Properties

Label 231.2.i.e.100.4
Level $231$
Weight $2$
Character 231.100
Analytic conductor $1.845$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,2,Mod(67,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 231.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.84454428669\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.10423593216.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 8x^{6} + 21x^{4} - 4x^{3} + 28x^{2} + 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.4
Root \(-0.758290 + 1.31340i\) of defining polynomial
Character \(\chi\) \(=\) 231.100
Dual form 231.2.i.e.67.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.758290 - 1.31340i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.150007 - 0.259820i) q^{4} +(1.16659 - 2.02059i) q^{5} -1.51658 q^{6} +(-2.28580 - 1.33233i) q^{7} +2.57816 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.758290 - 1.31340i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.150007 - 0.259820i) q^{4} +(1.16659 - 2.02059i) q^{5} -1.51658 q^{6} +(-2.28580 - 1.33233i) q^{7} +2.57816 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.76922 - 3.06438i) q^{10} +(0.500000 + 0.866025i) q^{11} +(-0.150007 + 0.259820i) q^{12} -1.53844 q^{13} +(-3.48318 + 1.99187i) q^{14} -2.33317 q^{15} +(2.25501 - 3.90579i) q^{16} +(0.0583043 + 0.100986i) q^{17} +(0.758290 + 1.31340i) q^{18} +(1.80566 - 3.12750i) q^{19} -0.699986 q^{20} +(-0.0109324 + 2.64573i) q^{21} +1.51658 q^{22} +(-3.55502 + 6.15748i) q^{23} +(-1.28908 - 2.23276i) q^{24} +(-0.221850 - 0.384256i) q^{25} +(-1.16659 + 2.02059i) q^{26} +1.00000 q^{27} +(-0.00327987 + 0.793757i) q^{28} +5.05502 q^{29} +(-1.76922 + 3.06438i) q^{30} +(2.18845 + 3.79051i) q^{31} +(-0.841739 - 1.45793i) q^{32} +(0.500000 - 0.866025i) q^{33} +0.176846 q^{34} +(-5.35868 + 3.06438i) q^{35} +0.300014 q^{36} +(0.150007 - 0.259820i) q^{37} +(-2.73843 - 4.74310i) q^{38} +(0.769222 + 1.33233i) q^{39} +(3.00765 - 5.20941i) q^{40} +8.20479 q^{41} +(3.46660 + 2.02059i) q^{42} -4.18293 q^{43} +(0.150007 - 0.259820i) q^{44} +(1.16659 + 2.02059i) q^{45} +(5.39148 + 9.33831i) q^{46} +(-1.15001 + 1.99187i) q^{47} -4.51002 q^{48} +(3.44978 + 6.09089i) q^{49} -0.672908 q^{50} +(0.0583043 - 0.100986i) q^{51} +(0.230778 + 0.399719i) q^{52} +(5.94346 + 10.2944i) q^{53} +(0.758290 - 1.31340i) q^{54} +2.33317 q^{55} +(-5.89317 - 3.43497i) q^{56} -3.61132 q^{57} +(3.83317 - 6.63925i) q^{58} +(-2.47814 - 4.29226i) q^{59} +(0.349993 + 0.606205i) q^{60} +(2.28580 - 3.95913i) q^{61} +6.63792 q^{62} +(2.29673 - 1.31340i) q^{63} +6.46691 q^{64} +(-1.79473 + 3.10856i) q^{65} +(-0.758290 - 1.31340i) q^{66} +(-6.14472 - 10.6430i) q^{67} +(0.0174921 - 0.0302972i) q^{68} +7.11005 q^{69} +(-0.0386836 + 9.36176i) q^{70} +4.25628 q^{71} +(-1.28908 + 2.23276i) q^{72} +(-5.21900 - 9.03958i) q^{73} +(-0.227498 - 0.394038i) q^{74} +(-0.221850 + 0.384256i) q^{75} -1.08345 q^{76} +(0.0109324 - 2.64573i) q^{77} +2.33317 q^{78} +(-7.15742 + 12.3970i) q^{79} +(-5.26133 - 9.11289i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(6.22161 - 10.7761i) q^{82} -11.1869 q^{83} +(0.689053 - 0.394038i) q^{84} +0.272068 q^{85} +(-3.17187 + 5.49384i) q^{86} +(-2.52751 - 4.37778i) q^{87} +(1.28908 + 2.23276i) q^{88} +(-6.96636 + 12.0661i) q^{89} +3.53844 q^{90} +(3.51658 + 2.04972i) q^{91} +2.13312 q^{92} +(2.18845 - 3.79051i) q^{93} +(1.74408 + 3.02083i) q^{94} +(-4.21292 - 7.29700i) q^{95} +(-0.841739 + 1.45793i) q^{96} -16.4101 q^{97} +(10.6157 + 0.0877314i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} + 4 q^{6} + 2 q^{7} + 24 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} + 4 q^{6} + 2 q^{7} + 24 q^{8} - 4 q^{9} - 10 q^{10} + 4 q^{11} - 4 q^{12} - 4 q^{13} - 4 q^{14} + 8 q^{15} - 12 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{21} - 4 q^{22} - 4 q^{23} - 12 q^{24} - 4 q^{25} + 4 q^{26} + 8 q^{27} - 22 q^{28} + 16 q^{29} - 10 q^{30} + 12 q^{31} - 26 q^{32} + 4 q^{33} - 32 q^{34} - 2 q^{35} + 8 q^{36} + 4 q^{37} - 8 q^{38} + 2 q^{39} + 6 q^{40} + 4 q^{41} + 20 q^{42} + 36 q^{43} + 4 q^{44} - 4 q^{45} + 14 q^{46} - 12 q^{47} + 24 q^{48} - 4 q^{49} + 4 q^{50} - 2 q^{51} + 6 q^{52} + 12 q^{53} - 2 q^{54} - 8 q^{55} + 48 q^{56} + 4 q^{58} - 12 q^{59} - 2 q^{61} - 52 q^{62} + 2 q^{63} + 112 q^{64} + 4 q^{65} + 2 q^{66} - 28 q^{67} + 48 q^{68} + 8 q^{69} - 32 q^{70} + 24 q^{71} - 12 q^{72} - 6 q^{73} + 16 q^{74} - 4 q^{75} - 36 q^{76} + 4 q^{77} - 8 q^{78} - 2 q^{79} - 16 q^{80} - 4 q^{81} + 12 q^{82} - 24 q^{83} - 4 q^{84} + 36 q^{85} - 36 q^{86} - 8 q^{87} + 12 q^{88} - 8 q^{89} + 20 q^{90} + 12 q^{91} - 32 q^{92} + 12 q^{93} - 20 q^{94} - 34 q^{95} - 26 q^{96} - 88 q^{97} + 16 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/231\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.758290 1.31340i 0.536192 0.928712i −0.462913 0.886404i \(-0.653196\pi\)
0.999105 0.0423078i \(-0.0134710\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −0.150007 0.259820i −0.0750036 0.129910i
\(5\) 1.16659 2.02059i 0.521714 0.903634i −0.477967 0.878378i \(-0.658626\pi\)
0.999681 0.0252568i \(-0.00804036\pi\)
\(6\) −1.51658 −0.619141
\(7\) −2.28580 1.33233i −0.863952 0.503574i
\(8\) 2.57816 0.911519
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.76922 3.06438i −0.559477 0.969043i
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i
\(12\) −0.150007 + 0.259820i −0.0433033 + 0.0750036i
\(13\) −1.53844 −0.426688 −0.213344 0.976977i \(-0.568435\pi\)
−0.213344 + 0.976977i \(0.568435\pi\)
\(14\) −3.48318 + 1.99187i −0.930919 + 0.532350i
\(15\) −2.33317 −0.602423
\(16\) 2.25501 3.90579i 0.563753 0.976448i
\(17\) 0.0583043 + 0.100986i 0.0141409 + 0.0244927i 0.873009 0.487704i \(-0.162165\pi\)
−0.858868 + 0.512196i \(0.828832\pi\)
\(18\) 0.758290 + 1.31340i 0.178731 + 0.309571i
\(19\) 1.80566 3.12750i 0.414247 0.717497i −0.581102 0.813831i \(-0.697378\pi\)
