08841 1.88517i 0.0524266 0.0908056i −0.838621 0.544715i \(-0.816638\pi\)
0.891048 + 0.453910i \(0.149971\pi\)
\(432\) 1.59849 + 2.76866i 0.0769073 + 0.133207i
\(433\) −16.4831 −0.792129 −0.396065 0.918223i \(-0.629624\pi\)
−0.396065 + 0.918223i \(0.629624\pi\)
\(434\) 2.03302 22.8775i 0.0975882 1.09815i
\(435\) 14.7128 0.705425
\(436\) −0.375741 0.650802i −0.0179947 0.0311678i
\(437\) −17.1223 + 29.6567i −0.819070 + 1.41867i
\(438\) 5.62408 9.74120i 0.268729 0.465453i
\(439\) 0.376500 + 0.652117i 0.0179694 + 0.0311239i 0.874870 0.484357i \(-0.160947\pi\)
−0.856901 + 0.515481i \(0.827613\pi\)
\(440\) 11.8147 0.563244
\(441\) 2.37616 + 6.58437i 0.113150 + 0.313541i
\(442\) −15.5635 −0.740279
\(443\) −20.0309 34.6946i −0.951698 1.64839i −0.741750 0.670677i \(-0.766004\pi\)
−0.209949 0.977712i \(-0.567330\pi\)
\(444\) 0.0587444 0.101748i 0.00278789 0.00482876i
\(445\) 24.2005 41.9166i 1.14722 1.98704i
\(446\) −10.6754 18.4904i −0.505497 0.875547i
\(447\) 13.3192 0.629976
\(448\) −2.07515 + 23.3516i −0.0980416 + 1.10326i
\(449\) −7.71924 −0.364294 −0.182147 0.983271i \(-0.558305\pi\)
−0.182147 + 0.983271i \(0.558305\pi\)
\(450\) −6.65960 11.5348i −0.313936 0.543754i
\(451\) −1.39591 + 2.41779i −0.0657308 + 0.113849i
\(452\) −1.99515 + 3.45570i −0.0938440 + 0.162543i
\(453\) 3.52160 + 6.09959i 0.165459 + 0.286584i
\(454\) −3.02289 −0.141871
\(455\) −28.6031 + 13.2903i −1.34093 + 0.623059i
\(456\) −22.8927 −1.07205
\(457\) −13.1823 22.8324i −0.616643 1.06806i −0.990094 0.140407i \(-0.955159\pi\)
0.373451 0.927650i \(-0.378174\pi\)
\(458\) 11.2322 19.4548i 0.524848 0.909064i
\(459\) −1.98643 + 3.44061i −0.0927188 + 0.160594i
\(460\) 3.02891 + 5.24622i 0.141224 + 0.244606i
\(461\) 12.4685 0.580718 0.290359 0.956918i \(-0.406225\pi\)
0.290359 + 0.956918i \(0.406225\pi\)
\(462\) 2.78734 + 1.95739i 0.129679 + 0.0910662i
\(463\) 37.7630 1.75499 0.877497 0.479582i \(-0.159212\pi\)
0.877497 + 0.479582i \(0.159212\pi\)
\(464\) 6.00348 + 10.3983i 0.278705 + 0.482731i
\(465\) 13.2083 22.8775i 0.612522 1.06092i
\(466\) 3.59849 6.23277i 0.166697 0.288727i
\(467\) −11.0104 19.0706i −0.509502 0.882483i −0.999939 0.0110065i \(-0.996496\pi\)
0.490438 0.871476i \(-0.336837\pi\)
\(468\) 1.04306 0.0482154
\(469\) 5.58237 + 3.92019i 0.257770 + 0.181018i
\(470\) 8.35753 0.385504
\(471\) −6.37793 11.0469i −0.293880 0.509015i
\(472\) −5.52034 + 9.56150i −0.254094 + 0.440104i
\(473\) 5.56111 9.63212i 0.255700 0.442885i
\(474\) −0.463201 0.802288i −0.0212755 0.0368503i
\(475\) 78.5348 3.60342
\(476\) −3.26741 + 1.51819i −0.149761 + 0.0695860i
