Properties

Label 231.2.i.e.67.1
Level $231$
Weight $2$
Character 231.67
Analytic conductor $1.845$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,2,Mod(67,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 231.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.84454428669\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.10423593216.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} + 21x^{4} - 4x^{3} + 28x^{2} + 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(1.39083 + 2.40898i\) of defining polynomial
Character \(\chi\) \(=\) 231.67
Dual form 231.2.i.e.100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39083 - 2.40898i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-2.86880 + 4.96890i) q^{4} +(-0.412855 - 0.715087i) q^{5} +2.78165 q^{6} +(2.63323 + 0.257073i) q^{7} +10.3967 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-1.39083 - 2.40898i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-2.86880 + 4.96890i) q^{4} +(-0.412855 - 0.715087i) q^{5} +2.78165 q^{6} +(2.63323 + 0.257073i) q^{7} +10.3967 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.14842 + 1.98912i) q^{10} +(0.500000 - 0.866025i) q^{11} +(-2.86880 - 4.96890i) q^{12} -0.296842 q^{13} +(-3.04309 - 6.70095i) q^{14} +0.825711 q^{15} +(-8.72241 - 15.1077i) q^{16} +(3.34677 - 5.79677i) q^{17} +(-1.39083 + 2.40898i) q^{18} +(1.41669 + 2.45379i) q^{19} +4.73760 q^{20} +(-1.53925 + 2.15191i) q^{21} -2.78165 q^{22} +(1.98481 + 3.43779i) q^{23} +(-5.19835 + 9.00380i) q^{24} +(2.15910 - 3.73967i) q^{25} +(0.412855 + 0.715087i) q^{26} +1.00000 q^{27} +(-8.83158 + 12.3468i) q^{28} -0.484812 q^{29} +(-1.14842 - 1.98912i) q^{30} +(3.66564 - 6.34907i) q^{31} +(-13.8660 + 24.0166i) q^{32} +(0.500000 + 0.866025i) q^{33} -18.6191 q^{34} +(-0.903315 - 1.98912i) q^{35} +5.73760 q^{36} +(2.86880 + 4.96890i) q^{37} +(3.94075 - 6.82559i) q^{38} +(0.148421 - 0.257073i) q^{39} +(-4.29233 - 7.43454i) q^{40} +0.645420 q^{41} +(7.32474 + 0.715087i) q^{42} +6.43308 q^{43} +(2.86880 + 4.96890i) q^{44} +(-0.412855 + 0.715087i) q^{45} +(5.52106 - 9.56275i) q^{46} +(-3.86880 - 6.70095i) q^{47} +17.4448 q^{48} +(6.86783 + 1.35386i) q^{49} -12.0117 q^{50} +(3.34677 + 5.79677i) q^{51} +(0.851579 - 1.47498i) q^{52} +(-3.55677 + 6.16050i) q^{53} +(-1.39083 - 2.40898i) q^{54} -0.825711 q^{55} +(27.3769 + 2.67271i) q^{56} -2.83339 q^{57} +(0.674289 + 1.16790i) q^{58} +(0.578495 - 1.00198i) q^{59} +(-2.36880 + 4.10288i) q^{60} +(-2.63323 - 4.56089i) q^{61} -20.3931 q^{62} +(-1.09398 - 2.40898i) q^{63} +42.2513 q^{64} +(0.122553 + 0.212268i) q^{65} +(1.39083 - 2.40898i) q^{66} +(-1.50865 + 2.61306i) q^{67} +(19.2024 + 33.2595i) q^{68} -3.96962 q^{69} +(-3.53541 + 4.94260i) q^{70} +3.58061 q^{71} +(-5.19835 - 9.00380i) q^{72} +(-8.01625 + 13.8845i) q^{73} +(7.98000 - 13.8218i) q^{74} +(2.15910 + 3.73967i) q^{75} -16.2568 q^{76} +(1.53925 - 2.15191i) q^{77} -0.825711 q^{78} +(2.16210 + 3.74487i) q^{79} +(-7.20219 + 12.4746i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-0.897667 - 1.55481i) q^{82} +2.37594 q^{83} +(-6.27684 - 13.8218i) q^{84} -5.52693 q^{85} +(-8.94729 - 15.4972i) q^{86} +(0.242406 - 0.419859i) q^{87} +(5.19835 - 9.00380i) q^{88} +(-6.08617 - 10.5416i) q^{89} +2.29684 q^{90} +(-0.781653 - 0.0763099i) q^{91} -22.7761 q^{92} +(3.66564 + 6.34907i) q^{93} +(-10.7617 + 18.6397i) q^{94} +(1.16978 - 2.02612i) q^{95} +(-13.8660 - 24.0166i) q^{96} -10.7680 q^{97} +(-6.29052 - 18.4275i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} + 4 q^{6} + 2 q^{7} + 24 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} + 4 q^{6} + 2 q^{7} + 24 q^{8} - 4 q^{9} - 10 q^{10} + 4 q^{11} - 4 q^{12} - 4 q^{13} - 4 q^{14} + 8 q^{15} - 12 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{21} - 4 q^{22} - 4 q^{23} - 12 q^{24} - 4 q^{25} + 4 q^{26} + 8 q^{27} - 22 q^{28} + 16 q^{29} - 10 q^{30} + 12 q^{31} - 26 q^{32} + 4 q^{33} - 32 q^{34} - 2 q^{35} + 8 q^{36} + 4 q^{37} - 8 q^{38} + 2 q^{39} + 6 q^{40} + 4 q^{41} + 20 q^{42} + 36 q^{43} + 4 q^{44} - 4 q^{45} + 14 q^{46} - 12 q^{47} + 24 q^{48} - 4 q^{49} + 4 q^{50} - 2 q^{51} + 6 q^{52} + 12 q^{53} - 2 q^{54} - 8 q^{55} + 48 q^{56} + 4 q^{58} - 12 q^{59} - 2 q^{61} - 52 q^{62} + 2 q^{63} + 112 q^{64} + 4 q^{65} + 2 q^{66} - 28 q^{67} + 48 q^{68} + 8 q^{69} - 32 q^{70} + 24 q^{71} - 12 q^{72} - 6 q^{73} + 16 q^{74} - 4 q^{75} - 36 q^{76} + 4 q^{77} - 8 q^{78} - 2 q^{79} - 16 q^{80} - 4 q^{81} + 12 q^{82} - 24 q^{83} - 4 q^{84} + 36 q^{85} - 36 q^{86} - 8 q^{87} + 12 q^{88} - 8 q^{89} + 20 q^{90} + 12 q^{91} - 32 q^{92} + 12 q^{93} - 20 q^{94} - 34 q^{95} - 26 q^{96} - 88 q^{97} + 16 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/231\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39083 2.40898i −0.983463 1.70341i −0.648577 0.761149i \(-0.724635\pi\)
−0.334886 0.942259i \(-0.608698\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) −2.86880 + 4.96890i −1.43440 + 2.48445i
\(5\) −0.412855 0.715087i −0.184635 0.319796i 0.758819 0.651302i \(-0.225777\pi\)
−0.943453 + 0.331505i \(0.892443\pi\)
\(6\) 2.78165 1.13561
\(7\) 2.63323 + 0.257073i 0.995268 + 0.0971643i
\(8\) 10.3967 3.67579
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −1.14842 + 1.98912i −0.363163 + 0.629016i
\(11\) 0.500000 0.866025i 0.150756 0.261116i
\(12\) −2.86880 4.96890i −0.828151 1.43440i
\(13\) −0.296842 −0.0823291 −0.0411645 0.999152i \(-0.513107\pi\)
−0.0411645 + 0.999152i \(0.513107\pi\)
\(14\) −3.04309 6.70095i −0.813299 1.79091i
\(15\) 0.825711 0.213198
\(16\) −8.72241 15.1077i −2.18060 3.77691i
\(17\) 3.34677 5.79677i 0.811711 1.40592i −0.0999551 0.994992i \(-0.531870\pi\)
0.911666 0.410932i \(-0.134797\pi\)
\(18\) −1.39083 + 2.40898i −0.327821 + 0.567803i
\(19\) 1.41669 + 2.45379i 0.325012 + 0.562937i 0.981515 0.191386i \(-0.0612983\pi\)
