# Properties

 Label 231.2.i.e.100.1 Level $231$ Weight $2$ Character 231.100 Analytic conductor $1.845$ Analytic rank $0$ Dimension $8$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [231,2,Mod(67,231)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(231, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 4, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("231.67");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$231 = 3 \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 231.i (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.84454428669$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(\zeta_{3})$$ Coefficient field: 8.0.10423593216.5 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{8} - 2x^{7} + 8x^{6} + 21x^{4} - 4x^{3} + 28x^{2} + 12x + 9$$ x^8 - 2*x^7 + 8*x^6 + 21*x^4 - 4*x^3 + 28*x^2 + 12*x + 9 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 100.1 Root $$1.39083 - 2.40898i$$ of defining polynomial Character $$\chi$$ $$=$$ 231.100 Dual form 231.2.i.e.67.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-1.39083 + 2.40898i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-2.86880 - 4.96890i) q^{4} +(-0.412855 + 0.715087i) q^{5} +2.78165 q^{6} +(2.63323 - 0.257073i) q^{7} +10.3967 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(-1.39083 + 2.40898i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-2.86880 - 4.96890i) q^{4} +(-0.412855 + 0.715087i) q^{5} +2.78165 q^{6} +(2.63323 - 0.257073i) q^{7} +10.3967 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.14842 - 1.98912i) q^{10} +(0.500000 + 0.866025i) q^{11} +(-2.86880 + 4.96890i) q^{12} -0.296842 q^{13} +(-3.04309 + 6.70095i) q^{14} +0.825711 q^{15} +(-8.72241 + 15.1077i) q^{16} +(3.34677 + 5.79677i) q^{17} +(-1.39083 - 2.40898i) q^{18} +(1.41669 - 2.45379i) q^{19} +4.73760 q^{20} +(-1.53925 - 2.15191i) q^{21} -2.78165 q^{22} +(1.98481 - 3.43779i) q^{23} +(-5.19835 - 9.00380i) q^{24} +(2.15910 + 3.73967i) q^{25} +(0.412855 - 0.715087i) q^{26} +1.00000 q^{27} +(-8.83158 - 12.3468i) q^{28} -0.484812 q^{29} +(-1.14842 + 1.98912i) q^{30} +(3.66564 + 6.34907i) q^{31} +(-13.8660 - 24.0166i) q^{32} +(0.500000 - 0.866025i) q^{33} -18.6191 q^{34} +(-0.903315 + 1.98912i) q^{35} +5.73760 q^{36} +(2.86880 - 4.96890i) q^{37} +(3.94075 + 6.82559i) q^{38} +(0.148421 + 0.257073i) q^{39} +(-4.29233 + 7.43454i) q^{40} +0.645420 q^{41} +(7.32474 - 0.715087i) q^{42} +6.43308 q^{43} +(2.86880 - 4.96890i) q^{44} +(-0.412855 - 0.715087i) q^{45} +(5.52106 + 9.56275i) q^{46} +(-3.86880 + 6.70095i) q^{47} +17.4448 q^{48} +(6.86783 - 1.35386i) q^{49} -12.0117 q^{50} +(3.34677 - 5.79677i) q^{51} +(0.851579 + 1.47498i) q^{52} +(-3.55677 - 6.16050i) q^{53} +(-1.39083 + 2.40898i) q^{54} -0.825711 q^{55} +(27.3769 - 2.67271i) q^{56} -2.83339 q^{57} +(0.674289 - 1.16790i) q^{58} +(0.578495 + 1.00198i) q^{59} +(-2.36880 - 4.10288i) q^{60} +(-2.63323 + 4.56089i) q^{61} -20.3931 q^{62} +(-1.09398 + 2.40898i) q^{63} +42.2513 q^{64} +(0.122553 - 0.212268i) q^{65} +(1.39083 + 2.40898i) q^{66} +(-1.50865 - 2.61306i) q^{67} +(19.2024 - 33.2595i) q^{68} -3.96962 q^{69} +(-3.53541 - 4.94260i) q^{70} +3.58061 q^{71} +(-5.19835 + 9.00380i) q^{72} +(-8.01625 - 13.8845i) q^{73} +(7.98000 + 13.8218i) q^{74} +(2.15910 - 3.73967i) q^{75} -16.2568 q^{76} +(1.53925 + 2.15191i) q^{77} -0.825711 q^{78} +(2.16210 - 3.74487i) q^{79} +(-7.20219 - 12.4746i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-0.897667 + 1.55481i) q^{82} +2.37594 q^{83} +(-6.27684 + 13.8218i) q^{84} -5.52693 q^{85} +(-8.94729 + 15.4972i) q^{86} +(0.242406 + 0.419859i) q^{87} +(5.19835 + 9.00380i) q^{88} +(-6.08617 + 10.5416i) q^{89} +2.29684 q^{90} +(-0.781653 + 0.0763099i) q^{91} -22.7761 q^{92} +(3.66564 - 6.34907i) q^{93} +(-10.7617 - 18.6397i) q^{94} +(1.16978 + 2.02612i) q^{95} +(-13.8660 + 24.0166i) q^{96} -10.7680 q^{97} +(-6.29052 + 18.4275i) q^{98} -1.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q - 2 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} + 4 q^{6} + 2 q^{7} + 24 q^{8} - 4 q^{9}+O(q^{10})$$ 8 * q - 2 * q^2 - 4 * q^3 - 4 * q^4 - 4 * q^5 + 4 * q^6 + 2 * q^7 + 24 * q^8 - 4 * q^9 $$8 q - 2 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} + 4 q^{6} + 2 q^{7} + 24 q^{8} - 4 q^{9} - 10 q^{10} + 4 q^{11} - 4 q^{12} - 4 q^{13} - 4 q^{14} + 8 q^{15} - 12 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{21} - 4 q^{22} - 4 q^{23} - 12 q^{24} - 4 q^{25} + 4 q^{26} + 8 q^{27} - 22 q^{28} + 16 q^{29} - 10 q^{30} + 12 q^{31} - 26 q^{32} + 4 q^{33} - 32 q^{34} - 2 q^{35} + 8 q^{36} + 4 q^{37} - 8 q^{38} + 2 q^{39} + 6 q^{40} + 4 q^{41} + 20 q^{42} + 36 q^{43} + 4 q^{44} - 4 q^{45} + 14 q^{46} - 12 q^{47} + 24 q^{48} - 4 q^{49} + 4 q^{50} - 2 q^{51} + 6 q^{52} + 12 q^{53} - 2 q^{54} - 8 q^{55} + 48 q^{56} + 4 q^{58} - 12 q^{59} - 2 q^{61} - 52 q^{62} + 2 q^{63} + 112 q^{64} + 4 q^{65} + 2 q^{66} - 28 q^{67} + 48 q^{68} + 8 q^{69} - 32 q^{70} + 24 q^{71} - 12 q^{72} - 6 q^{73} + 16 q^{74} - 4 q^{75} - 36 q^{76} + 4 q^{77} - 8 q^{78} - 2 q^{79} - 16 q^{80} - 4 q^{81} + 12 q^{82} - 24 q^{83} - 4 q^{84} + 36 q^{85} - 36 q^{86} - 8 q^{87} + 12 q^{88} - 8 q^{89} + 20 q^{90} + 12 q^{91} - 32 q^{92} + 12 q^{93} - 20 q^{94} - 34 q^{95} - 26 q^{96} - 88 q^{97} + 16 q^{98} - 8 q^{99}+O(q^{100})$$ 8 * q - 2 * q^2 - 4 * q^3 - 4 * q^4 - 4 * q^5 + 4 * q^6 + 2 * q^7 + 24 * q^8 - 4 * q^9 - 10 * q^10 + 4 * q^11 - 4 * q^12 - 4 * q^13 - 4 * q^14 + 8 * q^15 - 12 * q^16 - 2 * q^17 - 2 * q^18 - 4 * q^21 - 4 * q^22 - 4 * q^23 - 12 * q^24 - 4 * q^25 + 4 * q^26 + 8 * q^27 - 22 * q^28 + 16 * q^29 - 10 * q^30 + 12 * q^31 - 26 * q^32 + 4 * q^33 - 32 * q^34 - 2 * q^35 + 8 * q^36 + 4 * q^37 - 8 * q^38 + 2 * q^39 + 6 * q^40 + 4 * q^41 + 20 * q^42 + 36 * q^43 + 4 * q^44 - 4 * q^45 + 14 * q^46 - 12 * q^47 + 24 * q^48 - 4 * q^49 + 4 * q^50 - 2 * q^51 + 6 * q^52 + 12 * q^53 - 2 * q^54 - 8 * q^55 + 48 * q^56 + 4 * q^58 - 12 * q^59 - 2 * q^61 - 52 * q^62 + 2 * q^63 + 112 * q^64 + 4 * q^65 + 2 * q^66 - 28 * q^67 + 48 * q^68 + 8 * q^69 - 32 * q^70 + 24 * q^71 - 12 * q^72 - 6 * q^73 + 16 * q^74 - 4 * q^75 - 36 * q^76 + 4 * q^77 - 8 * q^78 - 2 * q^79 - 16 * q^80 - 4 * q^81 + 12 * q^82 - 24 * q^83 - 4 * q^84 + 36 * q^85 - 36 * q^86 - 8 * q^87 + 12 * q^88 - 8 * q^89 + 20 * q^90 + 12 * q^91 - 32 * q^92 + 12 * q^93 - 20 * q^94 - 34 * q^95 - 26 * q^96 - 88 * q^97 + 16 * q^98 - 8 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/231\mathbb{Z}\right)^\times$$.

