Properties

Label 2304.4.a.bz.1.2
Level $2304$
Weight $4$
Character 2304.1
Self dual yes
Analytic conductor $135.940$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2304,4,Mod(1,2304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2304.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.940400653\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 128)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.874032\) of defining polynomial
Character \(\chi\) \(=\) 2304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-17.8885 q^{5} +22.6274 q^{7} +O(q^{10})\) \(q-17.8885 q^{5} +22.6274 q^{7} +44.2719 q^{11} +17.8885 q^{13} -70.0000 q^{17} -82.2192 q^{19} -158.392 q^{23} +195.000 q^{25} +125.220 q^{29} -404.772 q^{35} +375.659 q^{37} -182.000 q^{41} +132.816 q^{43} -316.784 q^{47} +169.000 q^{49} +125.220 q^{53} -791.960 q^{55} -82.2192 q^{59} +232.551 q^{61} -320.000 q^{65} +221.359 q^{67} -113.137 q^{71} -910.000 q^{73} +1001.76 q^{77} +678.823 q^{79} +714.675 q^{83} +1252.20 q^{85} -546.000 q^{89} +404.772 q^{91} +1470.78 q^{95} -490.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 280 q^{17} + 780 q^{25} - 728 q^{41} + 676 q^{49} - 1280 q^{65} - 3640 q^{73} - 2184 q^{89} - 1960 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −17.8885 −1.60000 −0.800000 0.600000i \(-0.795167\pi\)
−0.800000 + 0.600000i \(0.795167\pi\)
\(6\) 0 0
\(7\) 22.6274 1.22177 0.610883 0.791721i \(-0.290815\pi\)
0.610883 + 0.791721i \(0.290815\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 44.2719 1.21350 0.606749 0.794894i \(-0.292473\pi\)
0.606749 + 0.794894i \(0.292473\pi\)
\(12\) 0 0
\(13\) 17.8885 0.381645 0.190823 0.981625i \(-0.438884\pi\)
0.190823 + 0.981625i \(0.438884\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −70.0000 −0.998676 −0.499338 0.866407i \(-0.666423\pi\)
−0.499338 + 0.866407i \(0.666423\pi\)
\(18\) 0 0
\(19\) −82.2192 −0.992757 −0.496378 0.868106i \(-0.665337\pi\)
−0.496378 + 0.868106i \(0.665337\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −158.392 −1.43596 −0.717978 0.696066i \(-0.754932\pi\)
−0.717978 + 0.696066i \(0.754932\pi\)
\(24\) 0 0
\(25\) 195.000 1.56000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 125.220 0.801818 0.400909 0.916118i \(-0.368694\pi\)
0.400909 + 0.916118i \(0.368694\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −404.772 −1.95483
\(36\) 0 0
\(37\) 375.659 1.66914 0.834568 0.550905i \(-0.185717\pi\)
0.834568 + 0.550905i \(0.185717\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −182.000 −0.693259 −0.346630 0.938002i \(-0.612674\pi\)
−0.346630 + 0.938002i \(0.612674\pi\)
\(42\) 0 0
\(43\) 132.816 0.471028 0.235514 0.971871i \(-0.424323\pi\)
0.235514 + 0.971871i \(0.424323\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −316.784 −0.983142 −0.491571 0.870838i \(-0.663577\pi\)
−0.491571 + 0.870838i \(0.663577\pi\)
\(48\) 0 0
\(49\) 169.000 0.492711
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 125.220 0.324533 0.162267 0.986747i \(-0.448120\pi\)
0.162267 + 0.986747i \(0.448120\pi\)
\(54\) 0 0
\(55\) −791.960 −1.94160
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −82.2192 −0.181424 −0.0907121 0.995877i \(-0.528914\pi\)
−0.0907121 + 0.995877i \(0.528914\pi\)
\(60\) 0 0
\(61\) 232.551 0.488117 0.244058 0.969761i \(-0.421521\pi\)
0.244058 + 0.969761i \(0.421521\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −320.000 −0.610633
\(66\) 0 0
\(67\) 221.359 0.403632 0.201816 0.979423i \(-0.435316\pi\)
0.201816 + 0.979423i \(0.435316\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −113.137 −0.189111 −0.0945556 0.995520i \(-0.530143\pi\)
−0.0945556 + 0.995520i \(0.530143\pi\)
\(72\) 0 0
\(73\) −910.000 −1.45901 −0.729503 0.683978i \(-0.760249\pi\)
−0.729503 + 0.683978i \(0.760249\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1001.76 1.48261
\(78\) 0 0
\(79\) 678.823 0.966753 0.483377 0.875413i \(-0.339410\pi\)
0.483377 + 0.875413i \(0.339410\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 714.675 0.945129 0.472565 0.881296i \(-0.343328\pi\)