−0.656503 + 0.754324i \(0.727965\pi\)
\(20\) 4.73760 1.05936
\(21\) −1.53925 + 2.15191i −0.335891 + 0.469585i
\(22\) −2.78165 −0.593051
\(23\) 1.98481 + 3.43779i 0.413862 + 0.716830i 0.995308 0.0967550i \(-0.0308463\pi\)
−0.581446 + 0.813585i \(0.697513\pi\)
\(24\) −5.19835 + 9.00380i −1.06111 + 1.83789i
\(25\) 2.15910 3.73967i 0.431820 0.747934i
\(26\) 0.412855 + 0.715087i 0.0809676 + 0.140240i
\(27\) 1.00000 0.192450
\(28\) −8.83158 + 12.3468i −1.66901 + 2.33332i
\(29\) −0.484812 −0.0900273 −0.0450136 0.998986i \(-0.514333\pi\)
−0.0450136 + 0.998986i \(0.514333\pi\)
\(30\) −1.14842 1.98912i −0.209672 0.363163i
\(31\) 3.66564 6.34907i 0.658368 1.14033i −0.322670 0.946512i \(-0.604580\pi\)
0.981038 0.193816i \(-0.0620864\pi\)
\(32\) −13.8660 + 24.0166i −2.45119 + 4.24558i
\(33\) 0.500000 + 0.866025i 0.0870388 + 0.150756i
\(34\) −18.6191 −3.19315
\(35\) −0.903315 1.98912i −0.152688 0.336223i
\(36\) 5.73760 0.956266
\(37\) 2.86880 + 4.96890i 0.471627 + 0.816883i 0.999473 0.0324576i \(-0.0103334\pi\)
−0.527846 + 0.849340i \(0.677000\pi\)
\(38\) 3.94075 6.82559i 0.639275 1.10726i
\(39\) 0.148421 0.257073i 0.0237664 0.0411645i
\(40\) −4.29233 7.43454i −0.678677 1.17550i
\(41\) 0.645420 0.100798 0.0503988 0.998729i \(-0.483951\pi\)
0.0503988 + 0.998729i \(0.483951\pi\)
\(42\) 7.32474 + 0.715087i 1.13023 + 0.110340i
\(43\) 6.43308 0.981035 0.490517 0.871431i \(-0.336808\pi\)
0.490517 + 0.871431i \(0.336808\pi\)
\(44\) 2.86880 + 4.96890i 0.432488 + 0.749090i
\(45\) −0.412855 + 0.715087i −0.0615449 + 0.106599i
\(46\) 5.52106 9.56275i 0.814036 1.40995i
\(47\) −3.86880 6.70095i −0.564322 0.977435i −0.997112 0.0759400i \(-0.975804\pi\)
0.432790 0.901495i \(-0.357529\pi\)
\(48\) 17.4448 2.51794
\(49\) 6.86783 + 1.35386i 0.981118 + 0.193409i
\(50\) −12.0117 −1.69872
\(51\) 3.34677 + 5.79677i 0.468641 + 0.811711i
\(52\) 0.851579 1.47498i 0.118093 0.204543i
\(53\) −3.55677 + 6.16050i −0.488560 + 0.846210i −0.999913 0.0131602i \(-0.995811\pi\)
0.511354 + 0.859370i \(0.329144\pi\)
\(54\) −1.39083 2.40898i −0.189268 0.327821i
\(55\) −0.825711 −0.111339
\(56\) 27.3769 + 2.67271i 3.65839 + 0.357155i
\(57\) −2.83339 −0.375292
\(58\) 0.674289 + 1.16790i 0.0885385 + 0.153353i
\(59\) 0.578495 1.00198i 0.0753137 0.130447i −0.825909 0.563803i \(-0.809338\pi\)
0.901223 + 0.433356i \(0.142671\pi\)
\(60\) −2.36880 + 4.10288i −0.305811 + 0.529679i
\(61\) −2.63323 4.56089i −0.337151 0.583962i 0.646745 0.762707i \(-0.276130\pi\)
−0.983896 + 0.178744i \(0.942797\pi\)
\(62\) −20.3931 −2.58992
\(63\) −1.09398 2.40898i −0.137829 0.303503i
\(64\) 42.2513 5.28141
\(65\) 0.122553 + 0.212268i 0.0152008 + 0.0263286i
\(66\) 1.39083 2.40898i 0.171199 0.296525i
\(67\) −1.50865 + 2.61306i −0.184311 + 0.319236i −0.943344 0.331816i \(-0.892339\pi\)
0.759033 + 0.651052i \(0.225672\pi\)
\(68\) 19.2024 + 33.2595i 2.32863 + 4.03331i
\(69\) −3.96962 −0.477886
\(70\) −3.53541 + 4.94260i −0.422562 + 0.590753i
\(71\) 3.58061 0.424940 0.212470 0.977168i \(-0.431849\pi\)
0.212470 + 0.977168i \(0.431849\pi\)
\(72\) −5.19835 9.00380i −0.612631 1.06111i
\(73\) −8.01625 + 13.8845i −0.938231 + 1.62506i −0.169462 + 0.985537i \(0.554203\pi\)
−0.768769 + 0.639527i \(0.779130\pi\)
\(74\) 7.98000 13.8218i 0.927656 1.60675i
\(75\) 2.15910 + 3.73967i 0.249311 + 0.431820i
\(76\) −16.2568 −1.86479
\(77\) 1.53925 2.15191i 0.175414 0.245233i
\(78\) −0.825711 −0.0934934
\(79\) 2.16210 + 3.74487i 0.243255 + 0.421331i 0.961640 0.274316i \(-0.0884513\pi\)
−0.718384 + 0.695647i \(0.755118\pi\)
\(80\) −7.20219 + 12.4746i −0.805229 + 1.39470i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −0.897667 1.55481i −0.0991308 0.171700i
\(83\) 2.37594 0.260793 0.130397 0.991462i \(-0.458375\pi\)
0.130397 + 0.991462i \(0.458375\pi\)
\(84\) −6.27684 13.8218i −0.684860 1.50808i
\(85\) −5.52693 −0.599480
\(86\) −8.94729 15.4972i −0.964811 1.67110i
\(87\) 0.242406 0.419859i 0.0259886 0.0450136i
\(88\) 5.19835 9.00380i 0.554146 0.959809i
\(89\) −6.08617 10.5416i −0.645133 1.11740i −0.984271 0.176667i \(-0.943469\pi\)
0.339138 0.940737i \(-0.389865\pi\)
\(90\) 2.29684 0.242108
\(91\) −0.781653 0.0763099i −0.0819395 0.00799945i
\(92\) −22.7761 −2.37457
\(93\) 3.66564 + 6.34907i 0.380109 + 0.658368i
\(94\) −10.7617 + 18.6397i −1.10998 + 1.92254i
\(95\) 1.16978 2.02612i 0.120017 0.207875i
\(96\) −13.8660 24.0166i −1.41519 2.45119i
\(97\) −10.7680 −1.09332 −0.546661 0.837354i \(-0.684101\pi\)
−0.546661 + 0.837354i \(0.684101\pi\)
\(98\) −6.29052 18.4275i −0.635439 1.86146i
\(99\) −1.00000 −0.100504
\(100\) 12.3880 + 21.4567i 1.23880 + 2.14567i
\(101\) −7.49519 + 12.9821i −0.745799 + 1.29176i 0.204021 + 0.978966i \(0.434599\pi\)
−0.949820 + 0.312796i \(0.898734\pi\)
\(102\) 9.30955 16.1246i 0.921783 1.59658i
\(103\) 1.23203 + 2.13393i 0.121395 + 0.210263i 0.920318 0.391171i \(-0.127930\pi\)
−0.798923 + 0.601434i \(0.794596\pi\)
\(104\) −3.08617 −0.302624
\(105\) 2.17429 + 0.212268i 0.212189 + 0.0207152i
\(106\) 19.7874 1.92192
\(107\) 5.79022 + 10.0290i 0.559762 + 0.969536i 0.997516 + 0.0704414i \(0.0224408\pi\)
−0.437754 + 0.899095i \(0.644226\pi\)
\(108\) −2.86880 + 4.96890i −0.276050 + 0.478133i
\(109\) 2.71173 4.69685i 0.259736 0.449877i −0.706435 0.707778i \(-0.749698\pi\)
0.966171 + 0.257901i \(0.0830310\pi\)
\(110\) 1.14842 + 1.98912i 0.109498 + 0.189655i
\(111\) −5.73760 −0.544589
\(112\) −19.0844 42.0243i −1.80330 3.97092i
\(113\) −17.5156 −1.64773 −0.823866 0.566785i \(-0.808187\pi\)
−0.823866 + 0.566785i \(0.808187\pi\)
\(114\) 3.94075 + 6.82559i 0.369085 + 0.639275i
\(115\) 1.63888 2.83862i 0.152826 0.264703i
\(116\) 1.39083 2.40898i 0.129135 0.223668i
\(117\) 0.148421 + 0.257073i 0.0137215 + 0.0237664i
\(118\) −3.21835 −0.296273
\(119\) 10.3030 14.4039i 0.944476 1.32040i
\(120\) 8.58467 0.783669