 $$n$$ $$155$$ $$199$$ $$211$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.39083 + 2.40898i −0.983463 + 1.70341i −0.334886 + 0.942259i $$0.608698\pi$$
−0.648577 + 0.761149i $$0.724635\pi$$
$$3$$ −0.500000 0.866025i −0.288675 0.500000i
$$4$$ −2.86880 4.96890i −1.43440 2.48445i
$$5$$ −0.412855 + 0.715087i −0.184635 + 0.319796i −0.943453 0.331505i $$-0.892443\pi$$
0.758819 + 0.651302i $$0.225777\pi$$
$$6$$ 2.78165 1.13561
$$7$$ 2.63323 0.257073i 0.995268 0.0971643i
$$8$$ 10.3967 3.67579
$$9$$ −0.500000 + 0.866025i −0.166667 + 0.288675i
$$10$$ −1.14842 1.98912i −0.363163 0.629016i
$$11$$ 0.500000 + 0.866025i 0.150756 + 0.261116i
$$12$$ −2.86880 + 4.96890i −0.828151 + 1.43440i
$$13$$ −0.296842 −0.0823291 −0.0411645 0.999152i $$-0.513107\pi$$
−0.0411645 + 0.999152i $$0.513107\pi$$
$$14$$ −3.04309 + 6.70095i −0.813299 + 1.79091i
$$15$$ 0.825711 0.213198
$$16$$ −8.72241 + 15.1077i −2.18060 + 3.77691i
$$17$$ 3.34677 + 5.79677i 0.811711 + 1.40592i 0.911666 + 0.410932i $$0.134797\pi$$
−0.0999551 + 0.994992i $$0.531870\pi$$
$$18$$ −1.39083 2.40898i −0.327821 0.567803i
$$19$$ 1.41669 2.45379i 0.325012 0.562937i −0.656503 0.754324i $$-0.727965\pi$$
0.981515 + 0.191386i $$0.0612983\pi$$
$$20$$ 4.73760 1.05936
$$21$$ −1.53925 2.15191i −0.335891 0.469585i
$$22$$ −2.78165 −0.593051
$$23$$ 1.98481 3.43779i 0.413862 0.716830i −0.581446 0.813585i $$-0.697513\pi$$
0.995308 + 0.0967550i $$0.0308463\pi$$
$$24$$ −5.19835 9.00380i −1.06111 1.83789i
$$25$$ 2.15910 + 3.73967i 0.431820 + 0.747934i
$$26$$ 0.412855 0.715087i 0.0809676 0.140240i
$$27$$ 1.00000 0.192450
$$28$$ −8.83158 12.3468i −1.66901 2.33332i
$$29$$ −0.484812 −0.0900273 −0.0450136 0.998986i $$-0.514333\pi$$
−0.0450136 + 0.998986i $$0.514333\pi$$
$$30$$ −1.14842 + 1.98912i −0.209672 + 0.363163i
$$31$$ 3.66564 + 6.34907i 0.658368 + 1.14033i 0.981038 + 0.193816i $$0.0620864\pi$$
−0.322670 + 0.946512i $$0.604580\pi$$
$$32$$ −13.8660 24.0166i −2.45119 4.24558i
$$33$$ 0.500000 0.866025i 0.0870388 0.150756i
$$34$$ −18.6191 −3.19315
$$35$$ −0.903315 + 1.98912i −0.152688 + 0.336223i
$$36$$ 5.73760 0.956266
$$37$$ 2.86880 4.96890i 0.471627 0.816883i −0.527846 0.849340i $$-0.677000\pi$$
0.999473 + 0.0324576i $$0.0103334\pi$$
$$38$$ 3.94075 + 6.82559i 0.639275 + 1.10726i
$$39$$ 0.148421 + 0.257073i 0.0237664 + 0.0411645i
$$40$$ −4.29233 + 7.43454i −0.678677 + 1.17550i
$$41$$ 0.645420 0.100798 0.0503988 0.998729i $$-0.483951\pi$$
0.0503988 + 0.998729i $$0.483951\pi$$
$$42$$ 7.32474 0.715087i 1.13023 0.110340i
$$43$$ 6.43308 0.981035 0.490517 0.871431i $$-0.336808\pi$$
0.490517 + 0.871431i $$0.336808\pi$$
$$44$$ 2.86880 4.96890i 0.432488 0.749090i
$$45$$ −0.412855 0.715087i −0.0615449 0.106599i
$$46$$ 5.52106 + 9.56275i 0.814036 + 1.40995i
$$47$$ −3.86880 + 6.70095i −0.564322 + 0.977435i 0.432790 + 0.901495i $$0.357529\pi$$
−0.997112 + 0.0759400i $$0.975804\pi$$
$$48$$ 17.4448 2.51794
$$49$$ 6.86783 1.35386i 0.981118 0.193409i
$$50$$ −12.0117 −1.69872
$$51$$ 3.34677 5.79677i 0.468641 0.811711i
$$52$$ 0.851579 + 1.47498i 0.118093 + 0.204543i
$$53$$ −3.55677 6.16050i −0.488560 0.846210i 0.511354 0.859370i $$-0.329144\pi$$
−0.999913 + 0.0131602i $$0.995811\pi$$
$$54$$ −1.39083 + 2.40898i −0.189268 + 0.327821i
$$55$$ −0.825711 −0.111339
$$56$$ 27.3769 2.67271i 3.65839 0.357155i
$$57$$ −2.83339 −0.375292
$$58$$ 0.674289 1.16790i 0.0885385 0.153353i
$$59$$ 0.578495 + 1.00198i 0.0753137 + 0.130447i 0.901223 0.433356i $$-0.142671\pi$$
−0.825909 + 0.563803i $$0.809338\pi$$
$$60$$ −2.36880 4.10288i −0.305811 0.529679i
$$61$$ −2.63323 + 4.56089i −0.337151 + 0.583962i −0.983896 0.178744i $$-0.942797\pi$$
0.646745 + 0.762707i $$0.276130\pi$$
$$62$$ −20.3931 −2.58992
$$63$$ −1.09398 + 2.40898i −0.137829 + 0.303503i
$$64$$ 42.2513 5.28141
$$65$$ 0.122553 0.212268i 0.0152008 0.0263286i
$$66$$ 1.39083 + 2.40898i 0.171199 + 0.296525i
$$67$$ −1.50865 2.61306i −0.184311 0.319236i 0.759033 0.651052i $$-0.225672\pi$$
−0.943344 + 0.331816i $$0.892339\pi$$
$$68$$ 19.2024 33.2595i 2.32863 4.03331i
$$69$$ −3.96962 −0.477886
$$70$$ −3.53541 4.94260i −0.422562 0.590753i
$$71$$ 3.58061 0.424940 0.212470 0.977168i $$-0.431849\pi$$
0.212470 + 0.977168i $$0.431849\pi$$
$$72$$ −5.19835 + 9.00380i −0.612631 + 1.06111i
$$73$$ −8.01625 13.8845i −0.938231 1.62506i −0.768769 0.639527i $$-0.779130\pi$$
−0.169462 0.985537i $$-0.554203\pi$$
$$74$$ 7.98000 + 13.8218i 0.927656 + 1.60675i
$$75$$ 2.15910 3.73967i 0.249311 0.431820i
$$76$$ −16.2568 −1.86479
$$77$$ 1.53925 + 2.15191i 0.175414 + 0.245233i
$$78$$ −0.825711 −0.0934934
$$79$$ 2.16210 3.74487i 0.243255 0.421331i −0.718384 0.695647i $$-0.755118\pi$$
0.961640 + 0.274316i $$0.0884513\pi$$
$$80$$ −7.20219 12.4746i −0.805229 1.39470i
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ −0.897667 + 1.55481i −0.0991308 + 0.171700i
$$83$$ 2.37594 0.260793 0.130397 0.991462i $$-0.458375\pi$$
0.130397 + 0.991462i $$0.458375\pi$$
$$84$$ −6.27684 + 13.8218i −0.684860 + 1.50808i
$$85$$ −5.52693 −0.599480
$$86$$ −8.94729 + 15.4972i −0.964811 + 1.67110i
$$87$$ 0.242406 + 0.419859i 0.0259886 + 0.0450136i
$$88$$ 5.19835 + 9.00380i 0.554146 + 0.959809i
$$89$$ −6.08617 + 10.5416i −0.645133 + 1.11740i 0.339138 + 0.940737i $$0.389865\pi$$
−0.984271 + 0.176667i $$0.943469\pi$$
$$90$$ 2.29684 0.242108
$$91$$ −0.781653 + 0.0763099i −0.0819395 + 0.00799945i
$$92$$ −22.7761 −2.37457
$$93$$ 3.66564 6.34907i 0.380109 0.658368i
$$94$$ −10.7617 18.6397i −1.10998 1.92254i
$$95$$ 1.16978 + 2.02612i 0.120017 + 0.207875i
$$96$$ −13.8660 + 24.0166i −1.41519 + 2.45119i
$$97$$ −10.7680 −1.09332 −0.546661 0.837354i $$-0.684101\pi$$
−0.546661 + 0.837354i $$0.684101\pi$$
$$98$$ −6.29052 + 18.4275i −0.635439 + 1.86146i
$$99$$ −1.00000 −0.100504
$$100$$ 12.3880 21.4567i 1.23880 2.14567i
$$101$$ −7.49519 12.9821i −0.745799 1.29176i −0.949820 0.312796i $$-0.898734\pi$$
0.204021 0.978966i $$-0.434599\pi$$
$$102$$ 9.30955 + 16.1246i 0.921783 + 1.59658i
$$103$$ 1.23203 2.13393i 0.121395 0.210263i −0.798923 0.601434i $$-0.794596\pi$$