\(477\) −12.9403 −0.592497
\(478\) −11.4668 19.8610i −0.524477 0.908421i
\(479\) 4.72401 8.18223i 0.215846 0.373856i −0.737688 0.675142i \(-0.764082\pi\)
0.953534 + 0.301286i \(0.0974158\pi\)
\(480\) −3.75343 + 6.50114i −0.171320 + 0.296735i
\(481\) 0.521529 + 0.903315i 0.0237797 + 0.0411876i
\(482\) 3.84169 0.174984
\(483\) −1.05655 + 11.8893i −0.0480747 + 0.540982i
\(484\) −0.342766 −0.0155803
\(485\) 25.7937 + 44.6761i 1.17123 + 2.02864i
\(486\) −0.643668 + 1.11487i −0.0291974 + 0.0505713i
\(487\) −20.1170 + 34.8437i −0.911589 + 1.57892i −0.0997702 + 0.995011i \(0.531811\pi\)
−0.811819 + 0.583909i \(0.801523\pi\)
\(488\) −0.706310 1.22337i −0.0319732 0.0553791i
\(489\) 11.4041 0.515713
\(490\) 22.7651 26.9803i 1.02842 1.21885i
\(491\) 20.2964 0.915966 0.457983 0.888961i \(-0.348572\pi\)
0.457983 + 0.888961i \(0.348572\pi\)
\(492\) −0.478471 0.828736i −0.0215711 0.0373623i
\(493\) −7.46050 + 12.9220i −0.336004 + 0.581976i
\(494\) 14.8679 25.7519i 0.668936 1.15863i
\(495\) 1.95872 + 3.39260i 0.0880379 + 0.152486i
\(496\) 21.5583 0.967998
\(497\) 1.17180 13.1862i 0.0525624 0.591482i
\(498\) −14.9300 −0.669027
\(499\) −18.1477 31.4328i −0.812403 1.40712i −0.911178 0.412014i \(-0.864826\pi\)
0.0987744 0.995110i \(-0.468508\pi\)
\(500\) 3.58943 6.21708i 0.160524 0.278036i
\(501\) −6.05543 + 10.4883i −0.270537 + 0.468583i
\(502\) −16.1450 27.9640i −0.720588 1.24809i
\(503\) −27.6923 −1.23474 −0.617368 0.786674i \(-0.711801\pi\)
−0.617368 + 0.786674i \(0.711801\pi\)
\(504\) −7.23639 + 3.36235i −0.322334 + 0.149771i
\(505\) 27.6970 1.23250
\(506\) 2.90387 + 5.02965i 0.129093 + 0.223595i
\(507\) 1.86990 3.23876i 0.0830451 0.143838i
\(508\) 0.928617 1.60841i 0.0412007 0.0713617i
\(509\) −4.54399 7.87041i −0.201409 0.348850i 0.747574 0.664179i \(-0.231219\pi\)
−0.948983 + 0.315329i \(0.897885\pi\)
\(510\) 20.0354 0.887183
\(511\) 18.9185 + 13.2855i 0.836906 + 0.587714i
\(512\) −25.4100 −1.12297
\(513\) −3.79530 6.57365i −0.167567 0.290234i
\(514\) 14.5192 25.1481i 0.640416 1.10923i
\(515\) −4.57823 + 7.92972i −0.201741 + 0.349425i
\(516\) 1.90616 + 3.30157i 0.0839140 + 0.145343i
\(517\) −1.65723 −0.0728850
\(518\) −0.955405 0.670929i −0.0419781 0.0294789i
\(519\) 3.64247 0.159887
\(520\) −17.9764 31.1361i −0.788318 1.36541i
\(521\) −19.4255 + 33.6459i −0.851046 + 1.47405i 0.0292202 + 0.999573i \(0.490698\pi\)
−0.880266 + 0.474481i \(0.842636\pi\)
\(522\) −2.41744 + 4.18713i −0.105808 + 0.183266i
\(523\) 10.7500 + 18.6196i 0.470066 + 0.814178i 0.999414 0.0342267i \(-0.0108968\pi\)
−0.529348 + 0.848405i \(0.677564\pi\)
\(524\) 0.708138 0.0309352