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) −7.32474 + 12.6868i −0.663151 + 1.14861i
\(123\) −0.322710 + 0.558950i −0.0290978 + 0.0503988i
\(124\) 21.0320 + 36.4284i 1.88873 + 3.27137i
\(125\) −7.69414 −0.688185
\(126\) −4.28165 + 5.98587i −0.381440 + 0.533264i
\(127\) 5.97924 0.530572 0.265286 0.964170i \(-0.414534\pi\)
0.265286 + 0.964170i \(0.414534\pi\)
\(128\) −31.0322 53.7493i −2.74288 4.75081i
\(129\) −3.21654 + 5.57121i −0.283200 + 0.490517i
\(130\) 0.340899 0.590455i 0.0298988 0.0517863i
\(131\) −8.82120 15.2788i −0.770712 1.33491i −0.937173 0.348864i \(-0.886567\pi\)
0.166461 0.986048i \(-0.446766\pi\)
\(132\) −5.73760 −0.499394
\(133\) 3.09969 + 6.82559i 0.268777 + 0.591853i
\(134\) 8.39308 0.725052
\(135\) −0.412855 0.715087i −0.0355329 0.0615449i
\(136\) 34.7953 60.2673i 2.98368 5.16788i
\(137\) −4.67986 + 8.10575i −0.399827 + 0.692521i −0.993704 0.112035i \(-0.964263\pi\)
0.593877 + 0.804556i \(0.297597\pi\)
\(138\) 5.52106 + 9.56275i 0.469984 + 0.814036i
\(139\) 7.40270 0.627889 0.313944 0.949441i \(-0.398349\pi\)
0.313944 + 0.949441i \(0.398349\pi\)
\(140\) 12.4752 + 1.21791i 1.05435 + 0.102932i
\(141\) 7.73760 0.651623
\(142\) −4.98000 8.62562i −0.417912 0.723846i
\(143\) −0.148421 + 0.257073i −0.0124116 + 0.0214975i
\(144\) −8.72241 + 15.1077i −0.726867 + 1.25897i
\(145\) 0.200157 + 0.346682i 0.0166221 + 0.0287904i
\(146\) 44.5968 3.69086
\(147\) −4.60639 + 5.27078i −0.379929 + 0.434727i
\(148\) −32.9200 −2.70601
\(149\) 6.00587 + 10.4025i 0.492020 + 0.852204i 0.999958 0.00919009i \(-0.00292534\pi\)
−0.507938 + 0.861394i \(0.669592\pi\)
\(150\) 6.00587 10.4025i 0.490377 0.849358i
\(151\) −4.66091 + 8.07293i −0.379299 + 0.656966i −0.990960 0.134154i \(-0.957168\pi\)
0.611661 + 0.791120i \(0.290502\pi\)
\(152\) 14.7289 + 25.5113i 1.19468 + 2.06924i
\(153\) −6.69354 −0.541141
\(154\) −7.32474 0.715087i −0.590244 0.0576233i
\(155\) −6.05352 −0.486230
\(156\) 0.851579 + 1.47498i 0.0681809 + 0.118093i
\(157\) 2.55174 4.41974i 0.203651 0.352733i −0.746051 0.665889i \(-0.768053\pi\)
0.949702 + 0.313155i \(0.101386\pi\)
\(158\) 6.01422 10.4169i 0.478465 0.828727i
\(159\) −3.55677 6.16050i −0.282070 0.488560i
\(160\) 22.8986 1.81030
\(161\) 4.34271 + 9.56275i 0.342253 + 0.753651i
\(162\) 2.78165 0.218547
\(163\) −4.74413 8.21708i −0.371589 0.643612i 0.618221 0.786004i \(-0.287854\pi\)
−0.989810 + 0.142393i \(0.954520\pi\)
\(164\) −1.85158 + 3.20703i −0.144584 + 0.250427i
\(165\) 0.412855 0.715087i 0.0321408 0.0556694i
\(166\) −3.30452 5.72360i −0.256481 0.444237i
\(167\) −3.03850 −0.235126 −0.117563 0.993065i \(-0.537508\pi\)
−0.117563 + 0.993065i \(0.537508\pi\)
\(168\) −16.0031 + 22.3728i −1.23467 + 1.72610i
\(169\) −12.9119 −0.993222
\(170\) 7.68700 + 13.3143i 0.589566 + 1.02116i
\(171\) 1.41669 2.45379i 0.108337 0.187646i
\(172\) −18.4552 + 31.9653i −1.40720 + 2.43733i
\(173\) 2.88602 + 4.99873i 0.219420 + 0.380046i 0.954631 0.297792i \(-0.0962502\pi\)
−0.735211 + 0.677838i \(0.762917\pi\)
\(174\) −1.34858 −0.102235
\(175\) 6.64678 9.29238i 0.502449 0.702438i
\(176\) −17.4448 −1.31495
\(177\) 0.578495 + 1.00198i 0.0434824 + 0.0753137i
\(178\) −16.9296 + 29.3230i −1.26893 + 2.19785i
\(179\) 1.51422 2.62270i 0.113178 0.196030i −0.803872 0.594802i \(-0.797230\pi\)
0.917050 + 0.398772i \(0.130564\pi\)
\(180\) −2.36880 4.10288i −0.176560 0.305811i
\(181\) −9.67878 −0.719418 −0.359709 0.933064i \(-0.617124\pi\)
−0.359709 + 0.933064i \(0.617124\pi\)
\(182\) 0.903315 + 1.98912i 0.0669582 + 0.147444i
\(183\) 5.26647 0.389308
\(184\) 20.6355 + 35.7417i 1.52127 + 2.63491i
\(185\) 2.36880 4.10288i 0.174157 0.301650i
\(186\) 10.1965 17.6609i 0.747647 1.29496i
\(187\) −3.34677 5.79677i −0.244740 0.423902i
\(188\) 44.3952 3.23785
\(189\) 2.63323 + 0.257073i 0.191539 + 0.0186993i
\(190\) −6.50785 −0.472129
\(191\) 0.645420 + 1.11790i 0.0467009 + 0.0808884i 0.888431 0.459010i \(-0.151796\pi\)
−0.841730 + 0.539899i \(0.818463\pi\)
\(192\) −21.1256 + 36.5907i −1.52461 + 2.64071i
\(193\) 10.4889 18.1673i 0.755006 1.30771i −0.190366 0.981713i \(-0.560967\pi\)
0.945372 0.325995i \(-0.105699\pi\)
\(194\) 14.9764 + 25.9399i 1.07524 + 1.86237i
\(195\) −0.245106 −0.0175524
\(196\) −26.4296 + 30.2416i −1.88783 + 2.16012i
\(197\) 15.0836 1.07466 0.537332 0.843371i \(-0.319432\pi\)
0.537332 + 0.843371i \(0.319432\pi\)
\(198\) 1.39083 + 2.40898i 0.0988418 + 0.171199i
\(199\) 12.8601 22.2744i 0.911632 1.57899i 0.0998726 0.995000i \(-0.468156\pi\)
0.811759 0.583992i \(-0.198510\pi\)
\(200\) 22.4475 38.8802i 1.58728 2.74925i
\(201\) −1.50865 2.61306i −0.106412 0.184311i
\(202\) 41.6980 2.93386
\(203\) −1.27662 0.124632i −0.0896013 0.00874743i
\(204\) −38.4048 −2.68888
\(205\) −0.266465 0.461531i −0.0186107 0.0322347i
\(206\) 3.42707 5.93587i 0.238776 0.413571i
\(207\) 1.98481 3.43779i 0.137954 0.238943i
\(208\) 2.58918 + 4.48458i 0.179527 + 0.310950i
\(209\) 2.83339 0.195990
\(210\) −2.51271 5.53305i −0.173393 0.381817i
\(211\) 1.84814 0.127232 0.0636158 0.997974i \(-0.479737\pi\)
0.0636158 + 0.997974i \(0.479737\pi\)
\(212\) −20.4073 35.3465i −1.40158 2.42761i
\(213\) −1.79030 + 3.10090i −0.122670 + 0.212470i
\(214\) 16.1064 27.8971i 1.10101 1.90701i
\(215\) −2.65593 4.60021i −0.181133 0.313731i
\(216\) 10.3967 0.707406
\(217\) 11.2847 15.7763i 0.766052 1.07096i
\(218\) −15.0862 −1.02176
\(219\) −8.01625 13.8845i −0.541688 0.938231i
\(220\) 2.36880 4.10288i 0.159704 0.276616i
\(221\) −0.993461 + 1.72072i −0.0668274 + 0.115748i
\(222\) 7.98000 + 13.8218i 0.535583 + 0.927656i
\(223\) −6.17851 −0.413744 −0.206872 0.978368i \(-0.566328\pi\)
−0.206872 + 0.978368i \(0.566328\pi\)
\(224\) −42.6865 + 59.6768i −2.85211 + 3.98733i
\(225\) −4.31820 −0.287880
\(226\) 24.3612 + 42.1949i 1.62048 + 2.80676i
\(227\) −2.50557 + 4.33977i −0.166300 + 0.288041i −0.937116 0.349017i \(-0.886515\pi\)