0.920318 + 0.391171i $$0.127930\pi$$
$$104$$ −3.08617 −0.302624
$$105$$ 2.17429 0.212268i 0.212189 0.0207152i
$$106$$ 19.7874 1.92192
$$107$$ 5.79022 10.0290i 0.559762 0.969536i −0.437754 0.899095i $$-0.644226\pi$$
0.997516 0.0704414i $$-0.0224408\pi$$
$$108$$ −2.86880 4.96890i −0.276050 0.478133i
$$109$$ 2.71173 + 4.69685i 0.259736 + 0.449877i 0.966171 0.257901i $$-0.0830310\pi$$
−0.706435 + 0.707778i $$0.749698\pi$$
$$110$$ 1.14842 1.98912i 0.109498 0.189655i
$$111$$ −5.73760 −0.544589
$$112$$ −19.0844 + 42.0243i −1.80330 + 3.97092i
$$113$$ −17.5156 −1.64773 −0.823866 0.566785i $$-0.808187\pi$$
−0.823866 + 0.566785i $$0.808187\pi$$
$$114$$ 3.94075 6.82559i 0.369085 0.639275i
$$115$$ 1.63888 + 2.83862i 0.152826 + 0.264703i
$$116$$ 1.39083 + 2.40898i 0.129135 + 0.223668i
$$117$$ 0.148421 0.257073i 0.0137215 0.0237664i
$$118$$ −3.21835 −0.296273
$$119$$ 10.3030 + 14.4039i 0.944476 + 1.32040i
$$120$$ 8.58467 0.783669
$$121$$ −0.500000 + 0.866025i −0.0454545 + 0.0787296i
$$122$$ −7.32474 12.6868i −0.663151 1.14861i
$$123$$ −0.322710 0.558950i −0.0290978 0.0503988i
$$124$$ 21.0320 36.4284i 1.88873 3.27137i
$$125$$ −7.69414 −0.688185
$$126$$ −4.28165 5.98587i −0.381440 0.533264i
$$127$$ 5.97924 0.530572 0.265286 0.964170i $$-0.414534\pi$$
0.265286 + 0.964170i $$0.414534\pi$$
$$128$$ −31.0322 + 53.7493i −2.74288 + 4.75081i
$$129$$ −3.21654 5.57121i −0.283200 0.490517i
$$130$$ 0.340899 + 0.590455i 0.0298988 + 0.0517863i
$$131$$ −8.82120 + 15.2788i −0.770712 + 1.33491i 0.166461 + 0.986048i $$0.446766\pi$$
−0.937173 + 0.348864i $$0.886567\pi$$
$$132$$ −5.73760 −0.499394
$$133$$ 3.09969 6.82559i 0.268777 0.591853i
$$134$$ 8.39308 0.725052
$$135$$ −0.412855 + 0.715087i −0.0355329 + 0.0615449i
$$136$$ 34.7953 + 60.2673i 2.98368 + 5.16788i
$$137$$ −4.67986 8.10575i −0.399827 0.692521i 0.593877 0.804556i $$-0.297597\pi$$
−0.993704 + 0.112035i $$0.964263\pi$$
$$138$$ 5.52106 9.56275i 0.469984 0.814036i
$$139$$ 7.40270 0.627889 0.313944 0.949441i $$-0.398349\pi$$
0.313944 + 0.949441i $$0.398349\pi$$
$$140$$ 12.4752 1.21791i 1.05435 0.102932i
$$141$$ 7.73760 0.651623
$$142$$ −4.98000 + 8.62562i −0.417912 + 0.723846i
$$143$$ −0.148421 0.257073i −0.0124116 0.0214975i
$$144$$ −8.72241 15.1077i −0.726867 1.25897i
$$145$$ 0.200157 0.346682i 0.0166221 0.0287904i
$$146$$ 44.5968 3.69086
$$147$$ −4.60639 5.27078i −0.379929 0.434727i
$$148$$ −32.9200 −2.70601
$$149$$ 6.00587 10.4025i 0.492020 0.852204i −0.507938 0.861394i $$-0.669592\pi$$
0.999958 + 0.00919009i $$0.00292534\pi$$
$$150$$ 6.00587 + 10.4025i 0.490377 + 0.849358i
$$151$$ −4.66091 8.07293i −0.379299 0.656966i 0.611661 0.791120i $$-0.290502\pi$$
−0.990960 + 0.134154i $$0.957168\pi$$
$$152$$ 14.7289 25.5113i 1.19468 2.06924i
$$153$$ −6.69354 −0.541141
$$154$$ −7.32474 + 0.715087i −0.590244 + 0.0576233i
$$155$$ −6.05352 −0.486230
$$156$$ 0.851579 1.47498i 0.0681809 0.118093i
$$157$$ 2.55174 + 4.41974i 0.203651 + 0.352733i 0.949702 0.313155i $$-0.101386\pi$$
−0.746051 + 0.665889i $$0.768053\pi$$
$$158$$ 6.01422 + 10.4169i 0.478465 + 0.828727i
$$159$$ −3.55677 + 6.16050i −0.282070 + 0.488560i
$$160$$ 22.8986 1.81030
$$161$$ 4.34271 9.56275i 0.342253 0.753651i
$$162$$ 2.78165 0.218547
$$163$$ −4.74413 + 8.21708i −0.371589 + 0.643612i −0.989810 0.142393i $$-0.954520\pi$$
0.618221 + 0.786004i $$0.287854\pi$$
$$164$$ −1.85158 3.20703i −0.144584 0.250427i
$$165$$ 0.412855 + 0.715087i 0.0321408 + 0.0556694i
$$166$$ −3.30452 + 5.72360i −0.256481 + 0.444237i
$$167$$ −3.03850 −0.235126 −0.117563 0.993065i $$-0.537508\pi$$
−0.117563 + 0.993065i $$0.537508\pi$$
$$168$$ −16.0031 22.3728i −1.23467 1.72610i
$$169$$ −12.9119 −0.993222
$$170$$ 7.68700 13.3143i 0.589566 1.02116i
$$171$$ 1.41669 + 2.45379i 0.108337 + 0.187646i
$$172$$ −18.4552 31.9653i −1.40720 2.43733i
$$173$$ 2.88602 4.99873i 0.219420 0.380046i −0.735211 0.677838i $$-0.762917\pi$$
0.954631 + 0.297792i $$0.0962502\pi$$
$$174$$ −1.34858 −0.102235
$$175$$ 6.64678 + 9.29238i 0.502449 + 0.702438i
$$176$$ −17.4448 −1.31495
$$177$$ 0.578495 1.00198i 0.0434824 0.0753137i
$$178$$ −16.9296 29.3230i −1.26893 2.19785i
$$179$$ 1.51422 + 2.62270i 0.113178 + 0.196030i 0.917050 0.398772i $$-0.130564\pi$$
−0.803872 + 0.594802i $$0.797230\pi$$
$$180$$ −2.36880 + 4.10288i −0.176560 + 0.305811i
$$181$$ −9.67878 −0.719418 −0.359709 0.933064i $$-0.617124\pi$$
−0.359709 + 0.933064i $$0.617124\pi$$
$$182$$ 0.903315 1.98912i 0.0669582 0.147444i
$$183$$ 5.26647 0.389308
$$184$$ 20.6355 35.7417i 1.52127 2.63491i
$$185$$ 2.36880 + 4.10288i 0.174157 + 0.301650i
$$186$$ 10.1965 + 17.6609i 0.747647 + 1.29496i
$$187$$ −3.34677 + 5.79677i −0.244740 + 0.423902i
$$188$$ 44.3952 3.23785
$$189$$ 2.63323 0.257073i 0.191539 0.0186993i
$$190$$ −6.50785 −0.472129
$$191$$ 0.645420 1.11790i 0.0467009 0.0808884i −0.841730 0.539899i $$-0.818463\pi$$
0.888431 + 0.459010i $$0.151796\pi$$
$$192$$ −21.1256 36.5907i −1.52461 2.64071i
$$193$$ 10.4889 + 18.1673i 0.755006 + 1.30771i 0.945372 + 0.325995i $$0.105699\pi$$
−0.190366 + 0.981713i $$0.560967\pi$$
$$194$$ 14.9764 25.9399i 1.07524 1.86237i
$$195$$ −0.245106 −0.0175524
$$196$$ −26.4296 30.2416i −1.88783 2.16012i
$$197$$ 15.0836 1.07466 0.537332 0.843371i $$-0.319432\pi$$
0.537332 + 0.843371i $$0.319432\pi$$
$$198$$ 1.39083 2.40898i 0.0988418 0.171199i
$$199$$ 12.8601 + 22.2744i 0.911632 + 1.57899i 0.811759 + 0.583992i $$0.198510\pi$$
0.0998726 + 0.995000i $$0.468156\pi$$
$$200$$ 22.4475 + 38.8802i 1.58728 + 2.74925i
$$201$$ −1.50865 + 2.61306i −0.106412 + 0.184311i
$$202$$ 41.6980 2.93386
$$203$$ −1.27662 + 0.124632i −0.0896013 + 0.00874743i
$$204$$ −38.4048 −2.68888
$$205$$ −0.266465 + 0.461531i −0.0186107 + 0.0322347i
$$206$$ 3.42707 + 5.93587i 0.238776 + 0.413571i
$$207$$ 1.98481 + 3.43779i 0.137954 + 0.238943i
$$208$$ 2.58918 4.48458i 0.179527 0.310950i
$$209$$ 2.83339 0.195990
$$210$$ −2.51271 + 5.53305i −0.173393 + 0.381817i
$$211$$ 1.84814 0.127232 0.0636158 0.997974i $$-0.479737\pi$$