\(525\) 24.8249 11.5348i 1.08345 0.503418i
\(526\) 33.1565 1.44569
\(527\) 13.3952 + 23.2012i 0.583505 + 1.01066i
\(528\) −1.59849 + 2.76866i −0.0695653 + 0.120491i
\(529\) 1.32343 2.29225i 0.0575405 0.0996630i
\(530\) 32.6294 + 56.5158i 1.41733 + 2.45489i
\(531\) −3.66079 −0.158865
\(532\) 0.609325 6.85670i 0.0264176 0.297276i
\(533\) 8.49566 0.367988
\(534\) 7.95270 + 13.7745i 0.344147 + 0.596080i
\(535\) 21.2584 36.8205i 0.919079 1.59189i
\(536\) −3.88787 + 6.73399i −0.167930 + 0.290864i
\(537\) −4.96320 8.59652i −0.214178 0.370967i
\(538\) −26.6430 −1.14866
\(539\) −4.51415 + 5.35000i −0.194438 + 0.230441i
\(540\) −1.34277 −0.0577835
\(541\) 14.9470 + 25.8890i 0.642622 + 1.11305i 0.984845 + 0.173435i \(0.0554867\pi\)
−0.342223 + 0.939619i \(0.611180\pi\)
\(542\) −1.97465 + 3.42019i −0.0848183 + 0.146910i
\(543\) 4.03610 6.99072i 0.173205 0.300001i
\(544\) −3.80654 6.59313i −0.163204 0.282678i
\(545\) −8.58860 −0.367895
\(546\) 0.917438 10.3239i 0.0392627 0.441821i
\(547\) −31.9072 −1.36425 −0.682127 0.731234i \(-0.738945\pi\)
−0.682127 + 0.731234i \(0.738945\pi\)
\(548\) −0.716905 1.24172i −0.0306247 0.0530435i
\(549\) 0.234193 0.405635i 0.00999513 0.0173121i
\(550\) 6.65960 11.5348i 0.283966 0.491844i
\(551\) −14.2541 24.6888i −0.607245 1.05178i
\(552\) −13.6062 −0.579118
\(553\) 1.72667 0.802288i 0.0734254 0.0341167i
\(554\) −8.60653 −0.365656
\(555\) −0.671383 1.16287i −0.0284986 0.0493611i
\(556\) 0.618825 1.07184i 0.0262440 0.0454560i
\(557\) 7.30446 12.6517i 0.309500 0.536069i −0.668753 0.743484i \(-0.733172\pi\)
0.978253 + 0.207415i \(0.0665051\pi\)
\(558\) 4.34048 + 7.51793i 0.183747 + 0.318259i
\(559\) −33.8455 −1.43151
\(560\) 27.1169 + 19.0427i 1.14590 + 0.804701i
\(561\) −3.97287 −0.167735
\(562\) −2.00365 3.47042i −0.0845189 0.146391i
\(563\) 4.24116 7.34590i 0.178743 0.309593i −0.762707 0.646744i \(-0.776130\pi\)
0.941450 + 0.337151i \(0.109463\pi\)
\(564\) 0.284022 0.491941i 0.0119595 0.0207144i
\(565\) 22.8023 + 39.4948i 0.959301 + 1.66156i
\(566\) −28.7847 −1.20991
\(567\) −2.16520 1.52050i −0.0909297 0.0638550i
\(568\) 15.0904 0.633177
\(569\) −10.3529 17.9318i −0.434017 0.751740i 0.563198 0.826322i \(-0.309571\pi\)
−0.997215 + 0.0745824i \(0.976238\pi\)
\(570\) −19.1399 + 33.1513i −0.801683 + 1.38856i
\(571\) −0.504409 + 0.873661i −0.0211088 + 0.0365616i −0.876387 0.481608i \(-0.840053\pi\)
0.855278 + 0.518169i \(0.173386\pi\)
\(572\) 0.521529 + 0.903315i 0.0218062 + 0.0377695i
\(573\) 5.58364 0.233260
\(574\) −8.62343 + 4.00683i −0.359935 + 0.167242i
\(575\) 46.6769 1.94656