0.770816 + 0.637058i \(0.219849\pi\)
\(228\) 8.12842 14.0788i 0.538318 0.932394i
\(229\) −11.2164 19.4274i −0.741201 1.28380i −0.951949 0.306257i \(-0.900923\pi\)
0.210748 0.977540i \(-0.432410\pi\)
\(230\) −9.11760 −0.601197
\(231\) 1.09398 + 2.40898i 0.0719789 + 0.158499i
\(232\) −5.04044 −0.330921
\(233\) −2.41669 4.18584i −0.158323 0.274223i 0.775941 0.630805i \(-0.217275\pi\)
−0.934264 + 0.356582i \(0.883942\pi\)
\(234\) 0.412855 0.715087i 0.0269892 0.0467467i
\(235\) −3.19451 + 5.53305i −0.208387 + 0.360937i
\(236\) 3.31917 + 5.74897i 0.216060 + 0.374226i
\(237\) −4.32420 −0.280887
\(238\) −49.0284 4.78646i −3.17804 0.310260i
\(239\) −2.58467 −0.167188 −0.0835941 0.996500i \(-0.526640\pi\)
−0.0835941 + 0.996500i \(0.526640\pi\)
\(240\) −7.20219 12.4746i −0.464899 0.805229i
\(241\) −1.38902 + 2.40585i −0.0894745 + 0.154974i −0.907289 0.420507i \(-0.861852\pi\)
0.817815 + 0.575482i \(0.195185\pi\)
\(242\) −1.39083 + 2.40898i −0.0894057 + 0.154855i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 30.2168 1.93444
\(245\) −1.86729 5.47004i −0.119297 0.349468i
\(246\) 1.79533 0.114466
\(247\) −0.420534 0.728387i −0.0267580 0.0463461i
\(248\) 38.1105 66.0094i 2.42002 4.19160i
\(249\) −1.18797 + 2.05762i −0.0752845 + 0.130397i
\(250\) 10.7012 + 18.5351i 0.676804 + 1.17226i
\(251\) 0.936967 0.0591409 0.0295704 0.999563i \(-0.490586\pi\)
0.0295704 + 0.999563i \(0.490586\pi\)
\(252\) 15.1084 + 1.47498i 0.951741 + 0.0929149i
\(253\) 3.96962 0.249568
\(254\) −8.31609 14.4039i −0.521798 0.903781i
\(255\) 2.76346 4.78646i 0.173055 0.299740i
\(256\) −44.0695 + 76.3306i −2.75434 + 4.77066i
\(257\) 9.01714 + 15.6181i 0.562474 + 0.974233i 0.997280 + 0.0737089i \(0.0234836\pi\)
−0.434806 + 0.900524i \(0.643183\pi\)
\(258\) 17.8946 1.11407
\(259\) 6.27684 + 13.8218i 0.390024 + 0.858843i
\(260\) −1.40632 −0.0872160
\(261\) 0.242406 + 0.419859i 0.0150045 + 0.0259886i
\(262\) −24.5375 + 42.5002i −1.51593 + 2.62567i
\(263\) −3.94826 + 6.83859i −0.243460 + 0.421686i −0.961698 0.274113i \(-0.911616\pi\)
0.718237 + 0.695798i \(0.244949\pi\)
\(264\) 5.19835 + 9.00380i 0.319936 + 0.554146i
\(265\) 5.87372 0.360820
\(266\) 12.1316 16.9603i 0.743836 1.03990i
\(267\) 12.1723 0.744936
\(268\) −8.65602 14.9927i −0.528751 0.915823i
\(269\) −8.60850 + 14.9104i −0.524870 + 0.909101i 0.474711 + 0.880142i \(0.342553\pi\)
−0.999581 + 0.0289593i \(0.990781\pi\)
\(270\) −1.14842 + 1.98912i −0.0698907 + 0.121054i
\(271\) 4.66767 + 8.08464i 0.283541 + 0.491107i 0.972254 0.233927i \(-0.0751575\pi\)
−0.688713 + 0.725034i \(0.741824\pi\)
\(272\) −116.768 −7.08007
\(273\) 0.456913 0.638777i 0.0276536 0.0386605i
\(274\) 26.0355 1.57286
\(275\) −2.15910 3.73967i −0.130199 0.225511i
\(276\) 11.3880 19.7247i 0.685480 1.18729i
\(277\) −2.73760 + 4.74166i −0.164486 + 0.284898i −0.936473 0.350740i \(-0.885930\pi\)
0.771987 + 0.635639i \(0.219263\pi\)
\(278\) −10.2959 17.8330i −0.617505 1.06955i
\(279\) −7.33128 −0.438912
\(280\) −9.39150 20.6803i −0.561249 1.23589i
\(281\) −18.3501 −1.09467 −0.547337 0.836912i \(-0.684359\pi\)
−0.547337 + 0.836912i \(0.684359\pi\)
\(282\) −10.7617 18.6397i −0.640847 1.10998i
\(283\) −13.0203 + 22.5518i −0.773977 + 1.34057i 0.161391 + 0.986891i \(0.448402\pi\)
−0.935368 + 0.353677i \(0.884931\pi\)
\(284\) −10.2720 + 17.7917i −0.609533 + 1.05574i
\(285\) 1.16978 + 2.02612i 0.0692918 + 0.120017i
\(286\) 0.825711 0.0488253
\(287\) 1.69954 + 0.165920i 0.100321 + 0.00979393i
\(288\) 27.7320 1.63413
\(289\) −13.9017 24.0785i −0.817749 1.41638i
\(290\) 0.556768 0.964350i 0.0326945 0.0566286i
\(291\) 5.38399 9.32534i 0.315615 0.546661i
\(292\) −45.9940 79.6639i −2.69159 4.66198i
\(293\) 21.3317 1.24621 0.623106 0.782137i \(-0.285870\pi\)
0.623106 + 0.782137i \(0.285870\pi\)
\(294\) 19.1039 + 3.76598i 1.11416 + 0.219636i
\(295\) −0.955340 −0.0556220
\(296\) 29.8260 + 51.6602i 1.73360 + 3.00269i
\(297\) 0.500000 0.866025i 0.0290129 0.0502519i
\(298\) 16.7062 28.9361i 0.967767 1.67622i
\(299\) −0.589175 1.02048i −0.0340729 0.0590159i
\(300\) −24.7761 −1.43045
\(301\) 16.9398 + 1.65377i 0.976393 + 0.0953215i
\(302\) 25.9301 1.49211
\(303\) −7.49519 12.9821i −0.430587 0.745799i
\(304\) 24.7140 42.8059i 1.41744 2.45508i
\(305\) −2.17429 + 3.76598i −0.124499 + 0.215639i
\(306\) 9.30955 + 16.1246i 0.532192 + 0.921783i
\(307\) −6.88329 −0.392850 −0.196425 0.980519i \(-0.562933\pi\)
−0.196425 + 0.980519i \(0.562933\pi\)
\(308\) 6.27684 + 13.8218i 0.357656 + 0.787568i
\(309\) −2.46405 −0.140175
\(310\) 8.41939 + 14.5828i 0.478189 + 0.828248i
\(311\) 1.89864 3.28854i 0.107662 0.186476i −0.807161 0.590332i \(-0.798997\pi\)
0.914823 + 0.403856i \(0.132330\pi\)
\(312\) 1.54309 2.67271i 0.0873601 0.151312i
\(313\) −1.30955 2.26821i −0.0740203 0.128207i 0.826640 0.562732i \(-0.190250\pi\)
−0.900660 + 0.434525i \(0.856916\pi\)
\(314\) −14.1961 −0.801132
\(315\) −1.27097 + 1.77686i −0.0716113 + 0.100114i
\(316\) −24.8105 −1.39570
\(317\) 13.9321 + 24.1311i 0.782505 + 1.35534i 0.930478 + 0.366347i \(0.119392\pi\)
−0.147973 + 0.988991i \(0.547275\pi\)
\(318\) −9.89370 + 17.1364i −0.554811 + 0.960961i
\(319\) −0.242406 + 0.419859i −0.0135721 + 0.0235076i
\(320\) −17.4437 30.2133i −0.975131 1.68898i
\(321\) −11.5804 −0.646357
\(322\) 16.9966 23.7616i 0.947181 1.32418i
\(323\) 18.9654 1.05526
\(324\) −2.86880 4.96890i −0.159378 0.276050i
\(325\) −0.640911 + 1.11009i −0.0355514 + 0.0615768i
\(326\) −13.1965 + 22.8571i −0.730889 + 1.26594i
\(327\) 2.71173 + 4.69685i 0.149959 + 0.259736i
\(328\) 6.71023 0.370511
\(329\) −8.46481 18.6397i −0.466680 1.02764i
\(330\) −2.29684 −0.126437
\(331\) 4.02076 + 6.96416i 0.221001 + 0.382785i 0.955112 0.296245i \(-0.0957343\pi\)
−0.734111 + 0.679029i \(0.762401\pi\)
\(332\) −6.81609 + 11.8058i −0.374082 + 0.647928i
\(333\) 2.86880 4.96890i 0.157209 0.272294i