0.995349 + 0.0963336i \(0.0307116\pi\)
\(20\) −0.699986 −0.156522
\(21\) −0.0109324 + 2.64573i −0.00238564 + 0.577345i
\(22\) 1.51658 0.323336
\(23\) −3.55502 + 6.15748i −0.741274 + 1.28392i 0.210642 + 0.977563i \(0.432445\pi\)
−0.951916 + 0.306361i \(0.900889\pi\)
\(24\) −1.28908 2.23276i −0.263133 0.455759i
\(25\) −0.221850 0.384256i −0.0443701 0.0768512i
\(26\) −1.16659 + 2.02059i −0.228787 + 0.396270i
\(27\) 1.00000 0.192450
\(28\) −0.00327987 + 0.793757i −0.000619837 + 0.150006i
\(29\) 5.05502 0.938694 0.469347 0.883014i \(-0.344489\pi\)
0.469347 + 0.883014i \(0.344489\pi\)
\(30\) −1.76922 + 3.06438i −0.323014 + 0.559477i
\(31\) 2.18845 + 3.79051i 0.393058 + 0.680796i 0.992851 0.119359i \(-0.0380840\pi\)
−0.599794 + 0.800155i \(0.704751\pi\)
\(32\) −0.841739 1.45793i −0.148800 0.257729i
\(33\) 0.500000 0.866025i 0.0870388 0.150756i
\(34\) 0.176846 0.0303289
\(35\) −5.35868 + 3.06438i −0.905782 + 0.517975i
\(36\) 0.300014 0.0500024
\(37\) 0.150007 0.259820i 0.0246610 0.0427142i −0.853432 0.521205i \(-0.825483\pi\)
0.878093 + 0.478491i \(0.158816\pi\)
\(38\) −2.73843 4.74310i −0.444232 0.769432i
\(39\) 0.769222 + 1.33233i 0.123174 + 0.213344i
\(40\) 3.00765 5.20941i 0.475552 0.823680i
\(41\) 8.20479 1.28137 0.640687 0.767802i \(-0.278650\pi\)
0.640687 + 0.767802i \(0.278650\pi\)
\(42\) 3.46660 + 2.02059i 0.534908 + 0.311783i
\(43\) −4.18293 −0.637891 −0.318945 0.947773i \(-0.603329\pi\)
−0.318945 + 0.947773i \(0.603329\pi\)
\(44\) 0.150007 0.259820i 0.0226144 0.0391693i
\(45\) 1.16659 + 2.02059i 0.173905 + 0.301211i
\(46\) 5.39148 + 9.33831i 0.794930 + 1.37686i
\(47\) −1.15001 + 1.99187i −0.167746 + 0.290544i −0.937627 0.347643i \(-0.886982\pi\)
0.769881 + 0.638187i \(0.220315\pi\)
\(48\) −4.51002 −0.650965
\(49\) 3.44978 + 6.09089i 0.492826 + 0.870128i
\(50\) −0.672908 −0.0951635
\(51\) 0.0583043 0.100986i 0.00816423 0.0141409i
\(52\) 0.230778 + 0.399719i 0.0320031 + 0.0554310i
\(53\) 5.94346 + 10.2944i 0.816397 + 1.41404i 0.908320 + 0.418275i \(0.137365\pi\)
−0.0919230 + 0.995766i \(0.529301\pi\)
\(54\) 0.758290 1.31340i 0.103190 0.178731i
\(55\) 2.33317 0.314605
\(56\) −5.89317 3.43497i −0.787508 0.459017i
\(57\) −3.61132 −0.478331
\(58\) 3.83317 6.63925i 0.503320 0.871777i
\(59\) −2.47814 4.29226i −0.322626 0.558804i 0.658403 0.752665i \(-0.271232\pi\)
−0.981029 + 0.193861i \(0.937899\pi\)
\(60\) 0.349993 + 0.606205i 0.0451839 + 0.0782608i
\(61\) 2.28580 3.95913i 0.292667 0.506914i −0.681773 0.731564i \(-0.738791\pi\)
0.974439 + 0.224650i \(0.0721239\pi\)
\(62\) 6.63792 0.843017
\(63\) 2.29673 1.31340i 0.289361 0.165472i
\(64\) 6.46691 0.808364
\(65\) −1.79473 + 3.10856i −0.222609 + 0.385570i
\(66\) −0.758290 1.31340i −0.0933390 0.161668i
\(67\) −6.14472 10.6430i −0.750697 1.30025i −0.947485 0.319800i \(-0.896384\pi\)
0.196788 0.980446i \(-0.436949\pi\)
\(68\) 0.0174921 0.0302972i 0.00212123 0.00367408i
\(69\) 7.11005 0.855949
\(70\) −0.0386836 + 9.36176i −0.00462357 + 1.11894i
\(71\) 4.25628 0.505128 0.252564 0.967580i \(-0.418726\pi\)
0.252564 + 0.967580i \(0.418726\pi\)
\(72\) −1.28908 + 2.23276i −0.151920 + 0.263133i
\(73\) −5.21900 9.03958i −0.610838 1.05800i −0.991099 0.133124i \(-0.957499\pi\)
0.380261 0.924879i \(-0.375834\pi\)
\(74\) −0.227498 0.394038i −0.0264461 0.0458060i
\(75\) −0.221850 + 0.384256i −0.0256171 + 0.0443701i
\(76\) −1.08345 −0.124280
\(77\) 0.0109324 2.64573i 0.00124586 0.301509i
\(78\) 2.33317 0.264180
\(79\) −7.15742 + 12.3970i −0.805273 + 1.39477i 0.110834 + 0.993839i \(0.464648\pi\)
−0.916107 + 0.400934i \(0.868686\pi\)
\(80\) −5.26133 9.11289i −0.588235 1.01885i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 6.22161 10.7761i 0.687062 1.19003i
\(83\) −11.1869 −1.22793 −0.613963 0.789335i \(-0.710426\pi\)
−0.613963 + 0.789335i \(0.710426\pi\)
\(84\) 0.689053 0.394038i 0.0751819 0.0429931i
\(85\) 0.272068 0.0295099
\(86\) −3.17187 + 5.49384i −0.342032 + 0.592416i
\(87\) −2.52751 4.37778i −0.270978 0.469347i
\(88\) 1.28908 + 2.23276i 0.137417 + 0.238013i
\(89\) −6.96636 + 12.0661i −0.738433 + 1.27900i 0.214768 + 0.976665i \(0.431101\pi\)
−0.953201 + 0.302338i \(0.902233\pi\)
\(90\) 3.53844 0.372985
\(91\) 3.51658 + 2.04972i 0.368638 + 0.214869i
\(92\) 2.13312 0.222393
\(93\) 2.18845 3.79051i 0.226932 0.393058i
\(94\) 1.74408 + 3.02083i 0.179888 + 0.311575i
\(95\) −4.21292 7.29700i −0.432237 0.748656i
\(96\) −0.841739 + 1.45793i −0.0859096 + 0.148800i
\(97\) −16.4101 −1.66619 −0.833095 0.553130i \(-0.813433\pi\)
−0.833095 + 0.553130i \(0.813433\pi\)
\(98\) 10.6157 + 0.0877314i 1.07235 + 0.00886221i
\(99\) −1.00000 −0.100504
\(100\) −0.0665583 + 0.115282i −0.00665583 + 0.0115282i
\(101\) −4.82753 8.36152i −0.480357 0.832002i 0.519389 0.854538i \(-0.326160\pi\)
−0.999746 + 0.0225353i \(0.992826\pi\)
\(102\) −0.0884231 0.153153i −0.00875519 0.0151644i
\(103\) −4.41006 + 7.63845i −0.434536 + 0.752639i −0.997258 0.0740075i \(-0.976421\pi\)
0.562721 + 0.826647i \(0.309754\pi\)
\(104\) −3.96636 −0.388934
\(105\) 5.33317 + 3.10856i 0.520464 + 0.303365i
\(106\) 18.0275 1.75098
\(107\) −5.24207 + 9.07954i −0.506770 + 0.877752i 0.493199 + 0.869917i \(0.335827\pi\)
−0.999969 + 0.00783538i \(0.997506\pi\)
\(108\) −0.150007 0.259820i −0.0144344 0.0250012i
\(109\) −5.26394 9.11741i −0.504194 0.873289i −0.999988 0.00484932i \(-0.998456\pi\)
0.495794 0.868440i \(-0.334877\pi\)
\(110\) 1.76922 3.06438i 0.168689 0.292177i
\(111\) −0.300014 −0.0284761
\(112\) −10.3583 + 5.92345i −0.978769 + 0.559713i
\(113\) 11.4327 1.07549 0.537747 0.843106i \(-0.319276\pi\)
0.537747 + 0.843106i \(0.319276\pi\)
\(114\) −2.73843 + 4.74310i −0.256477 + 0.444232i
\(115\) 8.29449 + 14.3665i 0.773465 + 1.33968i
\(116\) −0.758290 1.31340i −0.0704055 0.121946i
\(117\) 0.769222 1.33233i 0.0711146 0.123174i
\(118\) −7.51658 −0.691957
\(119\) 0.00127481 0.308514i 0.000116861 0.0282815i
\(120\) −6.01531 −0.549120