0.472565 + 0.881296i \(0.343328\pi\)
\(84\) 0 0
\(85\) 1252.20 1.59788
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −546.000 −0.650291 −0.325145 0.945664i \(-0.605413\pi\)
−0.325145 + 0.945664i \(0.605413\pi\)
\(90\) 0 0
\(91\) 404.772 0.466281
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1470.78 1.58841
\(96\) 0 0
\(97\) −490.000 −0.512907 −0.256453 0.966557i \(-0.582554\pi\)
−0.256453 + 0.966557i \(0.582554\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −232.551 −0.229106 −0.114553 0.993417i \(-0.536544\pi\)
−0.114553 + 0.993417i \(0.536544\pi\)
\(102\) 0 0
\(103\) −158.392 −0.151523 −0.0757613 0.997126i \(-0.524139\pi\)
−0.0757613 + 0.997126i \(0.524139\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1726.60 −1.55997 −0.779986 0.625797i \(-0.784774\pi\)
−0.779986 + 0.625797i \(0.784774\pi\)
\(108\) 0 0
\(109\) 1377.42 1.21039 0.605196 0.796077i \(-0.293095\pi\)
0.605196 + 0.796077i \(0.293095\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 910.000 0.757572 0.378786 0.925484i \(-0.376342\pi\)
0.378786 + 0.925484i \(0.376342\pi\)
\(114\) 0 0
\(115\) 2833.40 2.29753
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1583.92 −1.22015
\(120\) 0 0
\(121\) 629.000 0.472577
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1252.20 −0.896000
\(126\) 0 0
\(127\) 1900.70 1.32803 0.664016 0.747718i \(-0.268851\pi\)
0.664016 + 0.747718i \(0.268851\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −170.763 −0.113890 −0.0569452 0.998377i \(-0.518136\pi\)
−0.0569452 + 0.998377i \(0.518136\pi\)
\(132\) 0 0
\(133\) −1860.41 −1.21292
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1930.00 1.20358 0.601792 0.798653i \(-0.294454\pi\)
0.601792 + 0.798653i \(0.294454\pi\)
\(138\) 0 0
\(139\) 1144.74 0.698532 0.349266 0.937024i \(-0.386431\pi\)
0.349266 + 0.937024i \(0.386431\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 791.960 0.463126
\(144\) 0 0
\(145\) −2240.00 −1.28291
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1627.86 0.895029 0.447514 0.894277i \(-0.352309\pi\)
0.447514 + 0.894277i \(0.352309\pi\)
\(150\) 0 0
\(151\) −2375.88 −1.28044 −0.640219 0.768192i \(-0.721157\pi\)
−0.640219 + 0.768192i \(0.721157\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3488.27 −1.77321 −0.886605 0.462528i \(-0.846943\pi\)
−0.886605 + 0.462528i \(0.846943\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3584.00 −1.75440
\(162\) 0 0
\(163\) −3497.48 −1.68064 −0.840318 0.542094i \(-0.817632\pi\)
−0.840318 + 0.542094i \(0.817632\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2059.09 0.954117 0.477059 0.878872i \(-0.341703\pi\)
0.477059 + 0.878872i \(0.341703\pi\)
\(168\) 0 0
\(169\) −1877.00 −0.854347
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2021.41 −0.888350 −0.444175 0.895940i \(-0.646503\pi\)
−0.444175 + 0.895940i \(0.646503\pi\)
\(174\) 0 0
\(175\) 4412.35 1.90595
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3586.02 −1.49739 −0.748693 0.662917i \(-0.769318\pi\)
−0.748693 + 0.662917i \(0.769318\pi\)
\(180\) 0 0
\(181\) −2486.51 −1.02111 −0.510554 0.859846i \(-0.670560\pi\)
−0.510554 + 0.859846i \(0.670560\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6720.00 −2.67062
\(186\) 0 0
\(187\) −3099.03 −1.21189
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2262.74 0.857205 0.428603 0.903493i \(-0.359006\pi\)
0.428603 + 0.903493i \(0.359006\pi\)
\(192\) 0 0
\(193\) 630.000 0.234966 0.117483 0.993075i \(-0.462517\pi\)
0.117483 + 0.993075i \(0.462517\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1878.30 −0.679305 −0.339653 0.940551i \(-0.610310\pi\)
−0.339653 + 0.940551i \(0.610310\pi\)
\(198\) 0 0
\(199\) −3959.80 −1.41057 −0.705283 0.708926i \(-0.749180\pi\)
−0.705283 + 0.708926i \(0.749180\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2833.40 0.979634
\(204\) 0 0
\(205\) 3255.71 1.10921
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3640.00 −1.20471