\(334\) 4.22603 + 7.31969i 0.231238 + 0.400516i
\(335\) 2.49142 0.136121
\(336\) 45.9363 + 4.48458i 2.50603 + 0.244654i
\(337\) 26.2686 1.43094 0.715471 0.698643i \(-0.246212\pi\)
0.715471 + 0.698643i \(0.246212\pi\)
\(338\) 17.9582 + 31.1045i 0.976797 + 1.69186i
\(339\) 8.75782 15.1690i 0.475659 0.823866i
\(340\) 15.8556 27.4628i 0.859893 1.48938i
\(341\) −3.66564 6.34907i −0.198506 0.343822i
\(342\) −7.88151 −0.426183
\(343\) 17.7365 + 5.33057i 0.957683 + 0.287824i
\(344\) 66.8827 3.60608
\(345\) 1.63888 + 2.83862i 0.0882344 + 0.152826i
\(346\) 8.02790 13.9047i 0.431583 0.747523i
\(347\) −4.24421 + 7.35120i −0.227841 + 0.394633i −0.957168 0.289533i \(-0.906500\pi\)
0.729327 + 0.684166i \(0.239833\pi\)
\(348\) 1.39083 + 2.40898i 0.0745561 + 0.129135i
\(349\) −31.9290 −1.70912 −0.854561 0.519351i \(-0.826174\pi\)
−0.854561 + 0.519351i \(0.826174\pi\)
\(350\) −31.6297 3.08789i −1.69068 0.165055i
\(351\) −0.296842 −0.0158442
\(352\) 13.8660 + 24.0166i 0.739061 + 1.28009i
\(353\) −0.0719562 + 0.124632i −0.00382984 + 0.00663348i −0.867934 0.496680i \(-0.834552\pi\)
0.864104 + 0.503313i \(0.167886\pi\)
\(354\) 1.60917 2.78717i 0.0855266 0.148136i
\(355\) −1.47827 2.56044i −0.0784586 0.135894i
\(356\) 69.8400 3.70151
\(357\) 7.32263 + 16.1246i 0.387555 + 0.853405i
\(358\) −8.42406 −0.445225
\(359\) −4.11744 7.13162i −0.217310 0.376392i 0.736675 0.676247i \(-0.236395\pi\)
−0.953985 + 0.299855i \(0.903062\pi\)
\(360\) −4.29233 + 7.43454i −0.226226 + 0.391835i
\(361\) 5.48595 9.50195i 0.288734 0.500102i
\(362\) 13.4615 + 23.3160i 0.707521 + 1.22546i
\(363\) 1.00000 0.0524864
\(364\) 2.62158 3.66504i 0.137408 0.192100i
\(365\) 13.2382 0.692919
\(366\) −7.32474 12.6868i −0.382870 0.663151i
\(367\) −8.31512 + 14.4022i −0.434046 + 0.751789i −0.997217 0.0745508i \(-0.976248\pi\)
0.563171 + 0.826340i \(0.309581\pi\)
\(368\) 34.6247 59.9717i 1.80494 3.12624i
\(369\) −0.322710 0.558950i −0.0167996 0.0290978i
\(370\) −13.1784 −0.685110
\(371\) −10.9495 + 15.3077i −0.568469 + 0.794736i
\(372\) −42.0639 −2.18091
\(373\) 2.56242 + 4.43823i 0.132677 + 0.229803i 0.924708 0.380678i \(-0.124309\pi\)
−0.792031 + 0.610481i \(0.790976\pi\)
\(374\) −9.30955 + 16.1246i −0.481385 + 0.833784i
\(375\) 3.84707 6.66332i 0.198662 0.344092i
\(376\) −40.2227 69.6678i −2.07433 3.59284i
\(377\) 0.143912 0.00741186
\(378\) −3.04309 6.70095i −0.156520 0.344660i
\(379\) −19.6383 −1.00875 −0.504377 0.863484i \(-0.668278\pi\)
−0.504377 + 0.863484i \(0.668278\pi\)
\(380\) 6.71173 + 11.6251i 0.344304 + 0.596353i
\(381\) −2.98962 + 5.17818i −0.153163 + 0.265286i
\(382\) 1.79533 3.10961i 0.0918573 0.159102i
\(383\) 5.38513 + 9.32731i 0.275167 + 0.476603i 0.970177 0.242397i \(-0.0779335\pi\)
−0.695010 + 0.719000i \(0.744600\pi\)
\(384\) 62.0644 3.16721
\(385\) −2.17429 0.212268i −0.110812 0.0108182i
\(386\) −58.3528 −2.97008
\(387\) −3.21654 5.57121i −0.163506 0.283200i
\(388\) 30.8911 53.5050i 1.56826 2.71631i
\(389\) −16.3394 + 28.3007i −0.828441 + 1.43490i 0.0708206 + 0.997489i \(0.477438\pi\)
−0.899261 + 0.437412i \(0.855895\pi\)
\(390\) 0.340899 + 0.590455i 0.0172621 + 0.0298988i
\(391\) 26.5708 1.34374
\(392\) 71.4027 + 14.0757i 3.60638 + 0.710931i
\(393\) 17.6424 0.889942
\(394\) −20.9787 36.3362i −1.05689 1.83059i
\(395\) 1.78527 3.09218i 0.0898267 0.155584i
\(396\) 2.86880 4.96890i 0.144163 0.249697i
\(397\) 16.4742 + 28.5342i 0.826817 + 1.43209i 0.900522 + 0.434810i \(0.143184\pi\)
−0.0737049 + 0.997280i \(0.523482\pi\)
\(398\) −71.5450 −3.58622
\(399\) −7.46097 0.728387i −0.373516 0.0364649i
\(400\) −75.3302 −3.76651
\(401\) 9.67932 + 16.7651i 0.483362 + 0.837208i 0.999817 0.0191063i \(-0.00608209\pi\)
−0.516455 + 0.856314i \(0.672749\pi\)
\(402\) −4.19654 + 7.26862i −0.209304 + 0.362526i
\(403\) −1.08812 + 1.88467i −0.0542029 + 0.0938821i
\(404\) −43.0044 74.4858i −2.13955 3.70580i
\(405\) 0.825711 0.0410299
\(406\) 1.47532 + 3.24870i 0.0732191 + 0.161230i
\(407\) 5.73760 0.284402
\(408\) 34.7953 + 60.2673i 1.72263 + 2.98368i
\(409\) 15.0573 26.0800i 0.744535 1.28957i −0.205877 0.978578i \(-0.566005\pi\)
0.950412 0.310995i \(-0.100662\pi\)
\(410\) −0.741214 + 1.28382i −0.0366059 + 0.0634033i
\(411\) −4.67986 8.10575i −0.230840 0.399827i
\(412\) −14.1378 −0.696517
\(413\) 1.78089 2.48974i 0.0876321 0.122512i
\(414\) −11.0421 −0.542690
\(415\) −0.980920 1.69900i −0.0481515 0.0834008i
\(416\) 4.11601 7.12914i 0.201804 0.349535i
\(417\) −3.70135 + 6.41093i −0.181256 + 0.313944i
\(418\) −3.94075 6.82559i −0.192749 0.333850i
\(419\) −2.70722 −0.132256 −0.0661282 0.997811i \(-0.521065\pi\)
−0.0661282 + 0.997811i \(0.521065\pi\)
\(420\) −7.29233 + 10.1949i −0.355829 + 0.497459i
\(421\) −30.1501 −1.46943 −0.734713 0.678378i \(-0.762683\pi\)
−0.734713 + 0.678378i \(0.762683\pi\)
\(422\) −2.57045 4.45215i −0.125127 0.216727i
\(423\) −3.86880 + 6.70095i −0.188107 + 0.325812i
\(424\) −36.9786 + 64.0489i −1.79584 + 3.11049i
\(425\) −14.4520 25.0316i −0.701026 1.21421i
\(426\) 9.96000 0.482564
\(427\) −5.76143 12.6868i −0.278815 0.613958i
\(428\) −66.4439 −3.21169
\(429\) −0.148421 0.257073i −0.00716583 0.0124116i
\(430\) −7.38788 + 12.7962i −0.356275 + 0.617087i
\(431\) −16.3405 + 28.3025i −0.787092 + 1.36328i 0.140650 + 0.990059i \(0.455081\pi\)
−0.927741 + 0.373224i \(0.878252\pi\)
\(432\) −8.72241 15.1077i −0.419657 0.726867i
\(433\) −26.2432 −1.26117 −0.630583 0.776122i \(-0.717184\pi\)
−0.630583 + 0.776122i \(0.717184\pi\)
\(434\) −53.6997 5.24250i −2.57767 0.251648i
\(435\) −0.400314 −0.0191936
\(436\) 15.5588 + 26.9486i 0.745131 + 1.29061i
\(437\) −5.62374 + 9.74061i −0.269020 + 0.465957i
\(438\) −22.2984 + 38.6220i −1.06546 + 1.84543i
\(439\) 13.8453 + 23.9807i 0.660798 + 1.14454i 0.980406 + 0.196986i \(0.0631155\pi\)
−0.319608 + 0.947550i \(0.603551\pi\)