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) −3.46660 6.00433i −0.313851 0.543606i
\(123\) −4.10240 7.10556i −0.369901 0.640687i
\(124\) 0.656567 1.13721i 0.0589614 0.102124i
\(125\) 10.6306 0.950833
\(126\) 0.0165798 4.01246i 0.00147705 0.357458i
\(127\) 0.234898 0.0208438 0.0104219 0.999946i \(-0.496683\pi\)
0.0104219 + 0.999946i \(0.496683\pi\)
\(128\) 6.58727 11.4095i 0.582238 1.00847i
\(129\) 2.09146 + 3.62252i 0.184143 + 0.318945i
\(130\) 2.72185 + 4.71438i 0.238722 + 0.413479i
\(131\) 2.87927 4.98704i 0.251563 0.435720i −0.712393 0.701780i \(-0.752389\pi\)
0.963956 + 0.266060i \(0.0857221\pi\)
\(132\) −0.300014 −0.0261129
\(133\) −8.29425 + 4.74310i −0.719203 + 0.411279i
\(134\) −18.6379 −1.61007
\(135\) 1.16659 2.02059i 0.100404 0.173905i
\(136\) 0.150318 + 0.260358i 0.0128897 + 0.0223255i
\(137\) −8.04325 13.9313i −0.687181 1.19023i −0.972746 0.231874i \(-0.925514\pi\)
0.285565 0.958359i \(-0.407819\pi\)
\(138\) 5.39148 9.33831i 0.458953 0.794930i
\(139\) −14.2930 −1.21231 −0.606157 0.795345i \(-0.707290\pi\)
−0.606157 + 0.795345i \(0.707290\pi\)
\(140\) 1.60003 + 0.932613i 0.135227 + 0.0788202i
\(141\) 2.30001 0.193696
\(142\) 3.22750 5.59019i 0.270846 0.469118i
\(143\) −0.769222 1.33233i −0.0643256 0.111415i
\(144\) 2.25501 + 3.90579i 0.187918 + 0.325483i
\(145\) 5.89713 10.2141i 0.489730 0.848237i
\(146\) −15.8301 −1.31011
\(147\) 3.54998 6.03305i 0.292797 0.497597i
\(148\) −0.0900086 −0.00739866
\(149\) 0.336454 0.582755i 0.0275634 0.0477412i −0.851915 0.523681i \(-0.824559\pi\)
0.879478 + 0.475939i \(0.157892\pi\)
\(150\) 0.336454 + 0.582755i 0.0274713 + 0.0475818i
\(151\) −11.8862 20.5875i −0.967285 1.67539i −0.703347 0.710846i \(-0.748312\pi\)
−0.263937 0.964540i \(-0.585021\pi\)
\(152\) 4.65529 8.06320i 0.377594 0.654012i
\(153\) −0.116609 −0.00942724
\(154\) −3.46660 2.02059i −0.279347 0.162824i
\(155\) 10.2121 0.820254
\(156\) 0.230778 0.399719i 0.0184770 0.0320031i
\(157\) 7.62790 + 13.2119i 0.608773 + 1.05443i 0.991443 + 0.130541i \(0.0416713\pi\)
−0.382670 + 0.923885i \(0.624995\pi\)
\(158\) 10.8548 + 18.8011i 0.863561 + 1.49573i
\(159\) 5.94346 10.2944i 0.471347 0.816397i
\(160\) −3.92785 −0.310523
\(161\) 16.3299 9.33831i 1.28698 0.735962i
\(162\) −1.51658 −0.119154
\(163\) −0.210316 + 0.364279i −0.0164733 + 0.0285325i −0.874145 0.485666i \(-0.838577\pi\)
0.857671 + 0.514198i \(0.171911\pi\)
\(164\) −1.23078 2.13177i −0.0961076 0.166463i
\(165\) −1.16659 2.02059i −0.0908187 0.157303i
\(166\) −8.48294 + 14.6929i −0.658404 + 1.14039i
\(167\) 16.4331 1.27163 0.635817 0.771840i \(-0.280663\pi\)
0.635817 + 0.771840i \(0.280663\pi\)
\(168\) −0.0281855 + 6.82112i −0.00217455 + 0.526261i
\(169\) −10.6332 −0.817938
\(170\) 0.206306 0.357333i 0.0158230 0.0274062i
\(171\) 1.80566 + 3.12750i 0.138082 + 0.239166i
\(172\) 0.627469 + 1.08681i 0.0478441 + 0.0828684i
\(173\) −1.93076 + 3.34418i −0.146793 + 0.254253i −0.930041 0.367457i \(-0.880229\pi\)
0.783247 + 0.621710i \(0.213562\pi\)
\(174\) −7.66635 −0.581184
\(175\) −0.00485070 + 1.17391i −0.000366679 + 0.0887394i
\(176\) 4.51002 0.339956
\(177\) −2.47814 + 4.29226i −0.186268 + 0.322626i
\(178\) 10.5650 + 18.2992i 0.791884 + 1.37158i
\(179\) 6.35480 + 11.0068i 0.474980 + 0.822690i 0.999589 0.0286535i \(-0.00912195\pi\)
−0.524609 + 0.851343i \(0.675789\pi\)
\(180\) 0.349993 0.606205i 0.0260869 0.0451839i
\(181\) 16.5196 1.22789 0.613947 0.789347i \(-0.289581\pi\)
0.613947 + 0.789347i \(0.289581\pi\)
\(182\) 5.35868 3.06438i 0.397212 0.227147i
\(183\) −4.57160 −0.337943
\(184\) −9.16544 + 15.8750i −0.675685 + 1.17032i
\(185\) −0.349993 0.606205i −0.0257320 0.0445691i
\(186\) −3.31896 5.74861i −0.243358 0.421509i
\(187\) −0.0583043 + 0.100986i −0.00426363 + 0.00738482i
\(188\) 0.690037 0.0503261
\(189\) −2.28580 1.33233i −0.166268 0.0969129i
\(190\) −12.7785 −0.927048
\(191\) 8.20479 14.2111i 0.593678 1.02828i −0.400054 0.916492i \(-0.631009\pi\)
0.993732 0.111789i \(-0.0356580\pi\)
\(192\) −3.23346 5.60051i −0.233355 0.404182i
\(193\) −10.3266 17.8862i −0.743326 1.28748i −0.950973 0.309274i \(-0.899914\pi\)
0.207647 0.978204i \(-0.433420\pi\)
\(194\) −12.4436 + 21.5529i −0.893397 + 1.54741i
\(195\) 3.58946 0.257046
\(196\) 1.06504 1.81000i 0.0760746 0.129286i
\(197\) 26.3132 1.87474 0.937368 0.348342i \(-0.113255\pi\)
0.937368 + 0.348342i \(0.113255\pi\)
\(198\) −0.758290 + 1.31340i −0.0538893 + 0.0933390i
\(199\) 5.50528 + 9.53543i 0.390259 + 0.675949i 0.992484 0.122378i \(-0.0390520\pi\)
−0.602224 + 0.798327i \(0.705719\pi\)
\(200\) −0.571967 0.990675i −0.0404442 0.0700513i
\(201\) −6.14472 + 10.6430i −0.433415 + 0.750697i
\(202\) −14.6427 −1.03025
\(203\) −11.5548 6.73497i −0.810987 0.472702i
\(204\) −0.0349842 −0.00244939
\(205\) 9.57160 16.5785i 0.668510 1.15789i
\(206\) 6.68821 + 11.5843i 0.465990 + 0.807118i
\(207\) −3.55502 6.15748i −0.247091 0.427975i
\(208\) −3.46921 + 6.00884i −0.240546 + 0.416638i
\(209\) 3.61132 0.249800
\(210\) 8.12687 4.64738i 0.560807 0.320700i
\(211\) 22.2476 1.53159 0.765793 0.643087i \(-0.222347\pi\)
0.765793 + 0.643087i \(0.222347\pi\)
\(212\) 1.78312 3.08846i 0.122465 0.212116i
\(213\) −2.12814 3.68605i −0.145818 0.252564i
\(214\) 7.95002 + 13.7698i 0.543452 + 0.941287i
\(215\) −4.87975 + 8.45197i −0.332796 + 0.576420i
\(216\) 2.57816 0.175422
\(217\) 0.0478499 11.5801i 0.00324827 0.786108i
\(218\) −15.9664 −1.08138
\(219\) −5.21900 + 9.03958i −0.352668 + 0.610838i
\(220\) −0.349993 0.606205i −0.0235965 0.0408704i
\(221\) −0.0896979 0.155361i −0.00603373 0.0104507i
\(222\) −0.227498 + 0.394038i −0.0152687 + 0.0264461i
\(223\) −16.8020 −1.12515 −0.562573 0.826748i \(-0.690188\pi\)
−0.562573 + 0.826748i \(0.690188\pi\)
\(224\) −0.0184044 + 4.45402i −0.00122970 + 0.297597i
\(225\) 0.443701 0.0295801
\(226\) 8.66927 15.0156i 0.576671 0.998823i
\(227\) −2.71008 4.69399i −0.179874 0.311551i 0.761963 0.647620i \(-0.224236\pi\)