\(576\) −4.43042 7.67371i −0.184601 0.319738i
\(577\) 19.1925 33.2425i 0.798996 1.38390i −0.121274 0.992619i \(-0.538698\pi\)
0.920270 0.391283i \(-0.127969\pi\)
\(578\) 0.782902 1.35603i 0.0325644 0.0564033i
\(579\) −5.56688 9.64211i −0.231351 0.400712i
\(580\) −5.04306 −0.209402
\(581\) 2.71607 30.5638i 0.112682 1.26800i
\(582\) −16.9525 −0.702704
\(583\) −6.47016 11.2067i −0.267967 0.464132i
\(584\) −13.1759 + 22.8214i −0.545223 + 0.944354i
\(585\) 5.96050 10.3239i 0.246436 0.426840i
\(586\) −6.84160 11.8500i −0.282624 0.489519i
\(587\) 3.95733 0.163336 0.0816682 0.996660i \(-0.473975\pi\)
0.0816682 + 0.996660i \(0.473975\pi\)
\(588\) −0.814467 2.25690i −0.0335881 0.0930730i
\(589\) −51.1861 −2.10909
\(590\) 9.23079 + 15.9882i 0.380025 + 0.658223i
\(591\) 0.322238 0.558132i 0.0132551 0.0229585i
\(592\) 0.547908 0.949005i 0.0225189 0.0390039i
\(593\) −4.25131 7.36349i −0.174581 0.302382i 0.765435 0.643513i \(-0.222524\pi\)
−0.940016 + 0.341130i \(0.889190\pi\)
\(594\) −1.28734 −0.0528200
\(595\) −3.64486 + 41.0154i −0.149425 + 1.68147i
\(596\) −4.56537 −0.187005
\(597\) 12.6177 + 21.8545i 0.516409 + 0.894447i
\(598\) 8.83665 15.3055i 0.361358 0.625890i
\(599\) 3.48076 6.02885i 0.142220 0.246332i −0.786112 0.618084i \(-0.787909\pi\)
0.928332 + 0.371751i \(0.121243\pi\)
\(600\) 15.6019 + 27.0232i 0.636944 + 1.10322i
\(601\) 31.8738 1.30016 0.650081 0.759865i \(-0.274735\pi\)
0.650081 + 0.759865i \(0.274735\pi\)
\(602\) 34.3545 15.9627i 1.40019 0.650590i
\(603\) −2.57823 −0.104994
\(604\) −1.20709 2.09074i −0.0491157 0.0850709i
\(605\) −1.95872 + 3.39260i −0.0796333 + 0.137929i
\(606\) −4.55085 + 7.88231i −0.184866 + 0.320197i
\(607\) −1.67204 2.89606i −0.0678660 0.117547i 0.830096 0.557621i \(-0.188286\pi\)
−0.897962 + 0.440074i \(0.854952\pi\)
\(608\) 14.5456 0.589903
\(609\) −8.13188 5.71058i −0.329520 0.231404i
\(610\) −2.36210 −0.0956387
\(611\) 2.52153 + 4.36742i 0.102010 + 0.176687i
\(612\) 0.680883 1.17932i 0.0275231 0.0476714i
\(613\) 2.11325 3.66025i 0.0853533 0.147836i −0.820188 0.572093i \(-0.806131\pi\)
0.905542 + 0.424257i \(0.139465\pi\)
\(614\) 11.9226 + 20.6506i 0.481158 + 0.833390i
\(615\) −10.9368 −0.441013
\(616\) −6.53008 4.58572i −0.263104 0.184764i
\(617\) 3.91266 0.157518 0.0787590 0.996894i \(-0.474904\pi\)
0.0787590 + 0.996894i \(0.474904\pi\)
\(618\) −1.50448 2.60584i −0.0605191 0.104822i
\(619\) −0.869194 + 1.50549i −0.0349359 + 0.0605107i −0.882965 0.469439i \(-0.844456\pi\)
0.848029 + 0.529950i \(0.177789\pi\)
\(620\) −4.52737 + 7.84164i −0.181824 + 0.314928i
\(621\) −2.25572 3.90703i −0.0905190 0.156784i