\(440\) −8.58467 −0.409258
\(441\) −2.26143 6.62464i −0.107687 0.315459i
\(442\) 5.52693 0.262889
\(443\) 10.4469 + 18.0946i 0.496348 + 0.859701i 0.999991 0.00421138i \(-0.00134053\pi\)
−0.503643 + 0.863912i \(0.668007\pi\)
\(444\) 16.4600 28.5096i 0.781157 1.35300i
\(445\) −5.02542 + 8.70428i −0.238228 + 0.412623i
\(446\) 8.59324 + 14.8839i 0.406902 + 0.704774i
\(447\) −12.0117 −0.568136
\(448\) 111.257 + 10.8616i 5.25642 + 0.513164i
\(449\) 23.9615 1.13081 0.565407 0.824812i \(-0.308719\pi\)
0.565407 + 0.824812i \(0.308719\pi\)
\(450\) 6.00587 + 10.4025i 0.283119 + 0.490377i
\(451\) 0.322710 0.558950i 0.0151958 0.0263199i
\(452\) 50.2488 87.0335i 2.36351 4.09371i
\(453\) −4.66091 8.07293i −0.218989 0.379299i
\(454\) 13.9392 0.654201
\(455\) 0.268142 + 0.590455i 0.0125707 + 0.0276810i
\(456\) −29.4579 −1.37949
\(457\) −9.30541 16.1174i −0.435289 0.753942i 0.562030 0.827117i \(-0.310020\pi\)
−0.997319 + 0.0731743i \(0.976687\pi\)
\(458\) −31.2002 + 54.0403i −1.45789 + 2.52514i
\(459\) 3.34677 5.79677i 0.156214 0.270570i
\(460\) 9.40324 + 16.2869i 0.438428 + 0.759380i
\(461\) −6.88513 −0.320672 −0.160336 0.987062i \(-0.551258\pi\)
−0.160336 + 0.987062i \(0.551258\pi\)
\(462\) 4.28165 5.98587i 0.199201 0.278488i
\(463\) 2.73532 0.127121 0.0635605 0.997978i \(-0.479754\pi\)
0.0635605 + 0.997978i \(0.479754\pi\)
\(464\) 4.22872 + 7.32437i 0.196314 + 0.340025i
\(465\) 3.02676 5.24250i 0.140363 0.243115i
\(466\) −6.72241 + 11.6436i −0.311410 + 0.539377i
\(467\) −17.8180 30.8618i −0.824521 1.42811i −0.902285 0.431140i \(-0.858112\pi\)
0.0777644 0.996972i \(-0.475222\pi\)
\(468\) −1.70316 −0.0787285
\(469\) −4.64437 + 6.49296i −0.214457 + 0.299817i
\(470\) 17.7720 0.819763
\(471\) 2.55174 + 4.41974i 0.117578 + 0.203651i
\(472\) 6.01444 10.4173i 0.276837 0.479496i
\(473\) 3.21654 5.57121i 0.147897 0.256164i
\(474\) 6.01422 + 10.4169i 0.276242 + 0.478465i
\(475\) 12.2351 0.561387
\(476\) 42.0143 + 92.5165i 1.92572 + 4.24049i
\(477\) 7.11354 0.325706
\(478\) 3.59482 + 6.22642i 0.164423 + 0.284790i
\(479\) 13.6899 23.7116i 0.625508 1.08341i −0.362934 0.931815i \(-0.618225\pi\)
0.988442 0.151598i \(-0.0484418\pi\)
\(480\) −11.4493 + 19.8308i −0.522588 + 0.905149i
\(481\) −0.851579 1.47498i −0.0388287 0.0672532i
\(482\) 7.72753 0.351979
\(483\) −10.4529 1.02048i −0.475625 0.0464335i
\(484\) 5.73760 0.260800
\(485\) 4.44562 + 7.70003i 0.201865 + 0.349641i
\(486\) −1.39083 + 2.40898i −0.0630892 + 0.109274i
\(487\) −14.6853 + 25.4357i −0.665455 + 1.15260i 0.313706 + 0.949520i \(0.398429\pi\)
−0.979162 + 0.203083i \(0.934904\pi\)
\(488\) −27.3769 47.4182i −1.23929 2.14652i
\(489\) 9.48827 0.429074
\(490\) −10.5802 + 12.1062i −0.477963 + 0.546900i
\(491\) −1.69115 −0.0763207 −0.0381604 0.999272i \(-0.512150\pi\)
−0.0381604 + 0.999272i \(0.512150\pi\)
\(492\) −1.85158 3.20703i −0.0834756 0.144584i
\(493\) −1.62255 + 2.81034i −0.0730761 + 0.126572i
\(494\) −1.16978 + 2.02612i −0.0526309 + 0.0911594i
\(495\) 0.412855 + 0.715087i 0.0185565 + 0.0321408i
\(496\) −127.893 −5.74256
\(497\) 9.42857 + 0.920475i 0.422929 + 0.0412890i
\(498\) 6.60904 0.296158
\(499\) −14.7983 25.6313i −0.662461 1.14742i −0.979967 0.199160i \(-0.936179\pi\)
0.317506 0.948256i \(-0.397155\pi\)
\(500\) 22.0729 38.2314i 0.987132 1.70976i
\(501\) 1.51925 2.63142i 0.0678751 0.117563i
\(502\) −1.30316 2.25714i −0.0581628 0.100741i
\(503\) 28.2737 1.26066 0.630331 0.776326i \(-0.282919\pi\)
0.630331 + 0.776326i \(0.282919\pi\)
\(504\) −11.3738 25.0455i −0.506631 1.11561i
\(505\) 12.3777 0.550801
\(506\) −5.52106 9.56275i −0.245441 0.425116i
\(507\) 6.45594 11.1820i 0.286718 0.496611i
\(508\) −17.1532 + 29.7103i −0.761052 + 1.31818i
\(509\) −5.45037 9.44032i −0.241584 0.418435i 0.719582 0.694408i \(-0.244333\pi\)
−0.961166 + 0.275972i \(0.911000\pi\)
\(510\) −15.3740 −0.680772
\(511\) −24.6780 + 34.5005i −1.09169 + 1.52621i
\(512\) 121.043 5.34941
\(513\) 1.41669 + 2.45379i 0.0625486 + 0.108337i
\(514\) 25.0826 43.4443i 1.10634 1.91624i
\(515\) 1.01730 1.76201i 0.0448275 0.0776436i
\(516\) −18.4552 31.9653i −0.812445 1.40720i
\(517\) −7.73760 −0.340299
\(518\) 24.5664 34.3445i 1.07939 1.50901i
\(519\) −5.77203 −0.253364
\(520\) 1.27414 + 2.20688i 0.0558749 + 0.0967782i
\(521\) −2.81803 + 4.88098i −0.123460 + 0.213839i −0.921130 0.389255i \(-0.872732\pi\)
0.797670 + 0.603094i \(0.206066\pi\)
\(522\) 0.674289 1.16790i 0.0295128 0.0511177i
\(523\) 13.4113 + 23.2290i 0.586434 + 1.01573i 0.994695 + 0.102868i \(0.0328019\pi\)
−0.408261 + 0.912865i \(0.633865\pi\)
\(524\) 101.225 4.42203
\(525\) 4.72405 + 10.4025i 0.206174 + 0.454001i
\(526\) 21.9654 0.957737
\(527\) −24.5361 42.4978i −1.06881 1.85123i
\(528\) 8.72241 15.1077i 0.379594 0.657476i
\(529\) 3.62105 6.27183i 0.157437 0.272688i
\(530\) −8.16933 14.1497i −0.354853 0.614624i
\(531\) −1.15699 −0.0502091
\(532\) −42.8081 4.17919i −1.85596 0.181191i
\(533\) −0.191588 −0.00829858
\(534\) −16.9296 29.3230i −0.732617 1.26893i
\(535\) 4.78105 8.28102i 0.206703 0.358020i
\(536\) −15.6850 + 27.1672i −0.677487 + 1.17344i
\(537\) 1.51422 + 2.62270i 0.0653433 + 0.113178i
\(538\) 47.8918 2.06476
\(539\) 4.60639 5.27078i 0.198411 0.227029i
\(540\) 4.73760 0.203874
\(541\) −3.03355 5.25426i −0.130422 0.225898i 0.793417 0.608678i \(-0.208300\pi\)
−0.923839 + 0.382780i \(0.874967\pi\)
\(542\) 12.9838 22.4887i 0.557704 0.965971i
\(543\) 4.83939 8.38207i 0.207678 0.359709i
\(544\) 92.8127 + 160.756i 3.97931 + 6.89237i
\(545\) −4.47821 −0.191825
\(546\) −2.17429 0.212268i −0.0930510 0.00908421i
\(547\) −13.7115 −0.586263 −0.293132 0.956072i \(-0.594697\pi\)
−0.293132 + 0.956072i \(0.594697\pi\)
\(548\) −26.8511 46.5075i −1.14702 1.98670i
\(549\) −2.63323 + 4.56089i −0.112384 + 0.194654i
\(550\) −6.00587 + 10.4025i −0.256091 + 0.443563i
\(551\) −0.686830 1.18962i −0.0292600 0.0506797i