−0.941837 + 0.336069i \(0.890902\pi\)
\(228\) 0.541724 + 0.938294i 0.0358766 + 0.0621401i
\(229\) −14.1161 + 24.4499i −0.932820 + 1.61569i −0.154345 + 0.988017i \(0.549327\pi\)
−0.778476 + 0.627675i \(0.784007\pi\)
\(230\) 25.1585 1.65890
\(231\) −2.29673 + 1.31340i −0.151114 + 0.0864152i
\(232\) 13.0327 0.855637
\(233\) −2.80566 + 4.85955i −0.183805 + 0.318360i −0.943173 0.332302i \(-0.892175\pi\)
0.759368 + 0.650661i \(0.225508\pi\)
\(234\) −1.16659 2.02059i −0.0762622 0.132090i
\(235\) 2.68317 + 4.64738i 0.175031 + 0.303162i
\(236\) −0.743476 + 1.28774i −0.0483962 + 0.0838246i
\(237\) 14.3148 0.929849
\(238\) −0.404235 0.235618i −0.0262027 0.0152728i
\(239\) 12.0153 0.777205 0.388603 0.921405i \(-0.372958\pi\)
0.388603 + 0.921405i \(0.372958\pi\)
\(240\) −5.26133 + 9.11289i −0.339617 + 0.588235i
\(241\) 10.3663 + 17.9550i 0.667754 + 1.15658i 0.978531 + 0.206101i \(0.0660776\pi\)
−0.310776 + 0.950483i \(0.600589\pi\)
\(242\) 0.758290 + 1.31340i 0.0487447 + 0.0844283i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −1.37155 −0.0878043
\(245\) 16.3317 + 0.134970i 1.04339 + 0.00862291i
\(246\) −12.4432 −0.793351
\(247\) −2.77791 + 4.81148i −0.176754 + 0.306147i
\(248\) 5.64219 + 9.77256i 0.358279 + 0.620558i
\(249\) 5.59347 + 9.68817i 0.354472 + 0.613963i
\(250\) 8.06111 13.9622i 0.509829 0.883050i
\(251\) −27.2885 −1.72243 −0.861217 0.508237i \(-0.830297\pi\)
−0.861217 + 0.508237i \(0.830297\pi\)
\(252\) −0.685773 0.399719i −0.0431997 0.0251799i
\(253\) −7.11005 −0.447005
\(254\) 0.178121 0.308514i 0.0111763 0.0193579i
\(255\) −0.136034 0.235618i −0.00851878 0.0147550i
\(256\) −3.52321 6.10238i −0.220201 0.381399i
\(257\) −4.45099 + 7.70933i −0.277645 + 0.480895i −0.970799 0.239894i \(-0.922887\pi\)
0.693154 + 0.720789i \(0.256221\pi\)
\(258\) 6.34374 0.394944
\(259\) −0.689053 + 0.394038i −0.0428157 + 0.0244843i
\(260\) 1.07689 0.0667858
\(261\) −2.52751 + 4.37778i −0.156449 + 0.270978i
\(262\) −4.36664 7.56325i −0.269772 0.467259i
\(263\) 1.12790 + 1.95359i 0.0695495 + 0.120463i 0.898703 0.438558i \(-0.144510\pi\)
−0.829154 + 0.559021i \(0.811177\pi\)
\(264\) 1.28908 2.23276i 0.0793375 0.137417i
\(265\) 27.7343 1.70370
\(266\) −0.0598751 + 14.4903i −0.00367118 + 0.888456i
\(267\) 13.9327 0.852669
\(268\) −1.84350 + 3.19304i −0.112610 + 0.195046i
\(269\) −4.18444 7.24767i −0.255130 0.441898i 0.709801 0.704402i \(-0.248785\pi\)
−0.964931 + 0.262504i \(0.915452\pi\)
\(270\) −1.76922 3.06438i −0.107671 0.186492i
\(271\) −4.44734 + 7.70302i −0.270157 + 0.467925i −0.968902 0.247445i \(-0.920409\pi\)
0.698745 + 0.715371i \(0.253742\pi\)
\(272\) 0.525907 0.0318878
\(273\) 0.0168189 4.07031i 0.00101792 0.246346i
\(274\) −24.3965 −1.47384
\(275\) 0.221850 0.384256i 0.0133781 0.0231715i
\(276\) −1.06656 1.84733i −0.0641993 0.111196i
\(277\) 2.69999 + 4.67651i 0.162226 + 0.280984i 0.935667 0.352885i \(-0.114799\pi\)
−0.773440 + 0.633869i \(0.781466\pi\)
\(278\) −10.8382 + 18.7723i −0.650033 + 1.12589i
\(279\) −4.37690 −0.262038
\(280\) −13.8156 + 7.90048i −0.825638 + 0.472144i
\(281\) −19.7416 −1.17768 −0.588841 0.808249i \(-0.700416\pi\)
−0.588841 + 0.808249i \(0.700416\pi\)
\(282\) 1.74408 3.02083i 0.103858 0.179888i
\(283\) 5.05259 + 8.75133i 0.300345 + 0.520213i 0.976214 0.216809i \(-0.0695649\pi\)
−0.675869 + 0.737022i \(0.736232\pi\)
\(284\) −0.638473 1.10587i −0.0378864 0.0656212i
\(285\) −4.21292 + 7.29700i −0.249552 + 0.432237i
\(286\) −2.33317 −0.137963
\(287\) −18.7545 10.9315i −1.10705 0.645267i
\(288\) 1.68348 0.0991999
\(289\) 8.49320 14.7107i 0.499600 0.865333i
\(290\) −8.94346 15.4905i −0.525178 0.909635i
\(291\) 8.20503 + 14.2115i 0.480987 + 0.833095i
\(292\) −1.56578 + 2.71200i −0.0916301 + 0.158708i
\(293\) −16.1108 −0.941201 −0.470601 0.882346i \(-0.655963\pi\)
−0.470601 + 0.882346i \(0.655963\pi\)
\(294\) −5.23187 9.23733i −0.305129 0.538732i
\(295\) −11.5638 −0.673273
\(296\) 0.386743 0.669859i 0.0224790 0.0389347i
\(297\) 0.500000 + 0.866025i 0.0290129 + 0.0502519i
\(298\) −0.510259 0.883795i −0.0295585 0.0511969i
\(299\) 5.46921 9.47295i 0.316292 0.547835i
\(300\) 0.133117 0.00768549
\(301\) 9.56135 + 5.57305i 0.551107 + 0.321225i
\(302\) −36.0527 −2.07460
\(303\) −4.82753 + 8.36152i −0.277334 + 0.480357i
\(304\) −8.14357 14.1051i −0.467066 0.808982i
\(305\) −5.33317 9.23733i −0.305377 0.528928i
\(306\) −0.0884231 + 0.153153i −0.00505481 + 0.00875519i
\(307\) 27.8168 1.58759 0.793795 0.608185i \(-0.208102\pi\)
0.793795 + 0.608185i \(0.208102\pi\)
\(308\) −0.689053 + 0.394038i −0.0392625 + 0.0224524i
\(309\) 8.82013 0.501759
\(310\) 7.74372 13.4125i 0.439813 0.761779i
\(311\) −4.52139 7.83127i −0.256384 0.444071i 0.708886 0.705323i \(-0.249198\pi\)
−0.965271 + 0.261252i \(0.915865\pi\)
\(312\) 1.98318 + 3.43497i 0.112276 + 0.194467i
\(313\) 8.08842 14.0096i 0.457185 0.791867i −0.541626 0.840619i \(-0.682191\pi\)
0.998811 + 0.0487523i \(0.0155245\pi\)
\(314\) 23.1366 1.30568
\(315\) 0.0255071 6.17295i 0.00143716 0.347806i
\(316\) 4.29466 0.241593
\(317\) 2.61685 4.53251i 0.146977 0.254571i −0.783132 0.621856i \(-0.786379\pi\)
0.930109 + 0.367284i \(0.119712\pi\)
\(318\) −9.01373 15.6122i −0.505465 0.875491i
\(319\) 2.52751 + 4.37778i 0.141514 + 0.245109i
\(320\) 7.54422 13.0670i 0.421734 0.730466i
\(321\) 10.4841 0.585168
\(322\) 0.117883 28.5288i 0.00656938 1.58985i
\(323\) 0.421111 0.0234312
\(324\) −0.150007 + 0.259820i −0.00833373 + 0.0144344i
\(325\) 0.341305 + 0.591157i 0.0189322 + 0.0327915i
\(326\) 0.318962 + 0.552458i 0.0176657 + 0.0305978i
\(327\) −5.26394 + 9.11741i −0.291096 + 0.504194i
\(328\) 21.1533 1.16800
\(329\) 5.28252 3.02083i 0.291235 0.166544i
\(330\) −3.53844 −0.194785
\(331\) 9.76510 16.9137i 0.536739 0.929658i −0.462338 0.886704i \(-0.652989\pi\)
0.999077 0.0429549i \(-0.0136772\pi\)
\(332\) 1.67812 + 2.90659i 0.0920988 + 0.159520i
\(333\) 0.150007 + 0.259820i 0.00822034 + 0.0142381i