\(622\) −25.5457 −1.02429
\(623\) −29.6452 + 13.7745i −1.18771 + 0.551863i
\(624\) 9.72859 0.389455
\(625\) −15.1574 26.2534i −0.606295 1.05013i
\(626\) 13.5907 23.5397i 0.543193 0.940837i
\(627\) 3.79530 6.57365i 0.151570 0.262526i
\(628\) 2.18614 + 3.78651i 0.0872366 + 0.151098i
\(629\) 1.36177 0.0542972
\(630\) −1.18105 + 13.2903i −0.0470542 + 0.529498i
\(631\) −13.3994 −0.533420 −0.266710 0.963777i \(-0.585937\pi\)
−0.266710 + 0.963777i \(0.585937\pi\)
\(632\) 1.08517 + 1.87957i 0.0431658 + 0.0747654i
\(633\) 8.81783 15.2729i 0.350477 0.607044i
\(634\) 10.1742 17.6222i 0.404069 0.699867i
\(635\) −10.6131 18.3824i −0.421166 0.729481i
\(636\) 4.43551 0.175879
\(637\) 20.9676 + 3.75626i 0.830767 + 0.148829i
\(638\) −4.83488 −0.191415
\(639\) 2.50178 + 4.33321i 0.0989688 + 0.171419i
\(640\) −14.8360 + 25.6967i −0.586444 + 1.01575i
\(641\) −5.39101 + 9.33750i −0.212932 + 0.368809i −0.952631 0.304129i \(-0.901635\pi\)
0.739699 + 0.672938i \(0.234968\pi\)
\(642\) 6.98585 + 12.0998i 0.275710 + 0.477543i
\(643\) 30.1180 1.18774 0.593868 0.804562i \(-0.297600\pi\)
0.593868 + 0.804562i \(0.297600\pi\)
\(644\) 0.362150 4.07526i 0.0142707 0.160588i
\(645\) 43.5706 1.71559
\(646\) −19.4107 33.6204i −0.763705 1.32278i
\(647\) 6.32343 10.9525i 0.248600 0.430587i −0.714538 0.699597i \(-0.753363\pi\)
0.963138 + 0.269009i \(0.0866963\pi\)
\(648\) 1.50796 2.61187i 0.0592384 0.102604i
\(649\) −1.83039 3.17034i −0.0718493 0.124447i
\(650\) −40.5311 −1.58976
\(651\) −16.1799 + 7.51793i −0.634141 + 0.294651i
\(652\) −3.90896 −0.153087
\(653\) −0.751146 1.30102i −0.0293946 0.0509130i 0.850954 0.525240i \(-0.176025\pi\)
−0.880348 + 0.474327i \(0.842691\pi\)
\(654\) 1.41118 2.44423i 0.0551815 0.0955771i
\(655\) 4.04661 7.00894i 0.158114 0.273862i
\(656\) −4.46269 7.72961i −0.174239 0.301790i
\(657\) −8.73756 −0.340885
\(658\) −4.61927 3.24386i −0.180078 0.126459i
\(659\) −14.4079 −0.561251 −0.280626 0.959817i \(-0.590542\pi\)
−0.280626 + 0.959817i \(0.590542\pi\)
\(660\) −0.671383 1.16287i −0.0261336 0.0452646i
\(661\) 8.39269 14.5366i 0.326438 0.565407i −0.655364 0.755313i \(-0.727485\pi\)
0.981802 + 0.189906i \(0.0608182\pi\)
\(662\) 5.89810 10.2158i 0.229236 0.397049i
\(663\) 6.04484 + 10.4700i 0.234762 + 0.406620i
\(664\) 34.9774 1.35739
\(665\) −64.3837 45.2131i −2.49669 1.75329i
\(666\) 0.441256 0.0170983
\(667\) −8.47187 14.6737i −0.328032 0.568168i
\(668\) 2.07560 3.59504i 0.0803073 0.139096i
\(669\) −8.29267 + 14.3633i −0.320613 + 0.555318i
\(670\) 6.50107 + 11.2602i 0.251158 + 0.435019i
\(671\) 0.468387 0.0180819