\(552\) −41.2710 −1.75661
\(553\) 4.73061 + 10.4169i 0.201166 + 0.442973i
\(554\) 15.2301 0.647064
\(555\) 2.36880 + 4.10288i 0.100550 + 0.174157i
\(556\) −21.2368 + 36.7833i −0.900643 + 1.55996i
\(557\) 5.54782 9.60910i 0.235069 0.407151i −0.724224 0.689565i \(-0.757802\pi\)
0.959293 + 0.282414i \(0.0911352\pi\)
\(558\) 10.1965 + 17.6609i 0.431654 + 0.747647i
\(559\) −1.90961 −0.0807677
\(560\) −22.1719 + 30.9969i −0.936934 + 1.30986i
\(561\) 6.69354 0.282601
\(562\) 25.5218 + 44.2051i 1.07657 + 1.86468i
\(563\) −2.17578 + 3.76857i −0.0916983 + 0.158826i −0.908226 0.418480i \(-0.862563\pi\)
0.816528 + 0.577306i \(0.195896\pi\)
\(564\) −22.1976 + 38.4474i −0.934688 + 1.61893i
\(565\) 7.23142 + 12.5252i 0.304228 + 0.526939i
\(566\) 72.4360 3.04471
\(567\) −1.53925 + 2.15191i −0.0646423 + 0.0903717i
\(568\) 37.2265 1.56199
\(569\) −4.57112 7.91741i −0.191631 0.331915i 0.754160 0.656691i \(-0.228044\pi\)
−0.945791 + 0.324776i \(0.894711\pi\)
\(570\) 3.25392 5.63596i 0.136292 0.236064i
\(571\) −2.38226 + 4.12619i −0.0996944 + 0.172676i −0.911558 0.411171i \(-0.865120\pi\)
0.811864 + 0.583847i \(0.198453\pi\)
\(572\) −0.851579 1.47498i −0.0356063 0.0616719i
\(573\) −1.29084 −0.0539256
\(574\) −1.96407 4.32493i −0.0819786 0.180519i
\(575\) 17.1416 0.714856
\(576\) −21.1256 36.5907i −0.880235 1.52461i
\(577\) 8.80479 15.2504i 0.366548 0.634880i −0.622475 0.782640i \(-0.713873\pi\)
0.989023 + 0.147759i \(0.0472061\pi\)
\(578\) −38.6698 + 66.9780i −1.60845 + 2.78592i
\(579\) 10.4889 + 18.1673i 0.435903 + 0.755006i
\(580\) −2.29684 −0.0953712
\(581\) 6.25640 + 0.610789i 0.259559 + 0.0253398i
\(582\) −29.9528 −1.24158
\(583\) 3.55677 + 6.16050i 0.147306 + 0.255142i
\(584\) −83.3425 + 144.353i −3.44874 + 5.97339i
\(585\) 0.122553 0.212268i 0.00506693 0.00877619i
\(586\) −29.6687 51.3877i −1.22560 2.12281i
\(587\) 33.3405 1.37611 0.688054 0.725659i \(-0.258465\pi\)
0.688054 + 0.725659i \(0.258465\pi\)
\(588\) −12.9752 38.0095i −0.535088 1.56749i
\(589\) 20.7724 0.855911
\(590\) 1.32871 + 2.30140i 0.0547022 + 0.0947470i
\(591\) −7.54182 + 13.0628i −0.310229 + 0.537332i
\(592\) 50.0457 86.6816i 2.05686 3.56259i
\(593\) 1.86707 + 3.23386i 0.0766713 + 0.132799i 0.901812 0.432129i \(-0.142237\pi\)
−0.825141 + 0.564928i \(0.808904\pi\)
\(594\) −2.78165 −0.114133
\(595\) −14.5537 1.42082i −0.596643 0.0582480i
\(596\) −68.9185 −2.82301
\(597\) 12.8601 + 22.2744i 0.526331 + 0.911632i
\(598\) −1.63888 + 2.83862i −0.0670188 + 0.116080i
\(599\) −7.08256 + 12.2673i −0.289385 + 0.501230i −0.973663 0.227991i \(-0.926784\pi\)
0.684278 + 0.729221i \(0.260118\pi\)
\(600\) 22.4475 + 38.8802i 0.916416 + 1.58728i
\(601\) −18.3032 −0.746602 −0.373301 0.927710i \(-0.621774\pi\)
−0.373301 + 0.927710i \(0.621774\pi\)
\(602\) −19.5764 43.1077i −0.797875 1.75694i
\(603\) 3.01730 0.122874
\(604\) −26.7424 46.3192i −1.08813 1.88470i
\(605\) −0.412855 + 0.715087i −0.0167850 + 0.0290724i
\(606\) −20.8490 + 36.1116i −0.846934 + 1.46693i
\(607\) 22.6313 + 39.1985i 0.918576 + 1.59102i 0.801580 + 0.597888i \(0.203993\pi\)
0.116996 + 0.993132i \(0.462674\pi\)
\(608\) −78.5757 −3.18666
\(609\) 0.746245 1.04327i 0.0302394 0.0422755i
\(610\) 12.0962 0.489762
\(611\) 1.14842 + 1.98912i 0.0464601 + 0.0804713i
\(612\) 19.2024 33.2595i 0.776211 1.34444i
\(613\) 7.28722 12.6218i 0.294328 0.509791i −0.680500 0.732748i \(-0.738237\pi\)
0.974828 + 0.222957i \(0.0715708\pi\)
\(614\) 9.57346 + 16.5817i 0.386354 + 0.669184i
\(615\) 0.532930 0.0214898
\(616\) 16.0031 22.3728i 0.644783 0.901424i
\(617\) −39.8257 −1.60332 −0.801662 0.597778i \(-0.796050\pi\)
−0.801662 + 0.597778i \(0.796050\pi\)
\(618\) 3.42707 + 5.93587i 0.137857 + 0.238776i
\(619\) 0.218883 0.379117i 0.00879767 0.0152380i −0.861593 0.507600i \(-0.830533\pi\)
0.870391 + 0.492362i \(0.163866\pi\)
\(620\) 17.3663 30.0793i 0.697448 1.20802i
\(621\) 1.98481 + 3.43779i 0.0796477 + 0.137954i
\(622\) −10.5627 −0.423526
\(623\) −13.3164 29.3230i −0.533509 1.17480i
\(624\) −5.17835 −0.207300
\(625\) −7.61894 13.1964i −0.304757 0.527855i
\(626\) −3.64272 + 6.30938i −0.145592 + 0.252173i
\(627\) −1.41669 + 2.45379i −0.0565773 + 0.0979948i
\(628\) 14.6408 + 25.3587i 0.584233 + 1.01192i
\(629\) 38.4048 1.53130
\(630\) 6.04812 + 0.590455i 0.240963 + 0.0235243i
\(631\) 29.1632 1.16097 0.580484 0.814272i \(-0.302863\pi\)
0.580484 + 0.814272i \(0.302863\pi\)
\(632\) 22.4787 + 38.9343i 0.894155 + 1.54872i
\(633\) −0.924072 + 1.60054i −0.0367286 + 0.0636158i
\(634\) 38.7543 67.1244i 1.53913 2.66585i
\(635\) −2.46856 4.27568i −0.0979619 0.169675i
\(636\) 40.8146 1.61840
\(637\) −2.03866 0.401883i −0.0807746 0.0159232i
\(638\) 1.34858 0.0533907
\(639\) −1.79030 3.10090i −0.0708233 0.122670i
\(640\) −25.6236 + 44.3814i −1.01286 + 1.75433i
\(641\) 2.69300 4.66442i 0.106367 0.184233i −0.807929 0.589280i \(-0.799411\pi\)
0.914296 + 0.405047i \(0.132745\pi\)
\(642\) 16.1064 + 27.8971i 0.635669 + 1.10101i
\(643\) −2.19971 −0.0867481 −0.0433740 0.999059i \(-0.513811\pi\)
−0.0433740 + 0.999059i \(0.513811\pi\)
\(644\) −59.9748 5.85511i −2.36334 0.230724i
\(645\) 5.31186 0.209154
\(646\) −26.3776 45.6873i −1.03781 1.79754i
\(647\) 8.62105 14.9321i 0.338928 0.587041i −0.645303 0.763927i \(-0.723269\pi\)
0.984231 + 0.176886i \(0.0566023\pi\)
\(648\) −5.19835 + 9.00380i −0.204210 + 0.353703i
\(649\) −0.578495 1.00198i −0.0227079 0.0393313i
\(650\) 3.56559 0.139854
\(651\) 8.02031 + 17.6609i 0.314341 + 0.692186i
\(652\) 54.4399 2.13203
\(653\) −20.3835 35.3052i −0.797666 1.38160i −0.921132 0.389250i \(-0.872734\pi\)
0.123466 0.992349i \(-0.460599\pi\)
\(654\) 7.54309 13.0650i 0.294958 0.510882i
\(655\) −7.28376 + 12.6158i −0.284600 + 0.492942i
\(656\) −5.62961 9.75078i −0.219800 0.380704i
\(657\) 16.0325 0.625487
\(658\) −33.1297 + 46.3162i −1.29153 + 1.80559i