\(334\) 12.4611 21.5832i 0.681840 1.18098i
\(335\) −28.6734 −1.56660
\(336\) 10.3090 + 6.00884i 0.562403 + 0.327809i
\(337\) −0.243643 −0.0132721 −0.00663605 0.999978i \(-0.502112\pi\)
−0.00663605 + 0.999978i \(0.502112\pi\)
\(338\) −8.06304 + 13.9656i −0.438572 + 0.759628i
\(339\) −5.71633 9.90097i −0.310468 0.537747i
\(340\) −0.0408121 0.0706887i −0.00221335 0.00383363i
\(341\) −2.18845 + 3.79051i −0.118511 + 0.205268i
\(342\) 5.47686 0.296155
\(343\) 0.229575 18.5188i 0.0123959 0.999923i
\(344\) −10.7843 −0.581449
\(345\) 8.29449 14.3665i 0.446560 0.773465i
\(346\) 2.92816 + 5.07172i 0.157419 + 0.272657i
\(347\) −11.0805 19.1920i −0.594834 1.03028i −0.993570 0.113217i \(-0.963884\pi\)
0.398736 0.917066i \(-0.369449\pi\)
\(348\) −0.758290 + 1.31340i −0.0406486 + 0.0704055i
\(349\) −16.1822 −0.866213 −0.433107 0.901343i \(-0.642583\pi\)
−0.433107 + 0.901343i \(0.642583\pi\)
\(350\) 1.53813 + 0.896537i 0.0822167 + 0.0479219i
\(351\) −1.53844 −0.0821161
\(352\) 0.841739 1.45793i 0.0448648 0.0777082i
\(353\) 3.88844 + 6.73497i 0.206961 + 0.358466i 0.950756 0.309941i \(-0.100309\pi\)
−0.743795 + 0.668408i \(0.766976\pi\)
\(354\) 3.75829 + 6.50955i 0.199751 + 0.345979i
\(355\) 4.96533 8.60020i 0.263532 0.456451i
\(356\) 4.18002 0.221540
\(357\) −0.267819 + 0.153153i −0.0141745 + 0.00810573i
\(358\) 19.2751 1.01872
\(359\) −5.40642 + 9.36420i −0.285340 + 0.494223i −0.972692 0.232102i \(-0.925440\pi\)
0.687352 + 0.726325i \(0.258773\pi\)
\(360\) 3.00765 + 5.20941i 0.158517 + 0.274560i
\(361\) 2.97917 + 5.16008i 0.156798 + 0.271583i
\(362\) 12.5267 21.6968i 0.658387 1.14036i
\(363\) 1.00000 0.0524864
\(364\) 0.00504590 1.22115i 0.000264477 0.0640057i
\(365\) −24.3537 −1.27473
\(366\) −3.46660 + 6.00433i −0.181202 + 0.313851i
\(367\) 0.878346 + 1.52134i 0.0458493 + 0.0794133i 0.888039 0.459768i \(-0.152067\pi\)
−0.842190 + 0.539181i \(0.818734\pi\)
\(368\) 16.0332 + 27.7704i 0.835790 + 1.44763i
\(369\) −4.10240 + 7.10556i −0.213562 + 0.369901i
\(370\) −1.06158 −0.0551891
\(371\) 0.129952 31.4496i 0.00674679 1.63278i
\(372\) −1.31313 −0.0680828
\(373\) 4.63683 8.03123i 0.240086 0.415841i −0.720653 0.693296i \(-0.756158\pi\)
0.960739 + 0.277455i \(0.0894910\pi\)
\(374\) 0.0884231 + 0.153153i 0.00457225 + 0.00791936i
\(375\) −5.31532 9.20640i −0.274482 0.475417i
\(376\) −2.96491 + 5.13537i −0.152903 + 0.264836i
\(377\) −7.77687 −0.400529
\(378\) −3.48318 + 1.99187i −0.179156 + 0.102451i
\(379\) −11.5130 −0.591386 −0.295693 0.955283i \(-0.595550\pi\)
−0.295693 + 0.955283i \(0.595550\pi\)
\(380\) −1.26394 + 2.18920i −0.0648386 + 0.112304i
\(381\) −0.117449 0.203428i −0.00601710 0.0104219i
\(382\) −12.4432 21.5523i −0.636651 1.10271i
\(383\) 11.2392 19.4669i 0.574298 0.994713i −0.421820 0.906680i \(-0.638609\pi\)
0.996118 0.0880331i \(-0.0280581\pi\)
\(384\) −13.1745 −0.672311
\(385\) −5.33317 3.10856i −0.271804 0.158427i
\(386\) −31.3223 −1.59426
\(387\) 2.09146 3.62252i 0.106315 0.184143i
\(388\) 2.46163 + 4.26366i 0.124970 + 0.216455i
\(389\) 17.1663 + 29.7329i 0.870365 + 1.50752i 0.861620 + 0.507554i \(0.169450\pi\)
0.00874493 + 0.999962i \(0.497216\pi\)
\(390\) 2.72185 4.71438i 0.137826 0.238722i
\(391\) −0.829092 −0.0419290
\(392\) 8.89410 + 15.7033i 0.449220 + 0.793138i
\(393\) −5.75854 −0.290480
\(394\) 19.9530 34.5596i 1.00522 1.74109i
\(395\) 16.6995 + 28.9244i 0.840243 + 1.45534i
\(396\) 0.150007 + 0.259820i 0.00753814 + 0.0130564i
\(397\) 4.89980 8.48671i 0.245914 0.425936i −0.716474 0.697614i \(-0.754245\pi\)
0.962388 + 0.271678i \(0.0875785\pi\)
\(398\) 16.6984 0.837016
\(399\) 8.25477 + 4.81148i 0.413255 + 0.240875i
\(400\) −2.00110 −0.100055
\(401\) −1.73819 + 3.01064i −0.0868011 + 0.150344i −0.906157 0.422941i \(-0.860998\pi\)
0.819356 + 0.573285i \(0.194331\pi\)
\(402\) 9.31896 + 16.1409i 0.464788 + 0.805036i
\(403\) −3.36681 5.83149i −0.167713 0.290487i
\(404\) −1.44833 + 2.50858i −0.0720570 + 0.124806i
\(405\) −2.33317 −0.115936
\(406\) −17.6076 + 10.0690i −0.873849 + 0.499714i
\(407\) 0.300014 0.0148712
\(408\) 0.150318 0.260358i 0.00744185 0.0128897i
\(409\) −17.5609 30.4164i −0.868332 1.50399i −0.863700 0.504006i \(-0.831859\pi\)
−0.00463138 0.999989i \(-0.501474\pi\)
\(410\) −14.5161 25.1426i −0.716899 1.24171i
\(411\) −8.04325 + 13.9313i −0.396744 + 0.687181i
\(412\) 2.64616 0.130367
\(413\) −0.0541838 + 13.1129i −0.00266621 + 0.645246i
\(414\) −10.7830 −0.529953
\(415\) −13.0505 + 22.6042i −0.640626 + 1.10960i
\(416\) 1.29497 + 2.24295i 0.0634911 + 0.109970i
\(417\) 7.14649 + 12.3781i 0.349965 + 0.606157i
\(418\) 2.73843 4.74310i 0.133941 0.231993i
\(419\) 13.8100 0.674664 0.337332 0.941386i \(-0.390475\pi\)
0.337332 + 0.941386i \(0.390475\pi\)
\(420\) 0.00765250 1.85197i 0.000373404 0.0903670i
\(421\) 9.72050 0.473748 0.236874 0.971540i \(-0.423877\pi\)
0.236874 + 0.971540i \(0.423877\pi\)
\(422\) 16.8701 29.2199i 0.821224 1.42240i
\(423\) −1.15001 1.99187i −0.0559153 0.0968481i
\(424\) 15.3232 + 26.5406i 0.744161 + 1.28893i
\(425\) 0.0258696 0.0448075i 0.00125486 0.00217348i
\(426\) −6.45500 −0.312746
\(427\) −10.4998 + 6.00433i −0.508119 + 0.290570i
\(428\) 3.14539 0.152038
\(429\) −0.769222 + 1.33233i −0.0371384 + 0.0643256i
\(430\) 7.40053 + 12.8181i 0.356885 + 0.618143i
\(431\) 5.09584 + 8.82625i 0.245458 + 0.425145i 0.962260 0.272131i \(-0.0877284\pi\)
−0.716802 + 0.697276i \(0.754395\pi\)
\(432\) 2.25501 3.90579i 0.108494 0.187918i
\(433\) −21.0101 −1.00968 −0.504840 0.863213i \(-0.668449\pi\)
−0.504840 + 0.863213i \(0.668449\pi\)
\(434\) −15.1730 8.84392i −0.728326 0.424522i
\(435\) −11.7943 −0.565491
\(436\) −1.57926 + 2.73535i −0.0756327 + 0.131000i
\(437\) 12.8383 + 22.2367i 0.614141 + 1.06372i
\(438\) 7.91504 + 13.7092i 0.378195 + 0.655053i
\(439\) −4.92336 + 8.52751i −0.234979 + 0.406996i −0.959267 0.282502i \(-0.908836\pi\)
0.724287 + 0.689498i \(0.242169\pi\)
\(440\) 6.01531 0.286768