0.0636158 + 0.997974i $$0.479737\pi$$
$$212$$ −20.4073 + 35.3465i −1.40158 + 2.42761i
$$213$$ −1.79030 3.10090i −0.122670 0.212470i
$$214$$ 16.1064 + 27.8971i 1.10101 + 1.90701i
$$215$$ −2.65593 + 4.60021i −0.181133 + 0.313731i
$$216$$ 10.3967 0.707406
$$217$$ 11.2847 + 15.7763i 0.766052 + 1.07096i
$$218$$ −15.0862 −1.02176
$$219$$ −8.01625 + 13.8845i −0.541688 + 0.938231i
$$220$$ 2.36880 + 4.10288i 0.159704 + 0.276616i
$$221$$ −0.993461 1.72072i −0.0668274 0.115748i
$$222$$ 7.98000 13.8218i 0.535583 0.927656i
$$223$$ −6.17851 −0.413744 −0.206872 0.978368i $$-0.566328\pi$$
−0.206872 + 0.978368i $$0.566328\pi$$
$$224$$ −42.6865 59.6768i −2.85211 3.98733i
$$225$$ −4.31820 −0.287880
$$226$$ 24.3612 42.1949i 1.62048 2.80676i
$$227$$ −2.50557 4.33977i −0.166300 0.288041i 0.770816 0.637058i $$-0.219849\pi$$
−0.937116 + 0.349017i $$0.886515\pi$$
$$228$$ 8.12842 + 14.0788i 0.538318 + 0.932394i
$$229$$ −11.2164 + 19.4274i −0.741201 + 1.28380i 0.210748 + 0.977540i $$0.432410\pi$$
−0.951949 + 0.306257i $$0.900923\pi$$
$$230$$ −9.11760 −0.601197
$$231$$ 1.09398 2.40898i 0.0719789 0.158499i
$$232$$ −5.04044 −0.330921
$$233$$ −2.41669 + 4.18584i −0.158323 + 0.274223i −0.934264 0.356582i $$-0.883942\pi$$
0.775941 + 0.630805i $$0.217275\pi$$
$$234$$ 0.412855 + 0.715087i 0.0269892 + 0.0467467i
$$235$$ −3.19451 5.53305i −0.208387 0.360937i
$$236$$ 3.31917 5.74897i 0.216060 0.374226i
$$237$$ −4.32420 −0.280887
$$238$$ −49.0284 + 4.78646i −3.17804 + 0.310260i
$$239$$ −2.58467 −0.167188 −0.0835941 0.996500i $$-0.526640\pi$$
−0.0835941 + 0.996500i $$0.526640\pi$$
$$240$$ −7.20219 + 12.4746i −0.464899 + 0.805229i
$$241$$ −1.38902 2.40585i −0.0894745 0.154974i 0.817815 0.575482i $$-0.195185\pi$$
−0.907289 + 0.420507i $$0.861852\pi$$
$$242$$ −1.39083 2.40898i −0.0894057 0.154855i
$$243$$ −0.500000 + 0.866025i −0.0320750 + 0.0555556i
$$244$$ 30.2168 1.93444
$$245$$ −1.86729 + 5.47004i −0.119297 + 0.349468i
$$246$$ 1.79533 0.114466
$$247$$ −0.420534 + 0.728387i −0.0267580 + 0.0463461i
$$248$$ 38.1105 + 66.0094i 2.42002 + 4.19160i
$$249$$ −1.18797 2.05762i −0.0752845 0.130397i
$$250$$ 10.7012 18.5351i 0.676804 1.17226i
$$251$$ 0.936967 0.0591409 0.0295704 0.999563i $$-0.490586\pi$$
0.0295704 + 0.999563i $$0.490586\pi$$
$$252$$ 15.1084 1.47498i 0.951741 0.0929149i
$$253$$ 3.96962 0.249568
$$254$$ −8.31609 + 14.4039i −0.521798 + 0.903781i
$$255$$ 2.76346 + 4.78646i 0.173055 + 0.299740i
$$256$$ −44.0695 76.3306i −2.75434 4.77066i
$$257$$ 9.01714 15.6181i 0.562474 0.974233i −0.434806 0.900524i $$-0.643183\pi$$
0.997280 0.0737089i $$-0.0234836\pi$$
$$258$$ 17.8946 1.11407
$$259$$ 6.27684 13.8218i 0.390024 0.858843i
$$260$$ −1.40632 −0.0872160
$$261$$ 0.242406 0.419859i 0.0150045 0.0259886i
$$262$$ −24.5375 42.5002i −1.51593 2.62567i
$$263$$ −3.94826 6.83859i −0.243460 0.421686i 0.718237 0.695798i $$-0.244949\pi$$
−0.961698 + 0.274113i $$0.911616\pi$$
$$264$$ 5.19835 9.00380i 0.319936 0.554146i
$$265$$ 5.87372 0.360820
$$266$$ 12.1316 + 16.9603i 0.743836 + 1.03990i
$$267$$ 12.1723 0.744936
$$268$$ −8.65602 + 14.9927i −0.528751 + 0.915823i
$$269$$ −8.60850 14.9104i −0.524870 0.909101i −0.999581 0.0289593i $$-0.990781\pi$$
0.474711 0.880142i $$-0.342553\pi$$
$$270$$ −1.14842 1.98912i −0.0698907 0.121054i
$$271$$ 4.66767 8.08464i 0.283541 0.491107i −0.688713 0.725034i $$-0.741824\pi$$
0.972254 + 0.233927i $$0.0751575\pi$$
$$272$$ −116.768 −7.08007
$$273$$ 0.456913 + 0.638777i 0.0276536 + 0.0386605i
$$274$$ 26.0355 1.57286
$$275$$ −2.15910 + 3.73967i −0.130199 + 0.225511i
$$276$$ 11.3880 + 19.7247i 0.685480 + 1.18729i
$$277$$ −2.73760 4.74166i −0.164486 0.284898i 0.771987 0.635639i $$-0.219263\pi$$
−0.936473 + 0.350740i $$0.885930\pi$$
$$278$$ −10.2959 + 17.8330i −0.617505 + 1.06955i
$$279$$ −7.33128 −0.438912
$$280$$ −9.39150 + 20.6803i −0.561249 + 1.23589i
$$281$$ −18.3501 −1.09467 −0.547337 0.836912i $$-0.684359\pi$$
−0.547337 + 0.836912i $$0.684359\pi$$
$$282$$ −10.7617 + 18.6397i −0.640847 + 1.10998i
$$283$$ −13.0203 22.5518i −0.773977 1.34057i −0.935368 0.353677i $$-0.884931\pi$$
0.161391 0.986891i $$-0.448402\pi$$
$$284$$ −10.2720 17.7917i −0.609533 1.05574i
$$285$$ 1.16978 2.02612i 0.0692918 0.120017i
$$286$$ 0.825711 0.0488253
$$287$$ 1.69954 0.165920i 0.100321 0.00979393i
$$288$$ 27.7320 1.63413
$$289$$ −13.9017 + 24.0785i −0.817749 + 1.41638i
$$290$$ 0.556768 + 0.964350i 0.0326945 + 0.0566286i
$$291$$ 5.38399 + 9.32534i 0.315615 + 0.546661i
$$292$$ −45.9940 + 79.6639i −2.69159 + 4.66198i
$$293$$ 21.3317 1.24621 0.623106 0.782137i $$-0.285870\pi$$
0.623106 + 0.782137i $$0.285870\pi$$
$$294$$ 19.1039 3.76598i 1.11416 0.219636i
$$295$$ −0.955340 −0.0556220
$$296$$ 29.8260 51.6602i 1.73360 3.00269i
$$297$$ 0.500000 + 0.866025i 0.0290129 + 0.0502519i
$$298$$ 16.7062 + 28.9361i 0.967767 + 1.67622i
$$299$$ −0.589175 + 1.02048i −0.0340729 + 0.0590159i
$$300$$ −24.7761 −1.43045
$$301$$ 16.9398 1.65377i 0.976393 0.0953215i
$$302$$ 25.9301 1.49211
$$303$$ −7.49519 + 12.9821i −0.430587 + 0.745799i
$$304$$ 24.7140 + 42.8059i 1.41744 + 2.45508i
$$305$$ −2.17429 3.76598i −0.124499 0.215639i
$$306$$ 9.30955 16.1246i 0.532192 0.921783i
$$307$$ −6.88329 −0.392850 −0.196425 0.980519i $$-0.562933\pi$$
−0.196425 + 0.980519i $$0.562933\pi$$
$$308$$ 6.27684 13.8218i 0.357656 0.787568i
$$309$$ −2.46405 −0.140175
$$310$$ 8.41939 14.5828i 0.478189 0.828248i
$$311$$ 1.89864 + 3.28854i 0.107662 + 0.186476i 0.914823 0.403856i $$-0.132330\pi$$
−0.807161 + 0.590332i $$0.798997\pi$$
$$312$$ 1.54309 + 2.67271i 0.0873601 + 0.151312i
$$313$$ −1.30955 + 2.26821i −0.0740203 + 0.128207i −0.900660 0.434525i $$-0.856916\pi$$
0.826640 + 0.562732i $$0.190250\pi$$
$$314$$ −14.1961 −0.801132
$$315$$ −1.27097 1.77686i −0.0716113 0.100114i
$$316$$ −24.8105 −1.39570
$$317$$ 13.9321 24.1311i 0.782505 1.35534i −0.147973 0.988991i $$-0.547275\pi$$
0.930478 0.366347i $$-0.119392\pi$$
$$318$$ −9.89370 17.1364i −0.554811 0.960961i
$$319$$ −0.242406 0.419859i −0.0135721 0.0235076i