\(659\) 33.9747 1.32347 0.661734 0.749739i \(-0.269821\pi\)
0.661734 + 0.749739i \(0.269821\pi\)
\(660\) 2.36880 + 4.10288i 0.0922053 + 0.159704i
\(661\) 14.9579 25.9078i 0.581795 1.00770i −0.413472 0.910517i \(-0.635684\pi\)
0.995267 0.0971811i \(-0.0309826\pi\)
\(662\) 11.1844 19.3719i 0.434692 0.752909i
\(663\) −0.993461 1.72072i −0.0385828 0.0668274i
\(664\) 24.7019 0.958621
\(665\) 3.60116 5.03452i 0.139647 0.195230i
\(666\) −15.9600 −0.618438
\(667\) −0.962260 1.66668i −0.0372589 0.0645342i
\(668\) 8.71684 15.0980i 0.337265 0.584159i
\(669\) 3.08925 5.35075i 0.119437 0.206872i
\(670\) −3.46513 6.00178i −0.133870 0.231869i
\(671\) −5.26647 −0.203310
\(672\) −30.3384 66.8060i −1.17033 2.57710i
\(673\) 11.3711 0.438325 0.219163 0.975688i \(-0.429667\pi\)
0.219163 + 0.975688i \(0.429667\pi\)
\(674\) −36.5351 63.2806i −1.40728 2.43748i
\(675\) 2.15910 3.73967i 0.0831038 0.143940i
\(676\) 37.0416 64.1579i 1.42468 2.46761i
\(677\) −4.85596 8.41076i −0.186630 0.323252i 0.757495 0.652841i \(-0.226423\pi\)
−0.944124 + 0.329589i \(0.893090\pi\)
\(678\) −48.7224 −1.87117
\(679\) −28.3546 2.76815i −1.08815 0.106232i
\(680\) −57.4618 −2.20356
\(681\) −2.50557 4.33977i −0.0960136 0.166300i
\(682\) −10.1965 + 17.6609i −0.390446 + 0.676272i
\(683\) −4.85512 + 8.40931i −0.185776 + 0.321773i −0.943838 0.330409i \(-0.892813\pi\)
0.758062 + 0.652183i \(0.226147\pi\)
\(684\) 8.12842 + 14.0788i 0.310798 + 0.538318i
\(685\) 7.72842 0.295288
\(686\) −11.8272 50.1409i −0.451565 1.91439i
\(687\) 22.4328 0.855865
\(688\) −56.1119 97.1887i −2.13925 3.70528i
\(689\) 1.05580 1.82869i 0.0402227 0.0696677i
\(690\) 4.55880 7.89607i 0.173550 0.300598i
\(691\) 1.96902 + 3.41044i 0.0749051 + 0.129739i 0.901045 0.433726i \(-0.142801\pi\)
−0.826140 + 0.563465i \(0.809468\pi\)
\(692\) −33.1176 −1.25894
\(693\) −2.63323 0.257073i −0.100028 0.00976538i
\(694\) 23.6119 0.896294
\(695\) −3.05624 5.29357i −0.115930 0.200797i
\(696\) 2.52022 4.36515i 0.0955287 0.165461i
\(697\) 2.16007 3.74135i 0.0818185 0.141714i
\(698\) 44.4077 + 76.9165i 1.68086 + 2.91133i
\(699\) 4.83339 0.182816
\(700\) 27.1047 + 59.6852i 1.02446 + 2.25589i
\(701\) 11.7432 0.443533 0.221766 0.975100i \(-0.428818\pi\)
0.221766 + 0.975100i \(0.428818\pi\)
\(702\) 0.412855 + 0.715087i 0.0155822 + 0.0269892i
\(703\) −8.12842 + 14.0788i −0.306569 + 0.530994i
\(704\) 21.1256 36.5907i 0.796203 1.37906i
\(705\) −3.19451 5.53305i −0.120312 0.208387i
\(706\) 0.400314 0.0150660
\(707\) −23.0739 + 32.2579i −0.867784 + 1.21319i
\(708\) −6.63834 −0.249484
\(709\) 3.26744 + 5.65936i 0.122711 + 0.212542i 0.920836 0.389950i \(-0.127508\pi\)
−0.798125 + 0.602492i \(0.794174\pi\)
\(710\) −4.11204 + 7.12227i −0.154322 + 0.267294i
\(711\) 2.16210 3.74487i 0.0810852 0.140444i
\(712\) −63.2761 109.597i −2.37137 4.10734i
\(713\) 29.1024 1.08989
\(714\) 28.6594 40.0666i 1.07255 1.49946i
\(715\) 0.245106 0.00916643
\(716\) 8.68797 + 15.0480i 0.324685 + 0.562370i
\(717\) 1.29233 2.23839i 0.0482631 0.0835941i
\(718\) −11.4533 + 19.8377i −0.427433 + 0.740336i
\(719\) 1.84382 + 3.19359i 0.0687629 + 0.119101i 0.898357 0.439266i \(-0.144761\pi\)
−0.829594 + 0.558367i \(0.811428\pi\)
\(720\) 14.4044 0.536819
\(721\) 2.69564 + 5.93587i 0.100391 + 0.221063i
\(722\) −30.5200 −1.13584
\(723\) −1.38902 2.40585i −0.0516581 0.0894745i
\(724\) 27.7665 48.0929i 1.03193 1.78736i
\(725\) −1.04676 + 1.81304i −0.0388756 + 0.0673345i
\(726\) −1.39083 2.40898i −0.0516184 0.0894057i
\(727\) −0.674563 −0.0250182 −0.0125091 0.999922i \(-0.503982\pi\)
−0.0125091 + 0.999922i \(0.503982\pi\)
\(728\) −8.12661 0.793371i −0.301192 0.0294043i
\(729\) 1.00000 0.0370370
\(730\) −18.4121 31.8906i −0.681461 1.18032i
\(731\) 21.5300 37.2911i 0.796317 1.37926i
\(732\) −15.1084 + 26.1686i −0.558423 + 0.967218i
\(733\) −8.66961 15.0162i −0.320219 0.554636i 0.660314 0.750990i \(-0.270423\pi\)
−0.980533 + 0.196354i \(0.937090\pi\)
\(734\) 46.2596 1.70747
\(735\) 5.67084 + 1.11790i 0.209172 + 0.0412344i
\(736\) −110.086 −4.05781
\(737\) 1.50865 + 2.61306i 0.0555718 + 0.0962532i
\(738\) −0.897667 + 1.55481i −0.0330436 + 0.0572332i
\(739\) −18.2695 + 31.6437i −0.672054 + 1.16403i 0.305267 + 0.952267i \(0.401254\pi\)
−0.977321 + 0.211764i \(0.932079\pi\)
\(740\) 13.5912 + 23.5407i 0.499623 + 0.865372i
\(741\) 0.841068 0.0308974
\(742\) 52.1048 + 5.08679i 1.91283 + 0.186742i
\(743\) 9.83489 0.360807 0.180404 0.983593i \(-0.442260\pi\)
0.180404 + 0.983593i \(0.442260\pi\)
\(744\) 38.1105 + 66.0094i 1.39720 + 2.42002i
\(745\) 4.95911 8.58944i 0.181688 0.314693i
\(746\) 7.12775 12.3456i 0.260966 0.452006i
\(747\) −1.18797 2.05762i −0.0434655 0.0752845i
\(748\) 38.4048 1.40422
\(749\) 12.6688 + 27.8971i 0.462909 + 1.01934i
\(750\) −21.4024 −0.781506
\(751\) 14.3484 + 24.8522i 0.523581 + 0.906869i 0.999623 + 0.0274468i \(0.00873768\pi\)
−0.476042 + 0.879423i \(0.657929\pi\)
\(752\) −67.4905 + 116.897i −2.46112 + 4.26279i
\(753\) −0.468484 + 0.811437i −0.0170725 + 0.0295704i
\(754\) −0.200157 0.346682i −0.00728929 0.0126254i
\(755\) 7.69713 0.280127
\(756\) −8.83158 + 12.3468i −0.321201 + 0.449048i
\(757\) −50.9435 −1.85157 −0.925786 0.378047i \(-0.876596\pi\)
−0.925786 + 0.378047i \(0.876596\pi\)
\(758\) 27.3135 + 47.3084i 0.992072 + 1.71832i
\(759\) −1.98481 + 3.43779i −0.0720441 + 0.124784i
\(760\) 12.1619 21.0649i 0.441157 0.764106i
\(761\) −21.9590 38.0340i −0.796011 1.37873i −0.922195 0.386725i \(-0.873606\pi\)
0.126184 0.992007i \(-0.459727\pi\)
\(762\) 16.6322 0.602520
\(763\) 8.34804 11.6708i 0.302219 0.422511i
\(764\) −7.40632 −0.267951
\(765\) 2.76346 + 4.78646i 0.0999133 + 0.173055i
\(766\) 14.9796 25.9453i 0.541233 0.937444i
\(767\) −0.171722 + 0.297430i −0.00620051 + 0.0107396i
\(768\) −44.0695 76.3306i −1.59022 2.75434i
\(769\) 4.82343 0.173937 0.0869687 0.996211i \(-0.472282\pi\)