\(441\) −6.99976 0.0578482i −0.333322 0.00275468i
\(442\) −0.272068 −0.0129410
\(443\) −7.77560 + 13.4677i −0.369430 + 0.639871i −0.989477 0.144694i \(-0.953780\pi\)
0.620047 + 0.784565i \(0.287114\pi\)
\(444\) 0.0450043 + 0.0779497i 0.00213581 + 0.00369933i
\(445\) 16.2537 + 28.1523i 0.770501 + 1.33455i
\(446\) −12.7408 + 22.0677i −0.603294 + 1.04494i
\(447\) −0.672908 −0.0318274
\(448\) −14.7821 8.61607i −0.698388 0.407071i
\(449\) 2.62021 0.123655 0.0618277 0.998087i \(-0.480307\pi\)
0.0618277 + 0.998087i \(0.480307\pi\)
\(450\) 0.336454 0.582755i 0.0158606 0.0274713i
\(451\) 4.10240 + 7.10556i 0.193174 + 0.334588i
\(452\) −1.71498 2.97043i −0.0806659 0.139717i
\(453\) −11.8862 + 20.5875i −0.558462 + 0.967285i
\(454\) −8.22010 −0.385788
\(455\) 8.24403 4.71438i 0.386486 0.221014i
\(456\) −9.31058 −0.436008
\(457\) −3.81295 + 6.60423i −0.178362 + 0.308933i −0.941320 0.337516i \(-0.890413\pi\)
0.762957 + 0.646449i \(0.223747\pi\)
\(458\) 21.4082 + 37.0802i 1.00034 + 1.73264i
\(459\) 0.0583043 + 0.100986i 0.00272141 + 0.00471362i
\(460\) 2.48847 4.31015i 0.116025 0.200962i
\(461\) −12.7392 −0.593325 −0.296662 0.954982i \(-0.595874\pi\)
−0.296662 + 0.954982i \(0.595874\pi\)
\(462\) −0.0165798 + 4.01246i −0.000771363 + 0.186676i
\(463\) −8.76838 −0.407501 −0.203751 0.979023i \(-0.565313\pi\)
−0.203751 + 0.979023i \(0.565313\pi\)
\(464\) 11.3991 19.7439i 0.529191 0.916586i
\(465\) −5.10604 8.84392i −0.236787 0.410127i
\(466\) 4.25501 + 7.36989i 0.197110 + 0.341404i
\(467\) 9.68413 16.7734i 0.448128 0.776181i −0.550136 0.835075i \(-0.685424\pi\)
0.998264 + 0.0588943i \(0.0187575\pi\)
\(468\) −0.461555 −0.0213354
\(469\) −0.134353 + 32.5145i −0.00620384 + 1.50138i
\(470\) 8.13847 0.375400
\(471\) 7.62790 13.2119i 0.351475 0.608773i
\(472\) −6.38904 11.0661i −0.294079 0.509360i
\(473\) −2.09146 3.62252i −0.0961656 0.166564i
\(474\) 10.8548 18.8011i 0.498577 0.863561i
\(475\) −1.60235 −0.0735207
\(476\) −0.0803495 + 0.0459482i −0.00368281 + 0.00210603i
\(477\) −11.8869 −0.544265
\(478\) 9.11108 15.7809i 0.416731 0.721800i
\(479\) −12.0995 20.9569i −0.552839 0.957546i −0.998068 0.0621289i \(-0.980211\pi\)
0.445229 0.895417i \(-0.353122\pi\)
\(480\) 1.96392 + 3.40161i 0.0896404 + 0.155262i
\(481\) −0.230778 + 0.399719i −0.0105226 + 0.0182256i
\(482\) 31.4427 1.43218
\(483\) −16.2522 9.47295i −0.739499 0.431034i
\(484\) 0.300014 0.0136370
\(485\) −19.1438 + 33.1580i −0.869274 + 1.50563i
\(486\) 0.758290 + 1.31340i 0.0343967 + 0.0595769i
\(487\) 10.6093 + 18.3759i 0.480755 + 0.832692i 0.999756 0.0220818i \(-0.00702942\pi\)
−0.519001 + 0.854773i \(0.673696\pi\)
\(488\) 5.89317 10.2073i 0.266771 0.462062i
\(489\) 0.420633 0.0190217
\(490\) 12.5614 21.3476i 0.567466 0.964386i
\(491\) −28.2038 −1.27282 −0.636411 0.771350i \(-0.719582\pi\)
−0.636411 + 0.771350i \(0.719582\pi\)
\(492\) −1.23078 + 2.13177i −0.0554877 + 0.0961076i
\(493\) 0.294729 + 0.510486i 0.0132739 + 0.0229911i
\(494\) 4.21292 + 7.29700i 0.189548 + 0.328307i
\(495\) −1.16659 + 2.02059i −0.0524342 + 0.0908187i
\(496\) 19.7399 0.886349
\(497\) −9.72902 5.67078i −0.436406 0.254369i
\(498\) 16.9659 0.760259
\(499\) 17.7490 30.7422i 0.794555 1.37621i −0.128567 0.991701i \(-0.541038\pi\)
0.923122 0.384508i \(-0.125629\pi\)
\(500\) −1.59467 2.76205i −0.0713159 0.123523i
\(501\) −8.21657 14.2315i −0.367089 0.635817i
\(502\) −20.6926 + 35.8406i −0.923555 + 1.59964i
\(503\) 16.0477 0.715529 0.357765 0.933812i \(-0.383539\pi\)
0.357765 + 0.933812i \(0.383539\pi\)
\(504\) 5.92136 3.38615i 0.263758 0.150831i
\(505\) −22.5269 −1.00243
\(506\) −5.39148 + 9.33831i −0.239680 + 0.415139i
\(507\) 5.31659 + 9.20861i 0.236118 + 0.408969i
\(508\) −0.0352364 0.0610313i −0.00156336 0.00270782i
\(509\) −4.10652 + 7.11270i −0.182018 + 0.315265i −0.942568 0.334015i \(-0.891596\pi\)
0.760550 + 0.649280i \(0.224930\pi\)
\(510\) −0.412613 −0.0182708
\(511\) −0.114112 + 27.6161i −0.00504803 + 1.22167i
\(512\) 15.6626 0.692197
\(513\) 1.80566 3.12750i 0.0797219 0.138082i
\(514\) 6.75027 + 11.6918i 0.297742 + 0.515704i
\(515\) 10.2894 + 17.8218i 0.453407 + 0.785324i
\(516\) 0.627469 1.08681i 0.0276228 0.0478441i
\(517\) −2.30001 −0.101155
\(518\) −0.00497418 + 1.20380i −0.000218553 + 0.0528917i
\(519\) 3.86153 0.169502
\(520\) −4.62711 + 8.01438i −0.202912 + 0.351454i
\(521\) 4.27767 + 7.40914i 0.187408 + 0.324601i 0.944385 0.328841i \(-0.106658\pi\)
−0.756977 + 0.653441i \(0.773325\pi\)
\(522\) 3.83317 + 6.63925i 0.167773 + 0.290592i
\(523\) −15.0185 + 26.0128i −0.656712 + 1.13746i 0.324750 + 0.945800i \(0.394720\pi\)
−0.981462 + 0.191658i \(0.938613\pi\)
\(524\) −1.72765 −0.0754725
\(525\) 1.01906 0.582755i 0.0444756 0.0254335i
\(526\) 3.42111 0.149168
\(527\) −0.255192 + 0.442006i −0.0111163 + 0.0192541i
\(528\) −2.25501 3.90579i −0.0981367 0.169978i
\(529\) −13.7764 23.8614i −0.598974 1.03745i
\(530\) 21.0306 36.4261i 0.913511 1.58225i
\(531\) 4.95627 0.215084
\(532\) 2.47655 + 1.44351i 0.107372 + 0.0625843i
\(533\) −12.6226 −0.546746
\(534\) 10.5650 18.2992i 0.457194 0.791884i
\(535\) 12.2307 + 21.1841i 0.528778 + 0.915870i
\(536\) −15.8421 27.4393i −0.684275 1.18520i
\(537\) 6.35480 11.0068i 0.274230 0.474980i
\(538\) −12.6921 −0.547194
\(539\) −3.54998 + 6.03305i −0.152908 + 0.259862i
\(540\) −0.699986 −0.0301226
\(541\) −9.50845 + 16.4691i −0.408800 + 0.708063i −0.994756 0.102281i \(-0.967386\pi\)
0.585955 + 0.810343i \(0.300719\pi\)
\(542\) 6.74475 + 11.6823i 0.289712 + 0.501796i
\(543\) −8.25982 14.3064i −0.354463 0.613947i
\(544\) 0.0981539 0.170008i 0.00420831 0.00728901i
\(545\) −24.5634 −1.05218
\(546\) −5.33317 3.10856i −0.228239 0.133034i
\(547\) 34.4968 1.47498 0.737489 0.675360i \(-0.236012\pi\)
0.737489 + 0.675360i \(0.236012\pi\)
\(548\) −2.41309 + 4.17960i −0.103082 + 0.178543i
\(549\) 2.28580 + 3.95913i 0.0975557 + 0.168971i
\(550\) −0.336454 0.582755i −0.0143464 0.0248488i