$$320$$ −17.4437 + 30.2133i −0.975131 + 1.68898i
$$321$$ −11.5804 −0.646357
$$322$$ 16.9966 + 23.7616i 0.947181 + 1.32418i
$$323$$ 18.9654 1.05526
$$324$$ −2.86880 + 4.96890i −0.159378 + 0.276050i
$$325$$ −0.640911 1.11009i −0.0355514 0.0615768i
$$326$$ −13.1965 22.8571i −0.730889 1.26594i
$$327$$ 2.71173 4.69685i 0.149959 0.259736i
$$328$$ 6.71023 0.370511
$$329$$ −8.46481 + 18.6397i −0.466680 + 1.02764i
$$330$$ −2.29684 −0.126437
$$331$$ 4.02076 6.96416i 0.221001 0.382785i −0.734111 0.679029i $$-0.762401\pi$$
0.955112 + 0.296245i $$0.0957343\pi$$
$$332$$ −6.81609 11.8058i −0.374082 0.647928i
$$333$$ 2.86880 + 4.96890i 0.157209 + 0.272294i
$$334$$ 4.22603 7.31969i 0.231238 0.400516i
$$335$$ 2.49142 0.136121
$$336$$ 45.9363 4.48458i 2.50603 0.244654i
$$337$$ 26.2686 1.43094 0.715471 0.698643i $$-0.246212\pi$$
0.715471 + 0.698643i $$0.246212\pi$$
$$338$$ 17.9582 31.1045i 0.976797 1.69186i
$$339$$ 8.75782 + 15.1690i 0.475659 + 0.823866i
$$340$$ 15.8556 + 27.4628i 0.859893 + 1.48938i
$$341$$ −3.66564 + 6.34907i −0.198506 + 0.343822i
$$342$$ −7.88151 −0.426183
$$343$$ 17.7365 5.33057i 0.957683 0.287824i
$$344$$ 66.8827 3.60608
$$345$$ 1.63888 2.83862i 0.0882344 0.152826i
$$346$$ 8.02790 + 13.9047i 0.431583 + 0.747523i
$$347$$ −4.24421 7.35120i −0.227841 0.394633i 0.729327 0.684166i $$-0.239833\pi$$
−0.957168 + 0.289533i $$0.906500\pi$$
$$348$$ 1.39083 2.40898i 0.0745561 0.129135i
$$349$$ −31.9290 −1.70912 −0.854561 0.519351i $$-0.826174\pi$$
−0.854561 + 0.519351i $$0.826174\pi$$
$$350$$ −31.6297 + 3.08789i −1.69068 + 0.165055i
$$351$$ −0.296842 −0.0158442
$$352$$ 13.8660 24.0166i 0.739061 1.28009i
$$353$$ −0.0719562 0.124632i −0.00382984 0.00663348i 0.864104 0.503313i $$-0.167886\pi$$
−0.867934 + 0.496680i $$0.834552\pi$$
$$354$$ 1.60917 + 2.78717i 0.0855266 + 0.148136i
$$355$$ −1.47827 + 2.56044i −0.0784586 + 0.135894i
$$356$$ 69.8400 3.70151
$$357$$ 7.32263 16.1246i 0.387555 0.853405i
$$358$$ −8.42406 −0.445225
$$359$$ −4.11744 + 7.13162i −0.217310 + 0.376392i −0.953985 0.299855i $$-0.903062\pi$$
0.736675 + 0.676247i $$0.236395\pi$$
$$360$$ −4.29233 7.43454i −0.226226 0.391835i
$$361$$ 5.48595 + 9.50195i 0.288734 + 0.500102i
$$362$$ 13.4615 23.3160i 0.707521 1.22546i
$$363$$ 1.00000 0.0524864
$$364$$ 2.62158 + 3.66504i 0.137408 + 0.192100i
$$365$$ 13.2382 0.692919
$$366$$ −7.32474 + 12.6868i −0.382870 + 0.663151i
$$367$$ −8.31512 14.4022i −0.434046 0.751789i 0.563171 0.826340i $$-0.309581\pi$$
−0.997217 + 0.0745508i $$0.976248\pi$$
$$368$$ 34.6247 + 59.9717i 1.80494 + 3.12624i
$$369$$ −0.322710 + 0.558950i −0.0167996 + 0.0290978i
$$370$$ −13.1784 −0.685110
$$371$$ −10.9495 15.3077i −0.568469 0.794736i
$$372$$ −42.0639 −2.18091
$$373$$ 2.56242 4.43823i 0.132677 0.229803i −0.792031 0.610481i $$-0.790976\pi$$
0.924708 + 0.380678i $$0.124309\pi$$
$$374$$ −9.30955 16.1246i −0.481385 0.833784i
$$375$$ 3.84707 + 6.66332i 0.198662 + 0.344092i
$$376$$ −40.2227 + 69.6678i −2.07433 + 3.59284i
$$377$$ 0.143912 0.00741186
$$378$$ −3.04309 + 6.70095i −0.156520 + 0.344660i
$$379$$ −19.6383 −1.00875 −0.504377 0.863484i $$-0.668278\pi$$
−0.504377 + 0.863484i $$0.668278\pi$$
$$380$$ 6.71173 11.6251i 0.344304 0.596353i
$$381$$ −2.98962 5.17818i −0.153163 0.265286i
$$382$$ 1.79533 + 3.10961i 0.0918573 + 0.159102i
$$383$$ 5.38513 9.32731i 0.275167 0.476603i −0.695010 0.719000i $$-0.744600\pi$$
0.970177 + 0.242397i $$0.0779335\pi$$
$$384$$ 62.0644 3.16721
$$385$$ −2.17429 + 0.212268i −0.110812 + 0.0108182i
$$386$$ −58.3528 −2.97008
$$387$$ −3.21654 + 5.57121i −0.163506 + 0.283200i
$$388$$ 30.8911 + 53.5050i 1.56826 + 2.71631i
$$389$$ −16.3394 28.3007i −0.828441 1.43490i −0.899261 0.437412i $$-0.855895\pi$$
0.0708206 0.997489i $$-0.477438\pi$$
$$390$$ 0.340899 0.590455i 0.0172621 0.0298988i
$$391$$ 26.5708 1.34374
$$392$$ 71.4027 14.0757i 3.60638 0.710931i
$$393$$ 17.6424 0.889942
$$394$$ −20.9787 + 36.3362i −1.05689 + 1.83059i
$$395$$ 1.78527 + 3.09218i 0.0898267 + 0.155584i
$$396$$ 2.86880 + 4.96890i 0.144163 + 0.249697i
$$397$$ 16.4742 28.5342i 0.826817 1.43209i −0.0737049 0.997280i $$-0.523482\pi$$
0.900522 0.434810i $$-0.143184\pi$$
$$398$$ −71.5450 −3.58622
$$399$$ −7.46097 + 0.728387i −0.373516 + 0.0364649i
$$400$$ −75.3302 −3.76651
$$401$$ 9.67932 16.7651i 0.483362 0.837208i −0.516455 0.856314i $$-0.672749\pi$$
0.999817 + 0.0191063i $$0.00608209\pi$$
$$402$$ −4.19654 7.26862i −0.209304 0.362526i
$$403$$ −1.08812 1.88467i −0.0542029 0.0938821i
$$404$$ −43.0044 + 74.4858i −2.13955 + 3.70580i
$$405$$ 0.825711 0.0410299
$$406$$ 1.47532 3.24870i 0.0732191 0.161230i
$$407$$ 5.73760 0.284402
$$408$$ 34.7953 60.2673i 1.72263 2.98368i
$$409$$ 15.0573 + 26.0800i 0.744535 + 1.28957i 0.950412 + 0.310995i $$0.100662\pi$$
−0.205877 + 0.978578i $$0.566005\pi$$
$$410$$ −0.741214 1.28382i −0.0366059 0.0634033i
$$411$$ −4.67986 + 8.10575i −0.230840 + 0.399827i
$$412$$ −14.1378 −0.696517
$$413$$ 1.78089 + 2.48974i 0.0876321 + 0.122512i
$$414$$ −11.0421 −0.542690
$$415$$ −0.980920 + 1.69900i −0.0481515 + 0.0834008i
$$416$$ 4.11601 + 7.12914i 0.201804 + 0.349535i
$$417$$ −3.70135 6.41093i −0.181256 0.313944i
$$418$$ −3.94075 + 6.82559i −0.192749 + 0.333850i
$$419$$ −2.70722 −0.132256 −0.0661282 0.997811i $$-0.521065\pi$$
−0.0661282 + 0.997811i $$0.521065\pi$$
$$420$$ −7.29233 10.1949i −0.355829 0.497459i
$$421$$ −30.1501 −1.46943 −0.734713 0.678378i $$-0.762683\pi$$
−0.734713 + 0.678378i $$0.762683\pi$$
$$422$$ −2.57045 + 4.45215i −0.125127 + 0.216727i
$$423$$ −3.86880 6.70095i −0.188107 0.325812i
$$424$$ −36.9786 64.0489i −1.79584 3.11049i
$$425$$ −14.4520 + 25.0316i −0.701026 + 1.21421i
$$426$$ 9.96000 0.482564
$$427$$ −5.76143 + 12.6868i −0.278815 + 0.613958i
$$428$$ −66.4439 −3.21169
$$429$$ −0.148421 + 0.257073i −0.00716583 + 0.0124116i
$$430$$ −7.38788 12.7962i −0.356275 0.617087i
$$431$$ −16.3405 28.3025i −0.787092 1.36328i −0.927741 0.373224i $$-0.878252\pi$$
0.140650 0.990059i $$-0.455081\pi$$
$$432$$ −8.72241 + 15.1077i −0.419657 + 0.726867i