\(210\) 0 0
\(211\) −2789.13 −0.910007 −0.455004 0.890490i \(-0.650362\pi\)
−0.455004 + 0.890490i \(0.650362\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2375.88 −0.753645
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1252.20 −0.381140
\(222\) 0 0
\(223\) 2534.27 0.761019 0.380510 0.924777i \(-0.375749\pi\)
0.380510 + 0.924777i \(0.375749\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2219.92 −0.649080 −0.324540 0.945872i \(-0.605210\pi\)
−0.324540 + 0.945872i \(0.605210\pi\)
\(228\) 0 0
\(229\) −4275.36 −1.23373 −0.616864 0.787069i \(-0.711597\pi\)
−0.616864 + 0.787069i \(0.711597\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5010.00 −1.40865 −0.704326 0.709876i \(-0.748751\pi\)
−0.704326 + 0.709876i \(0.748751\pi\)
\(234\) 0 0
\(235\) 5666.80 1.57303
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1583.92 0.428683 0.214341 0.976759i \(-0.431239\pi\)
0.214341 + 0.976759i \(0.431239\pi\)
\(240\) 0 0
\(241\) 1638.00 0.437813 0.218906 0.975746i \(-0.429751\pi\)
0.218906 + 0.975746i \(0.429751\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3023.16 −0.788338
\(246\) 0 0
\(247\) −1470.78 −0.378881
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1233.29 0.310137 0.155069 0.987904i \(-0.450440\pi\)
0.155069 + 0.987904i \(0.450440\pi\)
\(252\) 0 0
\(253\) −7012.31 −1.74253
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1890.00 −0.458735 −0.229368 0.973340i \(-0.573666\pi\)
−0.229368 + 0.973340i \(0.573666\pi\)
\(258\) 0 0
\(259\) 8500.20 2.03929
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2647.41 −0.620708 −0.310354 0.950621i \(-0.600448\pi\)
−0.310354 + 0.950621i \(0.600448\pi\)
\(264\) 0 0
\(265\) −2240.00 −0.519253
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3488.27 0.790644 0.395322 0.918543i \(-0.370633\pi\)
0.395322 + 0.918543i \(0.370633\pi\)
\(270\) 0 0
\(271\) −7919.60 −1.77521 −0.887604 0.460608i \(-0.847631\pi\)
−0.887604 + 0.460608i \(0.847631\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8633.02 1.89306
\(276\) 0 0
\(277\) 4883.57 1.05930 0.529649 0.848217i \(-0.322324\pi\)
0.529649 + 0.848217i \(0.322324\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1118.00 0.237346 0.118673 0.992933i \(-0.462136\pi\)
0.118673 + 0.992933i \(0.462136\pi\)
\(282\) 0 0
\(283\) −2118.73 −0.445036 −0.222518 0.974929i \(-0.571428\pi\)
−0.222518 + 0.974929i \(0.571428\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4118.19 −0.847000
\(288\) 0 0
\(289\) −13.0000 −0.00264604
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4275.36 0.852455 0.426227 0.904616i \(-0.359842\pi\)
0.426227 + 0.904616i \(0.359842\pi\)
\(294\) 0 0
\(295\) 1470.78 0.290279
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2833.40 −0.548026
\(300\) 0 0
\(301\) 3005.28 0.575486
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4160.00 −0.780987
\(306\) 0 0
\(307\) −7975.26 −1.48265 −0.741323 0.671148i \(-0.765801\pi\)
−0.741323 + 0.671148i \(0.765801\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10295.5 −1.87718 −0.938590 0.345035i \(-0.887867\pi\)
−0.938590 + 0.345035i \(0.887867\pi\)
\(312\) 0 0
\(313\) −2170.00 −0.391871 −0.195936 0.980617i \(-0.562774\pi\)
−0.195936 + 0.980617i \(0.562774\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4883.57 −0.865264 −0.432632 0.901571i \(-0.642415\pi\)
−0.432632 + 0.901571i \(0.642415\pi\)
\(318\) 0 0
\(319\) 5543.72 0.973005
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5755.35 0.991443
\(324\) 0 0
\(325\) 3488.27 0.595367
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7168.00 −1.20117
\(330\) 0 0
\(331\) −11732.1 −1.94819 −0.974096 0.226133i \(-0.927392\pi\)
−0.974096 + 0.226133i \(0.927392\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3959.80 −0.645812
\(336\) 0 0
\(337\) −10990.0 −1.77645 −0.888225 0.459409i \(-0.848061\pi\)
−0.888225 + 0.459409i \(0.848061\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −3937.17 −0.619788