\(551\) 9.12766 15.8096i 0.388852 0.673511i
\(552\) 18.3309 0.780214
\(553\) 32.8774 18.8011i 1.39809 0.799503i
\(554\) 8.18949 0.347938
\(555\) −0.349993 + 0.606205i −0.0148564 + 0.0257320i
\(556\) 2.14405 + 3.71360i 0.0909279 + 0.157492i
\(557\) −2.71456 4.70176i −0.115020 0.199220i 0.802768 0.596292i \(-0.203360\pi\)
−0.917788 + 0.397072i \(0.870026\pi\)
\(558\) −3.31896 + 5.74861i −0.140503 + 0.243358i
\(559\) 6.43520 0.272180
\(560\) −0.115038 + 27.8401i −0.00486123 + 1.17646i
\(561\) 0.116609 0.00492321
\(562\) −14.9698 + 25.9285i −0.631464 + 1.09373i
\(563\) 17.0841 + 29.5905i 0.720007 + 1.24709i 0.960996 + 0.276562i \(0.0891950\pi\)
−0.240989 + 0.970528i \(0.577472\pi\)
\(564\) −0.345019 0.597590i −0.0145279 0.0251631i
\(565\) 13.3372 23.1007i 0.561100 0.971853i
\(566\) 15.3253 0.644170
\(567\) −0.0109324 + 2.64573i −0.000459117 + 0.111110i
\(568\) 10.9734 0.460434
\(569\) 8.29626 14.3695i 0.347797 0.602402i −0.638061 0.769986i \(-0.720263\pi\)
0.985858 + 0.167584i \(0.0535965\pi\)
\(570\) 6.38923 + 11.0665i 0.267616 + 0.463524i
\(571\) −6.96720 12.0675i −0.291568 0.505011i 0.682612 0.730781i \(-0.260844\pi\)
−0.974181 + 0.225769i \(0.927510\pi\)
\(572\) −0.230778 + 0.399719i −0.00964930 + 0.0167131i
\(573\) −16.4096 −0.685520
\(574\) −28.5788 + 16.3429i −1.19286 + 0.682139i
\(575\) 3.15473 0.131562
\(576\) −3.23346 + 5.60051i −0.134727 + 0.233355i
\(577\) −22.8387 39.5578i −0.950788 1.64681i −0.743726 0.668485i \(-0.766943\pi\)
−0.207062 0.978328i \(-0.566390\pi\)
\(578\) −12.8806 22.3099i −0.535763 0.927969i
\(579\) −10.3266 + 17.8862i −0.429159 + 0.743326i
\(580\) −3.53844 −0.146926
\(581\) 25.5711 + 14.9047i 1.06087 + 0.618352i
\(582\) 24.8872 1.03161
\(583\) −5.94346 + 10.2944i −0.246153 + 0.426350i
\(584\) −13.4554 23.3055i −0.556790 0.964389i
\(585\) −1.79473 3.10856i −0.0742029 0.128523i
\(586\) −12.2166 + 21.1598i −0.504665 + 0.874105i
\(587\) 29.3966 1.21333 0.606664 0.794958i \(-0.292507\pi\)
0.606664 + 0.794958i \(0.292507\pi\)
\(588\) −2.10003 0.0173553i −0.0866037 0.000715720i
\(589\) 15.8064 0.651292
\(590\) −8.76874 + 15.1879i −0.361003 + 0.625276i
\(591\) −13.1566 22.7879i −0.541189 0.937368i
\(592\) −0.676535 1.17179i −0.0278054 0.0481604i
\(593\) 0.912178 1.57994i 0.0374587 0.0648803i −0.846688 0.532089i \(-0.821407\pi\)
0.884147 + 0.467209i \(0.154740\pi\)
\(594\) 1.51658 0.0622260
\(595\) −0.621893 0.362485i −0.0254951 0.0148604i
\(596\) −0.201882 −0.00826941
\(597\) 5.50528 9.53543i 0.225316 0.390259i
\(598\) −8.29449 14.3665i −0.339187 0.587489i
\(599\) 11.2497 + 19.4851i 0.459651 + 0.796139i 0.998942 0.0459800i \(-0.0146411\pi\)
−0.539291 + 0.842119i \(0.681308\pi\)
\(600\) −0.571967 + 0.990675i −0.0233504 + 0.0404442i
\(601\) −10.3352 −0.421583 −0.210792 0.977531i \(-0.567604\pi\)
−0.210792 + 0.977531i \(0.567604\pi\)
\(602\) 14.5699 8.33185i 0.593825 0.339581i
\(603\) 12.2894 0.500465
\(604\) −3.56603 + 6.17654i −0.145100 + 0.251320i
\(605\) 1.16659 + 2.02059i 0.0474285 + 0.0821486i
\(606\) 7.32133 + 12.6809i 0.297409 + 0.515127i
\(607\) 16.3137 28.2562i 0.662155 1.14689i −0.317894 0.948126i \(-0.602976\pi\)
0.980048 0.198759i \(-0.0636911\pi\)
\(608\) −6.07958 −0.246560
\(609\) −0.0552634 + 13.3742i −0.00223939 + 0.541951i
\(610\) −16.1764 −0.654962
\(611\) 1.76922 3.06438i 0.0715751 0.123972i
\(612\) 0.0174921 + 0.0302972i 0.000707077 + 0.00122469i
\(613\) 3.19350 + 5.53130i 0.128984 + 0.223407i 0.923283 0.384120i \(-0.125495\pi\)
−0.794299 + 0.607527i \(0.792162\pi\)
\(614\) 21.0932 36.5345i 0.851253 1.47441i
\(615\) −19.1432 −0.771929
\(616\) 0.0281855 6.82112i 0.00113562 0.274831i
\(617\) 4.14609 0.166915 0.0834577 0.996511i \(-0.473404\pi\)
0.0834577 + 0.996511i \(0.473404\pi\)
\(618\) 6.68821 11.5843i 0.269039 0.465990i
\(619\) 19.2980 + 33.4252i 0.775653 + 1.34347i 0.934427 + 0.356155i \(0.115913\pi\)
−0.158774 + 0.987315i \(0.550754\pi\)
\(620\) −1.53188 2.65330i −0.0615220 0.106559i
\(621\) −3.55502 + 6.15748i −0.142658 + 0.247091i
\(622\) −13.7141 −0.549885
\(623\) 31.9998 18.2992i 1.28204 0.733142i
\(624\) 6.93842 0.277759
\(625\) 13.5108 23.4014i 0.540433 0.936057i
\(626\) −12.2667 21.2466i −0.490278 0.849186i
\(627\) −1.80566 3.12750i −0.0721112 0.124900i
\(628\) 2.28848 3.96376i 0.0913203 0.158171i
\(629\) 0.0349842 0.00139491
\(630\) −8.08818 4.71438i −0.322241 0.187826i
\(631\) −8.89990 −0.354299 −0.177150 0.984184i \(-0.556688\pi\)
−0.177150 + 0.984184i \(0.556688\pi\)
\(632\) −18.4530 + 31.9615i −0.734021 + 1.27136i
\(633\) −11.1238 19.2670i −0.442131 0.765793i
\(634\) −3.96866 6.87392i −0.157616 0.272998i
\(635\) 0.274029 0.474632i 0.0108745 0.0188352i
\(636\) −3.56625 −0.141411
\(637\) −5.30730 9.37050i −0.210283 0.371273i
\(638\) 7.66635 0.303514
\(639\) −2.12814 + 3.68605i −0.0841880 + 0.145818i
\(640\) −15.3693 26.6203i −0.607523 1.05226i
\(641\) −18.6648 32.3284i −0.737217 1.27690i −0.953744 0.300620i \(-0.902806\pi\)
0.216527 0.976277i \(-0.430527\pi\)
\(642\) 7.95002 13.7698i 0.313762 0.543452i
\(643\) 15.9206 0.627846 0.313923 0.949449i \(-0.398357\pi\)
0.313923 + 0.949449i \(0.398357\pi\)
\(644\) −4.87588 2.84202i −0.192137 0.111991i
\(645\) 9.75950 0.384280
\(646\) 0.319324 0.553086i 0.0125636 0.0217609i
\(647\) −8.77640 15.2012i −0.345036 0.597619i 0.640325 0.768105i \(-0.278800\pi\)
−0.985360 + 0.170485i \(0.945467\pi\)
\(648\) −1.28908 2.23276i −0.0506399 0.0877109i
\(649\) 2.47814 4.29226i 0.0972753 0.168486i
\(650\) 1.03523 0.0406051
\(651\) −10.0526 + 5.74861i −0.393992 + 0.225306i
\(652\) 0.126196 0.00494221
\(653\) 11.9829 20.7549i 0.468926 0.812204i −0.530443 0.847721i \(-0.677974\pi\)
0.999369 + 0.0355170i \(0.0113078\pi\)
\(654\) 7.98318 + 13.8273i 0.312167 + 0.540689i
\(655\) −6.71784 11.6356i −0.262488 0.454642i
\(656\) 18.5019 32.0462i 0.722377 1.25119i
\(657\) 10.4380 0.407226
\(658\) 0.0381338 9.22871i 0.00148661 0.359773i