$$433$$ −26.2432 −1.26117 −0.630583 0.776122i $$-0.717184\pi$$
−0.630583 + 0.776122i $$0.717184\pi$$
$$434$$ −53.6997 + 5.24250i −2.57767 + 0.251648i
$$435$$ −0.400314 −0.0191936
$$436$$ 15.5588 26.9486i 0.745131 1.29061i
$$437$$ −5.62374 9.74061i −0.269020 0.465957i
$$438$$ −22.2984 38.6220i −1.06546 1.84543i
$$439$$ 13.8453 23.9807i 0.660798 1.14454i −0.319608 0.947550i $$-0.603551\pi$$
0.980406 0.196986i $$-0.0631155\pi$$
$$440$$ −8.58467 −0.409258
$$441$$ −2.26143 + 6.62464i −0.107687 + 0.315459i
$$442$$ 5.52693 0.262889
$$443$$ 10.4469 18.0946i 0.496348 0.859701i −0.503643 0.863912i $$-0.668007\pi$$
0.999991 + 0.00421138i $$0.00134053\pi$$
$$444$$ 16.4600 + 28.5096i 0.781157 + 1.35300i
$$445$$ −5.02542 8.70428i −0.238228 0.412623i
$$446$$ 8.59324 14.8839i 0.406902 0.704774i
$$447$$ −12.0117 −0.568136
$$448$$ 111.257 10.8616i 5.25642 0.513164i
$$449$$ 23.9615 1.13081 0.565407 0.824812i $$-0.308719\pi$$
0.565407 + 0.824812i $$0.308719\pi$$
$$450$$ 6.00587 10.4025i 0.283119 0.490377i
$$451$$ 0.322710 + 0.558950i 0.0151958 + 0.0263199i
$$452$$ 50.2488 + 87.0335i 2.36351 + 4.09371i
$$453$$ −4.66091 + 8.07293i −0.218989 + 0.379299i
$$454$$ 13.9392 0.654201
$$455$$ 0.268142 0.590455i 0.0125707 0.0276810i
$$456$$ −29.4579 −1.37949
$$457$$ −9.30541 + 16.1174i −0.435289 + 0.753942i −0.997319 0.0731743i $$-0.976687\pi$$
0.562030 + 0.827117i $$0.310020\pi$$
$$458$$ −31.2002 54.0403i −1.45789 2.52514i
$$459$$ 3.34677 + 5.79677i 0.156214 + 0.270570i
$$460$$ 9.40324 16.2869i 0.438428 0.759380i
$$461$$ −6.88513 −0.320672 −0.160336 0.987062i $$-0.551258\pi$$
−0.160336 + 0.987062i $$0.551258\pi$$
$$462$$ 4.28165 + 5.98587i 0.199201 + 0.278488i
$$463$$ 2.73532 0.127121 0.0635605 0.997978i $$-0.479754\pi$$
0.0635605 + 0.997978i $$0.479754\pi$$
$$464$$ 4.22872 7.32437i 0.196314 0.340025i
$$465$$ 3.02676 + 5.24250i 0.140363 + 0.243115i
$$466$$ −6.72241 11.6436i −0.311410 0.539377i
$$467$$ −17.8180 + 30.8618i −0.824521 + 1.42811i 0.0777644 + 0.996972i $$0.475222\pi$$
−0.902285 + 0.431140i $$0.858112\pi$$
$$468$$ −1.70316 −0.0787285
$$469$$ −4.64437 6.49296i −0.214457 0.299817i
$$470$$ 17.7720 0.819763
$$471$$ 2.55174 4.41974i 0.117578 0.203651i
$$472$$ 6.01444 + 10.4173i 0.276837 + 0.479496i
$$473$$ 3.21654 + 5.57121i 0.147897 + 0.256164i
$$474$$ 6.01422 10.4169i 0.276242 0.478465i
$$475$$ 12.2351 0.561387
$$476$$ 42.0143 92.5165i 1.92572 4.24049i
$$477$$ 7.11354 0.325706
$$478$$ 3.59482 6.22642i 0.164423 0.284790i
$$479$$ 13.6899 + 23.7116i 0.625508 + 1.08341i 0.988442 + 0.151598i $$0.0484418\pi$$
−0.362934 + 0.931815i $$0.618225\pi$$
$$480$$ −11.4493 19.8308i −0.522588 0.905149i
$$481$$ −0.851579 + 1.47498i −0.0388287 + 0.0672532i
$$482$$ 7.72753 0.351979
$$483$$ −10.4529 + 1.02048i −0.475625 + 0.0464335i
$$484$$ 5.73760 0.260800
$$485$$ 4.44562 7.70003i 0.201865 0.349641i
$$486$$ −1.39083 2.40898i −0.0630892 0.109274i
$$487$$ −14.6853 25.4357i −0.665455 1.15260i −0.979162 0.203083i $$-0.934904\pi$$
0.313706 0.949520i $$-0.398429\pi$$
$$488$$ −27.3769 + 47.4182i −1.23929 + 2.14652i
$$489$$ 9.48827 0.429074
$$490$$ −10.5802 12.1062i −0.477963 0.546900i
$$491$$ −1.69115 −0.0763207 −0.0381604 0.999272i $$-0.512150\pi$$
−0.0381604 + 0.999272i $$0.512150\pi$$
$$492$$ −1.85158 + 3.20703i −0.0834756 + 0.144584i
$$493$$ −1.62255 2.81034i −0.0730761 0.126572i
$$494$$ −1.16978 2.02612i −0.0526309 0.0911594i
$$495$$ 0.412855 0.715087i 0.0185565 0.0321408i
$$496$$ −127.893 −5.74256
$$497$$ 9.42857 0.920475i 0.422929 0.0412890i
$$498$$ 6.60904 0.296158
$$499$$ −14.7983 + 25.6313i −0.662461 + 1.14742i 0.317506 + 0.948256i $$0.397155\pi$$
−0.979967 + 0.199160i $$0.936179\pi$$
$$500$$ 22.0729 + 38.2314i 0.987132 + 1.70976i
$$501$$ 1.51925 + 2.63142i 0.0678751 + 0.117563i
$$502$$ −1.30316 + 2.25714i −0.0581628 + 0.100741i
$$503$$ 28.2737 1.26066 0.630331 0.776326i $$-0.282919\pi$$
0.630331 + 0.776326i $$0.282919\pi$$
$$504$$ −11.3738 + 25.0455i −0.506631 + 1.11561i
$$505$$ 12.3777 0.550801
$$506$$ −5.52106 + 9.56275i −0.245441 + 0.425116i
$$507$$ 6.45594 + 11.1820i 0.286718 + 0.496611i
$$508$$ −17.1532 29.7103i −0.761052 1.31818i
$$509$$ −5.45037 + 9.44032i −0.241584 + 0.418435i −0.961166 0.275972i $$-0.911000\pi$$
0.719582 + 0.694408i $$0.244333\pi$$
$$510$$ −15.3740 −0.680772
$$511$$ −24.6780 34.5005i −1.09169 1.52621i
$$512$$ 121.043 5.34941
$$513$$ 1.41669 2.45379i 0.0625486 0.108337i
$$514$$ 25.0826 + 43.4443i 1.10634 + 1.91624i
$$515$$ 1.01730 + 1.76201i 0.0448275 + 0.0776436i
$$516$$ −18.4552 + 31.9653i −0.812445 + 1.40720i
$$517$$ −7.73760 −0.340299
$$518$$ 24.5664 + 34.3445i 1.07939 + 1.50901i
$$519$$ −5.77203 −0.253364
$$520$$ 1.27414 2.20688i 0.0558749 0.0967782i
$$521$$ −2.81803 4.88098i −0.123460 0.213839i 0.797670 0.603094i $$-0.206066\pi$$
−0.921130 + 0.389255i $$0.872732\pi$$
$$522$$ 0.674289 + 1.16790i 0.0295128 + 0.0511177i
$$523$$ 13.4113 23.2290i 0.586434 1.01573i −0.408261 0.912865i $$-0.633865\pi$$
0.994695 0.102868i $$-0.0328019\pi$$
$$524$$ 101.225 4.42203
$$525$$ 4.72405 10.4025i 0.206174 0.454001i
$$526$$ 21.9654 0.957737
$$527$$ −24.5361 + 42.4978i −1.06881 + 1.85123i
$$528$$ 8.72241 + 15.1077i 0.379594 + 0.657476i
$$529$$ 3.62105 + 6.27183i 0.157437 + 0.272688i
$$530$$ −8.16933 + 14.1497i −0.354853 + 0.614624i
$$531$$ −1.15699 −0.0502091
$$532$$ −42.8081 + 4.17919i −1.85596 + 0.181191i
$$533$$ −0.191588 −0.00829858
$$534$$ −16.9296 + 29.3230i −0.732617 + 1.26893i
$$535$$ 4.78105 + 8.28102i 0.206703 + 0.358020i
$$536$$ −15.6850 27.1672i −0.677487 1.17344i
$$537$$ 1.51422 2.62270i 0.0653433 0.113178i
$$538$$ 47.8918 2.06476
$$539$$ 4.60639 + 5.27078i 0.198411 + 0.227029i
$$540$$ 4.73760 0.203874
$$541$$ −3.03355 + 5.25426i −0.130422 + 0.225898i −0.923839 0.382780i $$-0.874967\pi$$
0.793417 + 0.608678i $$0.208300\pi$$
$$542$$ 12.9838 + 22.4887i 0.557704 + 0.965971i
$$543$$ 4.83939 + 8.38207i 0.207678 + 0.359709i
$$544$$ 92.8127 160.756i 3.97931 6.89237i
$$545$$ −4.47821 −0.191825