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4117.29 0.636967 0.318483 0.947928i \(-0.396826\pi\)
0.318483 + 0.947928i \(0.396826\pi\)
\(348\) 0 0
\(349\) −4275.36 −0.655745 −0.327872 0.944722i \(-0.606332\pi\)
−0.327872 + 0.944722i \(0.606332\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8610.00 −1.29820 −0.649099 0.760704i \(-0.724854\pi\)
−0.649099 + 0.760704i \(0.724854\pi\)
\(354\) 0 0
\(355\) 2023.86 0.302578
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10295.5 1.51358 0.756789 0.653659i \(-0.226767\pi\)
0.756789 + 0.653659i \(0.226767\pi\)
\(360\) 0 0
\(361\) −99.0000 −0.0144336
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 16278.6 2.33441
\(366\) 0 0
\(367\) 2851.05 0.405515 0.202757 0.979229i \(-0.435010\pi\)
0.202757 + 0.979229i \(0.435010\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2833.40 0.396504
\(372\) 0 0
\(373\) 4883.57 0.677914 0.338957 0.940802i \(-0.389926\pi\)
0.338957 + 0.940802i \(0.389926\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2240.00 0.306010
\(378\) 0 0
\(379\) 3674.57 0.498021 0.249010 0.968501i \(-0.419895\pi\)
0.249010 + 0.968501i \(0.419895\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2534.27 −0.338108 −0.169054 0.985607i \(-0.554071\pi\)
−0.169054 + 0.985607i \(0.554071\pi\)
\(384\) 0 0
\(385\) −17920.0 −2.37218
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −11395.0 −1.48522 −0.742609 0.669726i \(-0.766412\pi\)
−0.742609 + 0.669726i \(0.766412\pi\)
\(390\) 0 0
\(391\) 11087.4 1.43406
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −12143.1 −1.54681
\(396\) 0 0
\(397\) 13255.4 1.67574 0.837872 0.545867i \(-0.183800\pi\)
0.837872 + 0.545867i \(0.183800\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1722.00 0.214445 0.107223 0.994235i \(-0.465804\pi\)
0.107223 + 0.994235i \(0.465804\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16631.2 2.02549
\(408\) 0 0
\(409\) −13594.0 −1.64347 −0.821736 0.569868i \(-0.806994\pi\)
−0.821736 + 0.569868i \(0.806994\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1860.41 −0.221658
\(414\) 0 0
\(415\) −12784.5 −1.51221
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4775.04 −0.556744 −0.278372 0.960473i \(-0.589795\pi\)
−0.278372 + 0.960473i \(0.589795\pi\)
\(420\) 0 0
\(421\) 7888.85 0.913252 0.456626 0.889659i \(-0.349058\pi\)
0.456626 + 0.889659i \(0.349058\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13650.0 −1.55793
\(426\) 0 0
\(427\) 5262.03 0.596364
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1583.92 0.177018 0.0885089 0.996075i \(-0.471790\pi\)
0.0885089 + 0.996075i \(0.471790\pi\)
\(432\) 0 0
\(433\) 14630.0 1.62373 0.811863 0.583849i \(-0.198454\pi\)
0.811863 + 0.583849i \(0.198454\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13022.9 1.42556
\(438\) 0 0
\(439\) 10295.5 1.11931 0.559654 0.828726i \(-0.310934\pi\)
0.559654 + 0.828726i \(0.310934\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17753.0 1.90400 0.952000 0.306099i \(-0.0990238\pi\)
0.952000 + 0.306099i \(0.0990238\pi\)
\(444\) 0 0
\(445\) 9767.14 1.04047
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3894.00 −0.409286 −0.204643 0.978837i \(-0.565603\pi\)
−0.204643 + 0.978837i \(0.565603\pi\)
\(450\) 0 0
\(451\) −8057.48 −0.841268
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7240.77 −0.746050
\(456\) 0 0
\(457\) −2730.00 −0.279440 −0.139720 0.990191i \(-0.544620\pi\)
−0.139720 + 0.990191i \(0.544620\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10250.1 −1.03557 −0.517784 0.855512i \(-0.673243\pi\)
−0.517784 + 0.855512i \(0.673243\pi\)
\(462\) 0 0
\(463\) −7648.07 −0.767680 −0.383840 0.923400i \(-0.625399\pi\)
−0.383840 + 0.923400i \(0.625399\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13730.6 −1.36055 −0.680275 0.732957i \(-0.738140\pi\)
−0.680275 + 0.732957i \(0.738140\pi\)
\(468\) 0 0
\(469\) 5008.79 0.493144
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5880.00 0.571591
\(474\) 0 0
\(475\) −16032.7 −1.54870