\(659\) −38.6166 −1.50429 −0.752144 0.658999i \(-0.770980\pi\)
−0.752144 + 0.658999i \(0.770980\pi\)
\(660\) −0.349993 + 0.606205i −0.0136235 + 0.0235965i
\(661\) −5.18942 8.98833i −0.201845 0.349606i 0.747278 0.664512i \(-0.231360\pi\)
−0.949123 + 0.314906i \(0.898027\pi\)
\(662\) −14.8096 25.6509i −0.575590 0.996951i
\(663\) −0.0896979 + 0.155361i −0.00348358 + 0.00603373i
\(664\) −28.8418 −1.11928
\(665\) −0.0921145 + 22.2925i −0.00357205 + 0.864466i
\(666\) 0.454996 0.0176307
\(667\) −17.9707 + 31.1262i −0.695830 + 1.20521i
\(668\) −2.46509 4.26966i −0.0953771 0.165198i
\(669\) 8.40101 + 14.5510i 0.324802 + 0.562573i
\(670\) −21.7428 + 37.6596i −0.839996 + 1.45492i
\(671\) 4.57160 0.176485
\(672\) 3.86650 2.21107i 0.149154 0.0852940i
\(673\) −11.8103 −0.455253 −0.227627 0.973748i \(-0.573097\pi\)
−0.227627 + 0.973748i \(0.573097\pi\)
\(674\) −0.184752 + 0.320000i −0.00711640 + 0.0123260i
\(675\) −0.221850 0.384256i −0.00853903 0.0147900i
\(676\) 1.59505 + 2.76272i 0.0613483 + 0.106258i
\(677\) −20.9845 + 36.3462i −0.806499 + 1.39690i 0.108776 + 0.994066i \(0.465307\pi\)
−0.915275 + 0.402830i \(0.868026\pi\)
\(678\) −17.3385 −0.665882
\(679\) 37.5102 + 21.8637i 1.43951 + 0.839050i
\(680\) 0.701436 0.0268988
\(681\) −2.71008 + 4.69399i −0.103850 + 0.179874i
\(682\) 3.31896 + 5.74861i 0.127090 + 0.220126i
\(683\) −12.0767 20.9174i −0.462100 0.800381i 0.536965 0.843604i \(-0.319571\pi\)
−0.999065 + 0.0432234i \(0.986237\pi\)
\(684\) 0.541724 0.938294i 0.0207134 0.0358766i
\(685\) −37.5326 −1.43405
\(686\) −24.1485 14.3442i −0.921994 0.547663i
\(687\) 28.2323 1.07713
\(688\) −9.43254 + 16.3376i −0.359612 + 0.622867i
\(689\) −9.14369 15.8373i −0.348347 0.603354i
\(690\) −12.5793 21.7879i −0.478884 0.829452i
\(691\) 2.63720 4.56776i 0.100324 0.173766i −0.811494 0.584360i \(-0.801345\pi\)
0.911818 + 0.410595i \(0.134679\pi\)
\(692\) 1.15851 0.0440401
\(693\) 2.28580 + 1.33233i 0.0868304 + 0.0506111i
\(694\) −33.6090 −1.27578
\(695\) −16.6740 + 28.8802i −0.632481 + 1.09549i
\(696\) −6.51634 11.2866i −0.247001 0.427819i
\(697\) 0.478374 + 0.828569i 0.0181197 + 0.0313843i
\(698\) −12.2708 + 21.2537i −0.464457 + 0.804463i
\(699\) 5.61132 0.212240
\(700\) 0.305733 0.174835i 0.0115556 0.00660814i
\(701\) 26.9166 1.01662 0.508312 0.861173i \(-0.330270\pi\)
0.508312 + 0.861173i \(0.330270\pi\)
\(702\) −1.16659 + 2.02059i −0.0440300 + 0.0762622i
\(703\) −0.541724 0.938294i −0.0204315 0.0353884i
\(704\) 3.23346 + 5.60051i 0.121865 + 0.211077i
\(705\) 2.68317 4.64738i 0.101054 0.175031i
\(706\) 11.7943 0.443883
\(707\) −0.105553 + 25.5447i −0.00396972 + 0.960705i
\(708\) 1.48695 0.0558831
\(709\) −5.87138 + 10.1695i −0.220504 + 0.381925i −0.954961 0.296731i \(-0.904104\pi\)
0.734457 + 0.678655i \(0.237437\pi\)
\(710\) −7.53031 13.0429i −0.282608 0.489491i
\(711\) −7.15742 12.3970i −0.268424 0.464924i
\(712\) −17.9604 + 31.1084i −0.673095 + 1.16584i
\(713\) −31.1200 −1.16545
\(714\) −0.00193335 + 0.467887i −7.23537e−5 + 0.0175102i
\(715\) −3.58946 −0.134238
\(716\) 1.90653 3.30221i 0.0712504 0.123409i
\(717\) −6.00765 10.4056i −0.224360 0.388603i
\(718\) 8.19927 + 14.2015i 0.305994 + 0.529997i
\(719\) −14.0839 + 24.3941i −0.525242 + 0.909746i 0.474326 + 0.880349i \(0.342692\pi\)
−0.999568 + 0.0293966i \(0.990641\pi\)
\(720\) 10.5227 0.392156
\(721\) 20.2575 11.5843i 0.754428 0.431423i
\(722\) 9.03630 0.336296
\(723\) 10.3663 17.9550i 0.385528 0.667754i
\(724\) −2.47806 4.29213i −0.0920965 0.159516i
\(725\) −1.12146 1.94242i −0.0416499 0.0721398i
\(726\) 0.758290 1.31340i 0.0281428 0.0487447i
\(727\) 32.9885 1.22347 0.611737 0.791061i \(-0.290471\pi\)
0.611737 + 0.791061i \(0.290471\pi\)
\(728\) 9.06632 + 5.28451i 0.336020 + 0.195857i
\(729\) 1.00000 0.0370370
\(730\) −18.4672 + 31.9861i −0.683500 + 1.18386i
\(731\) −0.243882 0.422417i −0.00902032 0.0156237i
\(732\) 0.685773 + 1.18779i 0.0253469 + 0.0439021i
\(733\) −0.953106 + 1.65083i −0.0352038 + 0.0609747i −0.883090 0.469203i \(-0.844541\pi\)
0.847887 + 0.530177i \(0.177875\pi\)
\(734\) 2.66416 0.0983360
\(735\) −8.04894 14.2111i −0.296890 0.524185i
\(736\) 11.9696 0.441206
\(737\) 6.14472 10.6430i 0.226344 0.392039i
\(738\) 6.22161 + 10.7761i 0.229021 + 0.396675i
\(739\) 18.9136 + 32.7594i 0.695749 + 1.20507i 0.969927 + 0.243394i \(0.0782609\pi\)
−0.274178 + 0.961679i \(0.588406\pi\)
\(740\) −0.105003 + 0.181870i −0.00385998 + 0.00668569i
\(741\) 5.55582 0.204098
\(742\) −41.2072 24.0186i −1.51276 0.881750i
\(743\) 46.4995 1.70590 0.852950 0.521993i \(-0.174811\pi\)
0.852950 + 0.521993i \(0.174811\pi\)
\(744\) 5.64219 9.77256i 0.206853 0.358279i
\(745\) −0.785005 1.35967i −0.0287604 0.0498144i
\(746\) −7.03212 12.1800i −0.257464 0.445941i
\(747\) 5.59347 9.68817i 0.204654 0.354472i
\(748\) 0.0349842 0.00127915
\(749\) 24.0793 13.7698i 0.879838 0.503139i
\(750\) −16.1222 −0.588700
\(751\) −2.07408 + 3.59242i −0.0756843 + 0.131089i −0.901384 0.433021i \(-0.857447\pi\)
0.825699 + 0.564110i \(0.190781\pi\)
\(752\) 5.18656 + 8.98338i 0.189134 + 0.327590i
\(753\) 13.6442 + 23.6325i 0.497224 + 0.861217i
\(754\) −5.89713 + 10.2141i −0.214761 + 0.371976i
\(755\) −55.4651 −2.01858
\(756\) −0.00327987 + 0.793757i −0.000119288 + 0.0288686i
\(757\) 4.56418 0.165888 0.0829439 0.996554i \(-0.473568\pi\)
0.0829439 + 0.996554i \(0.473568\pi\)
\(758\) −8.73023 + 15.1212i −0.317096 + 0.549227i
\(759\) 3.55502 + 6.15748i 0.129039 + 0.223502i
\(760\) −10.8616 18.8129i −0.393992 0.682414i
\(761\) 6.52544 11.3024i 0.236547 0.409711i −0.723174 0.690666i \(-0.757318\pi\)
0.959721 + 0.280954i \(0.0906510\pi\)
\(762\) −0.356242 −0.0129053
\(763\) −0.115095 + 27.8539i −0.00416671 + 1.00838i
\(764\) −4.92311 −0.178112
\(765\) −0.136034 + 0.235618i −0.00491832 + 0.00851878i
\(766\) −17.0452 29.5231i −0.615868 1.06671i
\(767\) 3.81247 + 6.60340i 0.137660 + 0.238435i
\(768\) −3.52321 + 6.10238i −0.127133 + 0.220201i
\(769\) −4.40156