Properties

Label 231.2.ba
Level $231$
Weight $2$
Character orbit 231.ba
Rep. character $\chi_{231}(19,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $128$
Newform subspaces $1$
Sturm bound $64$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 231.ba (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 1 \)
Sturm bound: \(64\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(231, [\chi])\).

Total New Old
Modular forms 288 128 160
Cusp forms 224 128 96
Eisenstein series 64 0 64

Trace form

\( 128 q - 12 q^{4} + 12 q^{5} - 10 q^{7} - 40 q^{8} - 16 q^{9} - 2 q^{11} + 12 q^{14} + 12 q^{15} + 40 q^{16} - 60 q^{17} - 10 q^{18} + 52 q^{22} - 24 q^{23} - 90 q^{24} - 20 q^{25} + 24 q^{26} + 30 q^{28}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(231, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
231.2.ba.a 231.ba 77.n $128$ $1.845$ None 231.2.ba.a \(0\) \(0\) \(12\) \(-10\) $\mathrm{SU}(2)[C_{30}]$

Decomposition of \(S_{2}^{\mathrm{old}}(231, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(231, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 2}\)