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12671.4 1.20870 0.604352 0.796718i \(-0.293432\pi\)
0.604352 + 0.796718i \(0.293432\pi\)
\(480\) 0 0
\(481\) 6720.00 0.637018
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8765.39 0.820651
\(486\) 0 0
\(487\) −2059.09 −0.191594 −0.0957972 0.995401i \(-0.530540\pi\)
−0.0957972 + 0.995401i \(0.530540\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5888.16 0.541200 0.270600 0.962692i \(-0.412778\pi\)
0.270600 + 0.962692i \(0.412778\pi\)
\(492\) 0 0
\(493\) −8765.39 −0.800757
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2560.00 −0.231050
\(498\) 0 0
\(499\) −10935.2 −0.981012 −0.490506 0.871438i \(-0.663188\pi\)
−0.490506 + 0.871438i \(0.663188\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14413.7 1.27768 0.638840 0.769339i \(-0.279414\pi\)
0.638840 + 0.769339i \(0.279414\pi\)
\(504\) 0 0
\(505\) 4160.00 0.366569
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12790.3 1.11379 0.556896 0.830582i \(-0.311992\pi\)
0.556896 + 0.830582i \(0.311992\pi\)
\(510\) 0 0
\(511\) −20590.9 −1.78256
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2833.40 0.242436
\(516\) 0 0
\(517\) −14024.6 −1.19304
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16758.0 −1.40918 −0.704589 0.709616i \(-0.748868\pi\)
−0.704589 + 0.709616i \(0.748868\pi\)
\(522\) 0 0
\(523\) 16197.2 1.35421 0.677107 0.735885i \(-0.263234\pi\)
0.677107 + 0.735885i \(0.263234\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 12921.0 1.06197
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3255.71 −0.264579
\(534\) 0 0
\(535\) 30886.4 2.49596
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7481.95 0.597904
\(540\) 0 0
\(541\) 375.659 0.0298537 0.0149269 0.999889i \(-0.495248\pi\)
0.0149269 + 0.999889i \(0.495248\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −24640.0 −1.93663
\(546\) 0 0
\(547\) 1638.06 0.128041 0.0640205 0.997949i \(-0.479608\pi\)
0.0640205 + 0.997949i \(0.479608\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10295.5 −0.796011
\(552\) 0 0
\(553\) 15360.0 1.18115
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −19909.9 −1.51456 −0.757282 0.653089i \(-0.773473\pi\)
−0.757282 + 0.653089i \(0.773473\pi\)
\(558\) 0 0
\(559\) 2375.88 0.179766
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 790.569 0.0591803 0.0295902 0.999562i \(-0.490580\pi\)
0.0295902 + 0.999562i \(0.490580\pi\)
\(564\) 0 0
\(565\) −16278.6 −1.21211
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20454.0 −1.50699 −0.753494 0.657455i \(-0.771633\pi\)
−0.753494 + 0.657455i \(0.771633\pi\)
\(570\) 0 0
\(571\) 5622.53 0.412076 0.206038 0.978544i \(-0.433943\pi\)
0.206038 + 0.978544i \(0.433943\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −30886.4 −2.24009
\(576\) 0 0
\(577\) −22750.0 −1.64141 −0.820706 0.571351i \(-0.806420\pi\)
−0.820706 + 0.571351i \(0.806420\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16171.2 1.15473
\(582\) 0 0
\(583\) 5543.72 0.393820
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15843.0 −1.11399 −0.556994 0.830516i \(-0.688045\pi\)
−0.556994 + 0.830516i \(0.688045\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12110.0 0.838614 0.419307 0.907845i \(-0.362273\pi\)
0.419307 + 0.907845i \(0.362273\pi\)
\(594\) 0 0
\(595\) 28334.0 1.95224
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 19120.2 1.30422 0.652111 0.758124i \(-0.273884\pi\)
0.652111 + 0.758124i \(0.273884\pi\)
\(600\) 0 0
\(601\) −4382.00 −0.297413 −0.148707 0.988881i \(-0.547511\pi\)
−0.148707 + 0.988881i \(0.547511\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −11251.9 −0.756123
\(606\) 0 0
\(607\) 8236.38 0.550749 0.275374 0.961337i \(-0.411198\pi\)
0.275374 + 0.961337i \(0.411198\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5666.80 −0.375212
\(612\) 0 0
\(613\) −2128.74 −0.140259 −0.0701296 0.997538i \(-0.522341\pi\)
−0.0701296 + 0.997538i \(0.522341\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15470.0 1.00940 0.504699 0.863295i \(-0.331603\pi\)