\(672\) 4.59788 2.13638i 0.177367 0.0824128i
\(673\) −48.1663 −1.85667 −0.928337 0.371740i \(-0.878761\pi\)
−0.928337 + 0.371740i \(0.878761\pi\)
\(674\) 8.18577 + 14.1782i 0.315304 + 0.546123i
\(675\) −5.17316 + 8.96018i −0.199115 + 0.344877i
\(676\) −0.640938 + 1.11014i −0.0246515 + 0.0426976i
\(677\) 5.85741 + 10.1453i 0.225118 + 0.389916i 0.956355 0.292207i \(-0.0943898\pi\)
−0.731237 + 0.682124i \(0.761056\pi\)
\(678\) −14.9865 −0.575552
\(679\) 3.08402 34.7043i 0.118354 1.33183i
\(680\) −46.9383 −1.80000
\(681\) 1.17409 + 2.03358i 0.0449911 + 0.0779269i
\(682\) −4.34048 + 7.51793i −0.166206 + 0.287876i
\(683\) −5.70996 + 9.88994i −0.218486 + 0.378428i −0.954345 0.298706i \(-0.903445\pi\)
0.735860 + 0.677134i \(0.236778\pi\)
\(684\) 1.30090 + 2.25323i 0.0497412 + 0.0861543i
\(685\) −16.3868 −0.626109
\(686\) −23.0545 + 6.07626i −0.880225 + 0.231993i
\(687\) −17.4504 −0.665773
\(688\) 17.7787 + 30.7937i 0.677808 + 1.17400i
\(689\) −19.6891 + 34.1025i −0.750095 + 1.29920i
\(690\) −11.3757 + 19.7034i −0.433067 + 0.750094i
\(691\) 11.4596 + 19.8486i 0.435943 + 0.755075i 0.997372 0.0724499i \(-0.0230817\pi\)
−0.561429 + 0.827525i \(0.689748\pi\)
\(692\) −1.24852 −0.0474615
\(693\) 0.234193 2.63537i 0.00889627 0.100109i
\(694\) 3.27935 0.124482
\(695\) −7.07248 12.2499i −0.268274 0.464665i
\(696\) 5.66349 9.80946i 0.214674 0.371827i
\(697\) 5.54576 9.60554i 0.210061 0.363836i
\(698\) 16.1035 + 27.8921i 0.609526 + 1.05573i
\(699\) −5.59060 −0.211456
\(700\) −8.50913 + 3.95373i −0.321615 + 0.149437i
\(701\) 25.3982 0.959277 0.479638 0.877466i \(-0.340768\pi\)
0.479638 + 0.877466i \(0.340768\pi\)
\(702\) 1.95872 + 3.39260i 0.0739271 + 0.128045i
\(703\) −1.30090 + 2.25323i −0.0490644 + 0.0849821i
\(704\) 4.43042 7.67371i 0.166978 0.289214i
\(705\) −3.24605 5.62233i −0.122253 0.211749i
\(706\) −14.7128 −0.553724
\(707\) −15.3084 10.7502i −0.575730 0.404304i
\(708\) 1.25480 0.0471581
\(709\) 8.25054 + 14.2903i 0.309855 + 0.536685i 0.978331 0.207049i \(-0.0663860\pi\)
−0.668475 + 0.743735i \(0.733053\pi\)
\(710\) 12.6166 21.8526i 0.473493 0.820114i
\(711\) −0.359814 + 0.623216i −0.0134941 + 0.0233724i
\(712\) −18.6313 32.2704i −0.698238 1.20938i
\(713\) −30.4223 −1.13932
\(714\) −11.0737 7.77647i −0.414424 0.291027i
\(715\) 11.9210 0.445820
\(716\) 1.70122 + 2.94660i 0.0635775 + 0.110120i
\(717\) −8.90735 + 15.4280i −0.332651 + 0.576169i
\(718\) −19.2857 + 33.4038i −0.719736 + 1.24662i
\(719\) 17.9149 + 31.0295i 0.668112 + 1.15720i 0.978431 + 0.206572i \(0.0662308\pi\)
−0.310319 + 0.950632i \(0.600436\pi\)
\(720\) −12.5240 −0.466741