$$546$$ −2.17429 + 0.212268i −0.0930510 + 0.00908421i
$$547$$ −13.7115 −0.586263 −0.293132 0.956072i $$-0.594697\pi$$
−0.293132 + 0.956072i $$0.594697\pi$$
$$548$$ −26.8511 + 46.5075i −1.14702 + 1.98670i
$$549$$ −2.63323 4.56089i −0.112384 0.194654i
$$550$$ −6.00587 10.4025i −0.256091 0.443563i
$$551$$ −0.686830 + 1.18962i −0.0292600 + 0.0506797i
$$552$$ −41.2710 −1.75661
$$553$$ 4.73061 10.4169i 0.201166 0.442973i
$$554$$ 15.2301 0.647064
$$555$$ 2.36880 4.10288i 0.100550 0.174157i
$$556$$ −21.2368 36.7833i −0.900643 1.55996i
$$557$$ 5.54782 + 9.60910i 0.235069 + 0.407151i 0.959293 0.282414i $$-0.0911352\pi$$
−0.724224 + 0.689565i $$0.757802\pi$$
$$558$$ 10.1965 17.6609i 0.431654 0.747647i
$$559$$ −1.90961 −0.0807677
$$560$$ −22.1719 30.9969i −0.936934 1.30986i
$$561$$ 6.69354 0.282601
$$562$$ 25.5218 44.2051i 1.07657 1.86468i
$$563$$ −2.17578 3.76857i −0.0916983 0.158826i 0.816528 0.577306i $$-0.195896\pi$$
−0.908226 + 0.418480i $$0.862563\pi$$
$$564$$ −22.1976 38.4474i −0.934688 1.61893i
$$565$$ 7.23142 12.5252i 0.304228 0.526939i
$$566$$ 72.4360 3.04471
$$567$$ −1.53925 2.15191i −0.0646423 0.0903717i
$$568$$ 37.2265 1.56199
$$569$$ −4.57112 + 7.91741i −0.191631 + 0.331915i −0.945791 0.324776i $$-0.894711\pi$$
0.754160 + 0.656691i $$0.228044\pi$$
$$570$$ 3.25392 + 5.63596i 0.136292 + 0.236064i
$$571$$ −2.38226 4.12619i −0.0996944 0.172676i 0.811864 0.583847i $$-0.198453\pi$$
−0.911558 + 0.411171i $$0.865120\pi$$
$$572$$ −0.851579 + 1.47498i −0.0356063 + 0.0616719i
$$573$$ −1.29084 −0.0539256
$$574$$ −1.96407 + 4.32493i −0.0819786 + 0.180519i
$$575$$ 17.1416 0.714856
$$576$$ −21.1256 + 36.5907i −0.880235 + 1.52461i
$$577$$ 8.80479 + 15.2504i 0.366548 + 0.634880i 0.989023 0.147759i $$-0.0472061\pi$$
−0.622475 + 0.782640i $$0.713873\pi$$
$$578$$ −38.6698 66.9780i −1.60845 2.78592i
$$579$$ 10.4889 18.1673i 0.435903 0.755006i
$$580$$ −2.29684 −0.0953712
$$581$$ 6.25640 0.610789i 0.259559 0.0253398i
$$582$$ −29.9528 −1.24158
$$583$$ 3.55677 6.16050i 0.147306 0.255142i
$$584$$ −83.3425 144.353i −3.44874 5.97339i
$$585$$ 0.122553 + 0.212268i 0.00506693 + 0.00877619i
$$586$$ −29.6687 + 51.3877i −1.22560 + 2.12281i
$$587$$ 33.3405 1.37611 0.688054 0.725659i $$-0.258465\pi$$
0.688054 + 0.725659i $$0.258465\pi$$
$$588$$ −12.9752 + 38.0095i −0.535088 + 1.56749i
$$589$$ 20.7724 0.855911
$$590$$ 1.32871 2.30140i 0.0547022 0.0947470i
$$591$$ −7.54182 13.0628i −0.310229 0.537332i
$$592$$ 50.0457 + 86.6816i 2.05686 + 3.56259i
$$593$$ 1.86707 3.23386i 0.0766713 0.132799i −0.825141 0.564928i $$-0.808904\pi$$
0.901812 + 0.432129i $$0.142237\pi$$
$$594$$ −2.78165 −0.114133
$$595$$ −14.5537 + 1.42082i −0.596643 + 0.0582480i
$$596$$ −68.9185 −2.82301
$$597$$ 12.8601 22.2744i 0.526331 0.911632i
$$598$$ −1.63888 2.83862i −0.0670188 0.116080i
$$599$$ −7.08256 12.2673i −0.289385 0.501230i 0.684278 0.729221i $$-0.260118\pi$$
−0.973663 + 0.227991i $$0.926784\pi$$
$$600$$ 22.4475 38.8802i 0.916416 1.58728i
$$601$$ −18.3032 −0.746602 −0.373301 0.927710i $$-0.621774\pi$$
−0.373301 + 0.927710i $$0.621774\pi$$
$$602$$ −19.5764 + 43.1077i −0.797875 + 1.75694i
$$603$$ 3.01730 0.122874
$$604$$ −26.7424 + 46.3192i −1.08813 + 1.88470i
$$605$$ −0.412855 0.715087i −0.0167850 0.0290724i
$$606$$ −20.8490 36.1116i −0.846934 1.46693i
$$607$$ 22.6313 39.1985i 0.918576 1.59102i 0.116996 0.993132i $$-0.462674\pi$$
0.801580 0.597888i $$-0.203993\pi$$
$$608$$ −78.5757 −3.18666
$$609$$ 0.746245 + 1.04327i 0.0302394 + 0.0422755i
$$610$$ 12.0962 0.489762
$$611$$ 1.14842 1.98912i 0.0464601 0.0804713i
$$612$$ 19.2024 + 33.2595i 0.776211 + 1.34444i
$$613$$ 7.28722 + 12.6218i 0.294328 + 0.509791i 0.974828 0.222957i $$-0.0715708\pi$$
−0.680500 + 0.732748i $$0.738237\pi$$
$$614$$ 9.57346 16.5817i 0.386354 0.669184i
$$615$$ 0.532930 0.0214898
$$616$$ 16.0031 + 22.3728i 0.644783 + 0.901424i
$$617$$ −39.8257 −1.60332 −0.801662 0.597778i $$-0.796050\pi$$
−0.801662 + 0.597778i $$0.796050\pi$$
$$618$$ 3.42707 5.93587i 0.137857 0.238776i
$$619$$ 0.218883 + 0.379117i 0.00879767 + 0.0152380i 0.870391 0.492362i $$-0.163866\pi$$
−0.861593 + 0.507600i $$0.830533\pi$$
$$620$$ 17.3663 + 30.0793i 0.697448 + 1.20802i
$$621$$ 1.98481 3.43779i 0.0796477 0.137954i
$$622$$ −10.5627 −0.423526
$$623$$ −13.3164 + 29.3230i −0.533509 + 1.17480i
$$624$$ −5.17835 −0.207300
$$625$$ −7.61894 + 13.1964i −0.304757 + 0.527855i
$$626$$ −3.64272 6.30938i −0.145592 0.252173i
$$627$$ −1.41669 2.45379i −0.0565773 0.0979948i
$$628$$ 14.6408 25.3587i 0.584233 1.01192i
$$629$$ 38.4048 1.53130
$$630$$ 6.04812 0.590455i 0.240963 0.0235243i
$$631$$ 29.1632 1.16097 0.580484 0.814272i $$-0.302863\pi$$
0.580484 + 0.814272i $$0.302863\pi$$
$$632$$ 22.4787 38.9343i 0.894155 1.54872i
$$633$$ −0.924072 1.60054i −0.0367286 0.0636158i
$$634$$ 38.7543 + 67.1244i 1.53913 + 2.66585i
$$635$$ −2.46856 + 4.27568i −0.0979619 + 0.169675i
$$636$$ 40.8146 1.61840
$$637$$ −2.03866 + 0.401883i −0.0807746 + 0.0159232i
$$638$$ 1.34858 0.0533907
$$639$$ −1.79030 + 3.10090i −0.0708233 + 0.122670i
$$640$$ −25.6236 44.3814i −1.01286 1.75433i
$$641$$ 2.69300 + 4.66442i 0.106367 + 0.184233i 0.914296 0.405047i $$-0.132745\pi$$
−0.807929 + 0.589280i $$0.799411\pi$$
$$642$$ 16.1064 27.8971i 0.635669 1.10101i
$$643$$ −2.19971 −0.0867481 −0.0433740 0.999059i $$-0.513811\pi$$
−0.0433740 + 0.999059i $$0.513811\pi$$
$$644$$ −59.9748 + 5.85511i −2.36334 + 0.230724i
$$645$$ 5.31186 0.209154
$$646$$ −26.3776 + 45.6873i −1.03781 + 1.79754i
$$647$$ 8.62105 + 14.9321i 0.338928 + 0.587041i 0.984231 0.176886i $$-0.0566023\pi$$
−0.645303 + 0.763927i $$0.723269\pi$$
$$648$$ −5.19835 9.00380i −0.204210 0.353703i
$$649$$ −0.578495 + 1.00198i −0.0227079 + 0.0393313i
$$650$$ 3.56559 0.139854
$$651$$ 8.02031 17.6609i 0.314341 0.692186i
$$652$$ 54.4399 2.13203
$$653$$ −20.3835 + 35.3052i −0.797666 + 1.38160i 0.123466 + 0.992349i $$0.460599\pi$$
−0.921132 + 0.389250i $$0.872734\pi$$
$$654$$ 7.54309 + 13.0650i 0.294958 + 0.510882i
$$655$$ −7.28376 12.6158i −0.284600 0.492942i