0.504699 + 0.863295i \(0.331603\pi\)
\(618\) 0 0
\(619\) 19486.0 1.26528 0.632639 0.774447i \(-0.281972\pi\)
0.632639 + 0.774447i \(0.281972\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12354.6 −0.794503
\(624\) 0 0
\(625\) −1975.00 −0.126400
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −26296.2 −1.66693
\(630\) 0 0
\(631\) −6448.81 −0.406851 −0.203426 0.979090i \(-0.565208\pi\)
−0.203426 + 0.979090i \(0.565208\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −34000.8 −2.12485
\(636\) 0 0
\(637\) 3023.16 0.188041
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −182.000 −0.0112146 −0.00560731 0.999984i \(-0.501785\pi\)
−0.00560731 + 0.999984i \(0.501785\pi\)
\(642\) 0 0
\(643\) 23293.3 1.42862 0.714308 0.699832i \(-0.246742\pi\)
0.714308 + 0.699832i \(0.246742\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2059.09 0.125118 0.0625590 0.998041i \(-0.480074\pi\)
0.0625590 + 0.998041i \(0.480074\pi\)
\(648\) 0 0
\(649\) −3640.00 −0.220158
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14650.7 0.877989 0.438995 0.898490i \(-0.355335\pi\)
0.438995 + 0.898490i \(0.355335\pi\)
\(654\) 0 0
\(655\) 3054.70 0.182225
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10935.2 0.646393 0.323197 0.946332i \(-0.395242\pi\)
0.323197 + 0.946332i \(0.395242\pi\)
\(660\) 0 0
\(661\) −3774.48 −0.222103 −0.111052 0.993815i \(-0.535422\pi\)
−0.111052 + 0.993815i \(0.535422\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 33280.0 1.94067
\(666\) 0 0
\(667\) −19833.8 −1.15138
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10295.5 0.592328
\(672\) 0 0
\(673\) −2410.00 −0.138037 −0.0690183 0.997615i \(-0.521987\pi\)
−0.0690183 + 0.997615i \(0.521987\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27566.2 −1.56493 −0.782464 0.622695i \(-0.786038\pi\)
−0.782464 + 0.622695i \(0.786038\pi\)
\(678\) 0 0
\(679\) −11087.4 −0.626652
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2346.41 0.131454 0.0657269 0.997838i \(-0.479063\pi\)
0.0657269 + 0.997838i \(0.479063\pi\)
\(684\) 0 0
\(685\) −34524.9 −1.92573
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2240.00 0.123857
\(690\) 0 0
\(691\) −10277.4 −0.565804 −0.282902 0.959149i \(-0.591297\pi\)
−0.282902 + 0.959149i \(0.591297\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20477.8 −1.11765
\(696\) 0 0
\(697\) 12740.0 0.692341
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 626.099 0.0337339 0.0168669 0.999858i \(-0.494631\pi\)
0.0168669 + 0.999858i \(0.494631\pi\)
\(702\) 0 0
\(703\) −30886.4 −1.65705
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5262.03 −0.279914
\(708\) 0 0
\(709\) −14650.7 −0.776050 −0.388025 0.921649i \(-0.626843\pi\)
−0.388025 + 0.921649i \(0.626843\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −14167.0 −0.741001
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −14255.3 −0.739405 −0.369702 0.929150i \(-0.620540\pi\)
−0.369702 + 0.929150i \(0.620540\pi\)
\(720\) 0 0
\(721\) −3584.00 −0.185125
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24417.9 1.25084
\(726\) 0 0
\(727\) −4276.58 −0.218170 −0.109085 0.994032i \(-0.534792\pi\)
−0.109085 + 0.994032i \(0.534792\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9297.10 −0.470404
\(732\) 0 0
\(733\) −9284.15 −0.467828 −0.233914 0.972257i \(-0.575153\pi\)
−0.233914 + 0.972257i \(0.575153\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9800.00 0.489807
\(738\) 0 0
\(739\) −1726.60 −0.0859461 −0.0429730 0.999076i \(-0.513683\pi\)
−0.0429730 + 0.999076i \(0.513683\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −28352.2 −1.39992 −0.699959 0.714183i \(-0.746799\pi\)
−0.699959 + 0.714183i \(0.746799\pi\)
\(744\) 0 0
\(745\) −29120.0 −1.43205
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −39068.6 −1.90592
\(750\) 0 0
\(751\) −20590.9 −1.00050 −0.500249 0.865881i \(-0.666758\pi\)
−0.500249 + 0.865881i \(0.666758\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 42501.0 2.04870