\(721\) 5.60823 2.60584i 0.208862 0.0970465i
\(722\) 49.7133 1.85014
\(723\) −1.49211 2.58441i −0.0554922 0.0961152i
\(724\) −1.38344 + 2.39619i −0.0514151 + 0.0890535i
\(725\) −19.4290 + 33.6519i −0.721573 + 1.24980i
\(726\) −0.643668 1.11487i −0.0238888 0.0413765i
\(727\) −18.7401 −0.695031 −0.347516 0.937674i \(-0.612975\pi\)
−0.347516 + 0.937674i \(0.612975\pi\)
\(728\) −2.14934 + 24.1864i −0.0796600 + 0.896409i
\(729\) 1.00000 0.0370370
\(730\) 22.0320 + 38.1605i 0.815441 + 1.41239i
\(731\) −22.0935 + 38.2671i −0.817159 + 1.41536i
\(732\) −0.0802736 + 0.139038i −0.00296700 + 0.00513899i
\(733\) −23.9039 41.4028i −0.882912 1.52925i −0.848088 0.529856i \(-0.822246\pi\)
−0.0348246 0.999393i \(-0.511087\pi\)
\(734\) −18.6182 −0.687211
\(735\) −26.9924 4.83557i −0.995628 0.178363i
\(736\) 8.64515 0.318664
\(737\) −1.28911 2.23281i −0.0474851 0.0822466i
\(738\) 1.79700 3.11250i 0.0661486 0.114573i
\(739\) 6.07009 10.5137i 0.223292 0.386753i −0.732514 0.680752i \(-0.761653\pi\)
0.955806 + 0.293999i \(0.0949864\pi\)
\(740\) 0.230128 + 0.398593i 0.00845966 + 0.0146526i
\(741\) −23.0986 −0.848550
\(742\) 3.90132 43.9014i 0.143222 1.61167i
\(743\) 30.9615 1.13587 0.567934 0.823074i \(-0.307743\pi\)
0.567934 + 0.823074i \(0.307743\pi\)
\(744\) −10.1687 17.6128i −0.372804 0.645715i
\(745\) −26.0886 + 45.1867i −0.955811 + 1.65551i
\(746\) −19.4035 + 33.6079i −0.710414 + 1.23047i
\(747\) 5.79878 + 10.0438i 0.212166 + 0.367483i
\(748\) 1.36177 0.0497911
\(749\) −26.0410 + 12.0998i −0.951519 + 0.442119i
\(750\) 26.9618 0.984506
\(751\) 16.0219 + 27.7507i 0.584646 + 1.01264i 0.994919 + 0.100674i \(0.0321000\pi\)
−0.410273 + 0.911963i \(0.634567\pi\)
\(752\) 2.64907 4.58832i 0.0966016 0.167319i
\(753\) −12.5414 + 21.7224i −0.457035 + 0.791608i
\(754\) 7.35641 + 12.7417i 0.267904 + 0.464024i
\(755\) −27.5913 −1.00415
\(756\) 0.742157 + 0.521177i 0.0269920 + 0.0189550i
\(757\) 32.5209 1.18199 0.590996 0.806675i \(-0.298735\pi\)
0.590996 + 0.806675i \(0.298735\pi\)
\(758\) 7.56001 + 13.0943i 0.274592 + 0.475607i
\(759\) 2.25572 3.90703i 0.0818775 0.141816i
\(760\) 44.8404 77.6658i 1.62653 2.81723i
\(761\) 1.23181 + 2.13355i 0.0446530 + 0.0773412i 0.887488 0.460831i \(-0.152448\pi\)
−0.842835 + 0.538172i \(0.819115\pi\)
\(762\) 6.97526 0.252687
\(763\) 4.74698 + 3.33355i 0.171852 + 0.120683i
\(764\) −1.91388 −0.0692419
\(765\) −7.78173 13.4784i −0.281349 0.487311i
\(766\) −17.9822 + 31.1461i −0.649723 + 1.12535i
\(767\) −5.57000 + 9.64752i −0.201121 + 0.348352i
\(768\) 3.98548 + 6.90306i 0.143814 + 0.249093i
\(769\) 49.0232 1.76782 0.883911