$$656$$ −5.62961 + 9.75078i −0.219800 + 0.380704i
$$657$$ 16.0325 0.625487
$$658$$ −33.1297 46.3162i −1.29153 1.80559i
$$659$$ 33.9747 1.32347 0.661734 0.749739i $$-0.269821\pi$$
0.661734 + 0.749739i $$0.269821\pi$$
$$660$$ 2.36880 4.10288i 0.0922053 0.159704i
$$661$$ 14.9579 + 25.9078i 0.581795 + 1.00770i 0.995267 + 0.0971811i $$0.0309826\pi$$
−0.413472 + 0.910517i $$0.635684\pi$$
$$662$$ 11.1844 + 19.3719i 0.434692 + 0.752909i
$$663$$ −0.993461 + 1.72072i −0.0385828 + 0.0668274i
$$664$$ 24.7019 0.958621
$$665$$ 3.60116 + 5.03452i 0.139647 + 0.195230i
$$666$$ −15.9600 −0.618438
$$667$$ −0.962260 + 1.66668i −0.0372589 + 0.0645342i
$$668$$ 8.71684 + 15.0980i 0.337265 + 0.584159i
$$669$$ 3.08925 + 5.35075i 0.119437 + 0.206872i
$$670$$ −3.46513 + 6.00178i −0.133870 + 0.231869i
$$671$$ −5.26647 −0.203310
$$672$$ −30.3384 + 66.8060i −1.17033 + 2.57710i
$$673$$ 11.3711 0.438325 0.219163 0.975688i $$-0.429667\pi$$
0.219163 + 0.975688i $$0.429667\pi$$
$$674$$ −36.5351 + 63.2806i −1.40728 + 2.43748i
$$675$$ 2.15910 + 3.73967i 0.0831038 + 0.143940i
$$676$$ 37.0416 + 64.1579i 1.42468 + 2.46761i
$$677$$ −4.85596 + 8.41076i −0.186630 + 0.323252i −0.944124 0.329589i $$-0.893090\pi$$
0.757495 + 0.652841i $$0.226423\pi$$
$$678$$ −48.7224 −1.87117
$$679$$ −28.3546 + 2.76815i −1.08815 + 0.106232i
$$680$$ −57.4618 −2.20356
$$681$$ −2.50557 + 4.33977i −0.0960136 + 0.166300i
$$682$$ −10.1965 17.6609i −0.390446 0.676272i
$$683$$ −4.85512 8.40931i −0.185776 0.321773i 0.758062 0.652183i $$-0.226147\pi$$
−0.943838 + 0.330409i $$0.892813\pi$$
$$684$$ 8.12842 14.0788i 0.310798 0.538318i
$$685$$ 7.72842 0.295288
$$686$$ −11.8272 + 50.1409i −0.451565 + 1.91439i
$$687$$ 22.4328 0.855865
$$688$$ −56.1119 + 97.1887i −2.13925 + 3.70528i
$$689$$ 1.05580 + 1.82869i 0.0402227 + 0.0696677i
$$690$$ 4.55880 + 7.89607i 0.173550 + 0.300598i
$$691$$ 1.96902 3.41044i 0.0749051 0.129739i −0.826140 0.563465i $$-0.809468\pi$$
0.901045 + 0.433726i $$0.142801\pi$$
$$692$$ −33.1176 −1.25894
$$693$$ −2.63323 + 0.257073i −0.100028 + 0.00976538i
$$694$$ 23.6119 0.896294
$$695$$ −3.05624 + 5.29357i −0.115930 + 0.200797i
$$696$$ 2.52022 + 4.36515i 0.0955287 + 0.165461i
$$697$$ 2.16007 + 3.74135i 0.0818185 + 0.141714i
$$698$$ 44.4077 76.9165i 1.68086 2.91133i
$$699$$ 4.83339 0.182816
$$700$$ 27.1047 59.6852i 1.02446 2.25589i
$$701$$ 11.7432 0.443533 0.221766 0.975100i $$-0.428818\pi$$
0.221766 + 0.975100i $$0.428818\pi$$
$$702$$ 0.412855 0.715087i 0.0155822 0.0269892i
$$703$$ −8.12842 14.0788i −0.306569 0.530994i
$$704$$ 21.1256 + 36.5907i 0.796203 + 1.37906i
$$705$$ −3.19451 + 5.53305i −0.120312 + 0.208387i
$$706$$ 0.400314 0.0150660
$$707$$ −23.0739 32.2579i −0.867784 1.21319i
$$708$$ −6.63834 −0.249484
$$709$$ 3.26744 5.65936i 0.122711 0.212542i −0.798125 0.602492i $$-0.794174\pi$$
0.920836 + 0.389950i $$0.127508\pi$$
$$710$$ −4.11204 7.12227i −0.154322 0.267294i
$$711$$ 2.16210 + 3.74487i 0.0810852 + 0.140444i
$$712$$ −63.2761 + 109.597i −2.37137 + 4.10734i
$$713$$ 29.1024 1.08989
$$714$$ 28.6594 + 40.0666i 1.07255 + 1.49946i
$$715$$ 0.245106 0.00916643
$$716$$ 8.68797 15.0480i 0.324685 0.562370i
$$717$$ 1.29233 + 2.23839i 0.0482631 + 0.0835941i
$$718$$ −11.4533 19.8377i −0.427433 0.740336i
$$719$$ 1.84382 3.19359i 0.0687629 0.119101i −0.829594 0.558367i $$-0.811428\pi$$
0.898357 + 0.439266i $$0.144761\pi$$
$$720$$ 14.4044 0.536819
$$721$$ 2.69564 5.93587i 0.100391 0.221063i
$$722$$ −30.5200 −1.13584
$$723$$ −1.38902 + 2.40585i −0.0516581 + 0.0894745i
$$724$$ 27.7665 + 48.0929i 1.03193 + 1.78736i
$$725$$ −1.04676 1.81304i −0.0388756 0.0673345i
$$726$$ −1.39083 + 2.40898i −0.0516184 + 0.0894057i
$$727$$ −0.674563 −0.0250182 −0.0125091 0.999922i $$-0.503982\pi$$
−0.0125091 + 0.999922i $$0.503982\pi$$
$$728$$ −8.12661 + 0.793371i −0.301192 + 0.0294043i
$$729$$ 1.00000 0.0370370
$$730$$ −18.4121 + 31.8906i −0.681461 + 1.18032i
$$731$$ 21.5300 + 37.2911i 0.796317 + 1.37926i
$$732$$ −15.1084 26.1686i −0.558423 0.967218i
$$733$$ −8.66961 + 15.0162i −0.320219 + 0.554636i −0.980533 0.196354i $$-0.937090\pi$$
0.660314 + 0.750990i $$0.270423\pi$$
$$734$$ 46.2596 1.70747
$$735$$ 5.67084 1.11790i 0.209172 0.0412344i
$$736$$ −110.086 −4.05781
$$737$$ 1.50865 2.61306i 0.0555718 0.0962532i
$$738$$ −0.897667 1.55481i −0.0330436 0.0572332i
$$739$$ −18.2695 31.6437i −0.672054 1.16403i −0.977321 0.211764i $$-0.932079\pi$$
0.305267 0.952267i $$-0.401254\pi$$
$$740$$ 13.5912 23.5407i 0.499623 0.865372i
$$741$$ 0.841068 0.0308974
$$742$$ 52.1048 5.08679i 1.91283 0.186742i
$$743$$ 9.83489 0.360807 0.180404 0.983593i $$-0.442260\pi$$
0.180404 + 0.983593i $$0.442260\pi$$
$$744$$ 38.1105 66.0094i 1.39720 2.42002i
$$745$$ 4.95911 + 8.58944i 0.181688 + 0.314693i
$$746$$ 7.12775 + 12.3456i 0.260966 + 0.452006i
$$747$$ −1.18797 + 2.05762i −0.0434655 + 0.0752845i
$$748$$ 38.4048 1.40422
$$749$$ 12.6688 27.8971i 0.462909 1.01934i
$$750$$ −21.4024 −0.781506
$$751$$ 14.3484 24.8522i 0.523581 0.906869i −0.476042 0.879423i $$-0.657929\pi$$
0.999623 0.0274468i $$-0.00873768\pi$$
$$752$$ −67.4905 116.897i −2.46112 4.26279i
$$753$$ −0.468484 0.811437i −0.0170725 0.0295704i
$$754$$ −0.200157 + 0.346682i −0.00728929 + 0.0126254i
$$755$$ 7.69713 0.280127
$$756$$ −8.83158 12.3468i −0.321201 0.449048i
$$757$$ −50.9435 −1.85157 −0.925786 0.378047i $$-0.876596\pi$$
−0.925786 + 0.378047i $$0.876596\pi$$
$$758$$ 27.3135 47.3084i 0.992072 1.71832i
$$759$$ −1.98481 3.43779i −0.0720441 0.124784i
$$760$$ 12.1619 + 21.0649i 0.441157 + 0.764106i
$$761$$ −21.9590 + 38.0340i −0.796011 + 1.37873i 0.126184 + 0.992007i $$0.459727\pi$$
−0.922195 + 0.386725i $$0.873606\pi$$
$$762$$ 16.6322 0.602520
$$763$$ 8.34804 + 11.6708i 0.302219 + 0.422511i
$$764$$ −7.40632 −0.267951
$$765$$ 2.76346 4.78646i 0.0999133 0.173055i
$$766$$ 14.9796 + 25.9453i 0.541233 + 0.937444i
$$767$$ −0.171722 0.297430i −0.00620051 0.0107396i
$$768$$ −44.0695 + 76.3306i −1.59022 + 2.75434i
$$769$$ 4.82343 0.173937 0.0869687 0.996211i $$-0.472282\pi$$