\(756\) 0 0
\(757\) −22664.8 −1.08820 −0.544099 0.839021i \(-0.683128\pi\)
−0.544099 + 0.839021i \(0.683128\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7098.00 0.338111 0.169055 0.985607i \(-0.445928\pi\)
0.169055 + 0.985607i \(0.445928\pi\)
\(762\) 0 0
\(763\) 31167.4 1.47882
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1470.78 −0.0692397
\(768\) 0 0
\(769\) 17654.0 0.827854 0.413927 0.910310i \(-0.364157\pi\)
0.413927 + 0.910310i \(0.364157\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6529.32 −0.303808 −0.151904 0.988395i \(-0.548540\pi\)
−0.151904 + 0.988395i \(0.548540\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14963.9 0.688238
\(780\) 0 0
\(781\) −5008.79 −0.229486
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 62400.0 2.83714
\(786\) 0 0
\(787\) −2384.36 −0.107996 −0.0539982 0.998541i \(-0.517197\pi\)
−0.0539982 + 0.998541i \(0.517197\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 20590.9 0.925575
\(792\) 0 0
\(793\) 4160.00 0.186287
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29534.0 1.31261 0.656303 0.754497i \(-0.272119\pi\)
0.656303 + 0.754497i \(0.272119\pi\)
\(798\) 0 0
\(799\) 22174.9 0.981840
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −40287.4 −1.77050
\(804\) 0 0
\(805\) 64112.5 2.80704
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10934.0 −0.475178 −0.237589 0.971366i \(-0.576357\pi\)
−0.237589 + 0.971366i \(0.576357\pi\)
\(810\) 0 0
\(811\) −17348.3 −0.751146 −0.375573 0.926793i \(-0.622554\pi\)
−0.375573 + 0.926793i \(0.622554\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 62564.8 2.68902
\(816\) 0 0
\(817\) −10920.0 −0.467616
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14901.2 −0.633440 −0.316720 0.948519i \(-0.602581\pi\)
−0.316720 + 0.948519i \(0.602581\pi\)
\(822\) 0 0
\(823\) −17943.5 −0.759991 −0.379995 0.924988i \(-0.624074\pi\)
−0.379995 + 0.924988i \(0.624074\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25899.1 1.08899 0.544497 0.838763i \(-0.316721\pi\)
0.544497 + 0.838763i \(0.316721\pi\)
\(828\) 0 0
\(829\) 25276.5 1.05897 0.529487 0.848318i \(-0.322384\pi\)
0.529487 + 0.848318i \(0.322384\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −11830.0 −0.492059
\(834\) 0 0
\(835\) −36834.2 −1.52659
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10295.5 0.423646 0.211823 0.977308i \(-0.432060\pi\)
0.211823 + 0.977308i \(0.432060\pi\)
\(840\) 0 0
\(841\) −8709.00 −0.357087
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 33576.8 1.36695
\(846\) 0 0
\(847\) 14232.6 0.577378
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −59501.4 −2.39681
\(852\) 0 0
\(853\) 21770.4 0.873860 0.436930 0.899495i \(-0.356066\pi\)
0.436930 + 0.899495i \(0.356066\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24570.0 0.979341 0.489670 0.871908i \(-0.337117\pi\)
0.489670 + 0.871908i \(0.337117\pi\)
\(858\) 0 0
\(859\) −5837.56 −0.231869 −0.115934 0.993257i \(-0.536986\pi\)
−0.115934 + 0.993257i \(0.536986\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −23713.5 −0.935363 −0.467681 0.883897i \(-0.654911\pi\)
−0.467681 + 0.883897i \(0.654911\pi\)
\(864\) 0 0
\(865\) 36160.0 1.42136
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 30052.8 1.17315
\(870\) 0 0
\(871\) 3959.80 0.154044
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −28334.0 −1.09470
\(876\) 0 0
\(877\) −43701.7 −1.68267 −0.841335 0.540514i \(-0.818230\pi\)
−0.841335 + 0.540514i \(0.818230\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17038.0 0.651561 0.325780 0.945446i \(-0.394373\pi\)
0.325780 + 0.945446i \(0.394373\pi\)
\(882\) 0 0
\(883\) 27492.8 1.04780 0.523900 0.851780i \(-0.324476\pi\)
0.523900 + 0.851780i \(0.324476\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −43241.0 −1.63686 −0.818428 0.574610i \(-0.805154\pi\)
−0.818428 + 0.574610i \(0.805154\pi\)
\(888\) 0 0
\(889\) 43008.0 1.62254
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 26045.7 0.976021
\(894\) 0 0
\(895\) 64148.7 2.39582
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −8765.39 −0.324104
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 44480.0 1.63377
\(906\) 0 0
\(907\) 40154.6 1.47002 0.735012 0.678054i \(-0.237177\pi\)
0.735012 + 0.678054i \(0.237177\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11087.4 −0.403231 −0.201615 0.979465i \(-0.564619\pi\)
−0.201615 + 0.979465i \(0.564619\pi\)
\(912\) 0 0
\(913\) 31640.0 1.14691
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3863.93 −0.139147
\(918\) 0 0
\(919\) −1470.78 −0.0527928 −0.0263964 0.999652i \(-0.508403\pi\)
−0.0263964 + 0.999652i \(0.508403\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2023.86 −0.0721734
\(924\) 0 0
\(925\) 73253.6 2.60385
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −32214.0 −1.13768 −0.568841 0.822447i \(-0.692608\pi\)
−0.568841 + 0.822447i \(0.692608\pi\)
\(930\) 0 0
\(931\) −13895.0 −0.489143
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 55437.2 1.93903
\(936\) 0 0
\(937\) 13650.0 0.475908 0.237954 0.971276i \(-0.423523\pi\)
0.237954 + 0.971276i \(0.423523\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6529.32 −0.226195 −0.113098 0.993584i \(-0.536077\pi\)
−0.113098 + 0.993584i \(0.536077\pi\)
\(942\) 0 0
\(943\) 28827.3 0.995490
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11555.0 −0.396500 −0.198250 0.980151i \(-0.563526\pi\)
−0.198250 + 0.980151i \(0.563526\pi\)
\(948\) 0 0
\(949\) −16278.6 −0.556823
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −10470.0 −0.355883 −0.177942 0.984041i \(-0.556944\pi\)
−0.177942 + 0.984041i \(0.556944\pi\)
\(954\) 0 0
\(955\) −40477.2 −1.37153
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 43670.9 1.47050
\(960\) 0 0
\(961\) −29791.0 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −11269.8 −0.375945
\(966\) 0 0
\(967\) −40706.7 −1.35371 −0.676856 0.736115i \(-0.736658\pi\)
−0.676856 + 0.736115i \(0.736658\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 49502.3 1.63605 0.818025 0.575183i \(-0.195069\pi\)
0.818025 + 0.575183i \(0.195069\pi\)
\(972\) 0 0
\(973\) 25902.6 0.853443
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 51770.0 1.69526 0.847630 0.530588i \(-0.178029\pi\)
0.847630 + 0.530588i \(0.178029\pi\)
\(978\) 0 0
\(979\) −24172.5 −0.789127
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22333.3 −0.724639 −0.362320 0.932054i \(-0.618015\pi\)
−0.362320 + 0.932054i \(0.618015\pi\)
\(984\) 0 0
\(985\) 33600.0 1.08689
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −21036.9 −0.676376
\(990\) 0 0
\(991\) 52948.2 1.69723 0.848614 0.529012i \(-0.177437\pi\)
0.848614 + 0.529012i \(0.177437\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 70835.0 2.25691
\(996\) 0 0
\(997\) 17548.7 0.557444 0.278722 0.960372i \(-0.410089\pi\)
0.278722 + 0.960372i \(0.410089\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2304.4.a.bz.1.2 4
3.2 odd 2 256.4.a.n.1.2 4
4.3 odd 2 inner 2304.4.a.bz.1.1 4
8.3 odd 2 inner 2304.4.a.bz.1.3 4
8.5 even 2 inner 2304.4.a.bz.1.4 4
12.11 even 2 256.4.a.n.1.4 4
16.3 odd 4 1152.4.d.j.577.4 4
16.5 even 4 1152.4.d.j.577.1 4
16.11 odd 4 1152.4.d.j.577.2 4
16.13 even 4 1152.4.d.j.577.3 4
24.5 odd 2 256.4.a.n.1.3 4
24.11 even 2 256.4.a.n.1.1 4
48.5 odd 4 128.4.b.e.65.4 yes 4
48.11 even 4 128.4.b.e.65.2 yes 4
48.29 odd 4 128.4.b.e.65.1 4
48.35 even 4 128.4.b.e.65.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.4.b.e.65.1 4 48.29 odd 4
128.4.b.e.65.2 yes 4 48.11 even 4
128.4.b.e.65.3 yes 4 48.35 even 4
128.4.b.e.65.4 yes 4 48.5 odd 4
256.4.a.n.1.1 4 24.11 even 2
256.4.a.n.1.2 4 3.2 odd 2
256.4.a.n.1.3 4 24.5 odd 2
256.4.a.n.1.4 4 12.11 even 2
1152.4.d.j.577.1 4 16.5 even 4
1152.4.d.j.577.2 4 16.11 odd 4
1152.4.d.j.577.3 4 16.13 even 4
1152.4.d.j.577.4 4 16.3 odd 4
2304.4.a.bz.1.1 4 4.3 odd 2 inner
2304.4.a.bz.1.2 4 1.1 even 1 trivial
2304.4.a.bz.1.3 4 8.3 odd 2 inner
2304.4.a.bz.1.4 4 8.5 even 2 inner